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Bifurcation analysis of reaction-diffusion
equations in developmental biology
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Abstract; Using the Liapunov-Schmidt reductiori, we investigate ihe bifurcation of a class of nonlinear reaction-diffu-
sion equations in developmenzal biokogy, Near the bifurcation point we obtain nontrivial solution branches bifurcated
from the trivial solution. Approximavs analytical expressions of the nontrivial solutions are given to compare with the

numerical solutions of the nonlinear problem.
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1 Introduction
In the developmental biology '! , the pattern formation processes in a variety of morphogenetic situations

can usually be described by the following class of nonlinear reaction-diffusion equations:
u; = yf(uQ 'U)+u.zz

n
v, =7 g(uy v) +dv
with boundary condition
u,(ty 0) = u, (¢, ©) = v, (¢ty 0) = v, (¢y ©) =0, (2)
where
fu,v) =a—bu+u—;, gluyv) = ut — v, (3)

as band 7 are constants and d is a parameter,

The rest of the paper is organized as follows. In Sec. 2, we apply the Liapunov-Schmidt reduction
process [ to the above nonlinear problem (1), (2) and (3)at the bifurcation point, Sec. 3 is devoted to bi-
furcation analysis to get the bifurcation equation and the approximate analytical expressions of the nontrivial
solutions of the nonlinear problem, In the last section we take an example to show the effectiveness of our a-

nalysis by comparison of the approximate nontrivial solutions with the numerical solutions,
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2 Liapunov-Schmidt reduction

It is easy to know that (1) , (2) and (3) have the stationary solution

U = (a+1/b, v = ((a+1)/b), (4)
Let p = u—uy, ¢ = v— v,. Substituting them into (1) and (2) we have
2
po=—vbp—y+y AtV
¥q+(a+1) )
« =2 75 —vo+
and
2:(6,0) = p.(gy,7) = q,(£,0) = q,0¢,7) =0, (6
Separating the linear item from Eqgs. (5) we get y, = L.{d)y-+ h(y) wharey = (p,@)7 ,
1—a d 5 21
—rb+ - —Yi—=-— ) - By b .,
P+ 1 h —
L(d): l+a 1 d_rz ‘+ ) ’andh(y)z[hlzy;]= ':qu_}_(a_*_l)z(p a+1q) )
LAV AN 2 LY 2
2 Y ”—ddxz Yp
l—a a2 b 2
) ) 1+a7b n 7(a+1)
Asy =y = (p, cosnz ,q, cosnz)” y L(d)y = L,y where L, =
2 5‘%17 —7—dn?
The character equation of L, is | AI—L, |= 0, thatis A* 4+ H,A +G, = 0, in which
H,, — (d+1)nz+),a+1+(a—-l)b, G,. =dn4 +b72+ynz a+1+(a-—l)bd.
a—+1 a-+1
1 - \4 - n
Hence the eigenvalues of L, are A* = H, £ (ZH") 4G .
Solving G, = 0 (i.e. A} = 0 ) we obtain
__ (@+D®* +n'n
b= A —omr—(at Dr’ D
which is a bifurcation point, And
ker L, = span{@,(z)} = span{( cosnx, M, cosnz)T},
where L, = L(d,), M, = L=aD —n(a+ D?
vy
Similarly
ker L = span{¢,(x)} = span{( cosnz, N, cosnz)T},
. . _(a—1)¥ n?
where L, is the conjugate operator of L, and N, = TCESAL + Gt DY
L, is a Fredholm operator of index zero,
LetY = {(p,@)7 | prq € C[0,7], $.(0) = p, (%) = q,(0) = ¢, (®) =0},
Z={(z1)2)7 | 2197 € C[0,n]}
and
F(y,d) = L(d)y+h(y) =0, (8)

Clearly F(y,d) is a map fromY X Ronto Z.

Split these spaces into
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Y=kerL, &M, Z=rangeL, P N, (9
where M = (ker L,)+ ] Yand N = (range L,)1 . According to the Fredholm alternative,

(range L)1 = ker L} . Define the orthogonal projector P, from Z onto range L, as

— . (z,‘ﬁ,.)
Pz ==z (Sb""/)n)tp,, 2 € Z, 10)
where the inner product (u,v) = Jﬁu(x)rv(:r)dx . LetA=d—d,and y = v, +w Then
o
&, 2 T
F(y,A) =L,,w+h(rgo,,+w)+/\(0,—d—xz——n M, cosnx)’, 11
wheret € R, w = (w, ,0,)T € M. By the Liapunov-Schmidt reduction prizciple, {&) is couivalent to
P F(rp,+ w, ) =0, 12)
(A—-P)F(r g, -w,d) =, Q)]

According to the implicit function theorem, from (12) we can get a unique w(7,A) satisfying w(0,0) = 0,

Substituting w(t,A) into (12} ywelds an eguivalem equation

G{z,A) = (¢, F(mp, + w(z,Ad),A)) = 0, 14>
which is called the biturcation equation of (8) . The following formulae can be easily calculated;
G = (¢ dF(p, + @), (15)
Gz = (}t,b,,,dF(wJ)—I—dZF(qo,,+w,,§D,,+w,)), (16)
Gs = (¢, dF(w3) + 3E F(@, + w;ywz) + EF(p, + wey @, + w0, + ), an
G, = (. »dF(w) + Fo), (18)
Ga = (¢, dFi (@, + @) + dF(ws) + £ F(g, + wcyw)), (19

where w, ywg o1 0,y , 0+ are given by Eqgs. (20)~(24) derived below.
Differentiating (12) with respect to 7 and A leads to

P.dF(¢, +w,) =0, . (20)
Pnsz(¢n +wri¢u +wr) + PndF(wtz) == 01 (21)
P,&F(@, + w0, + ey + ) + 3P, & F(@, + @ y02) + P,dF(ws) = 0, (22)
P"dF((U,\)—f‘P"F):O, (23)
P,dF, (¢, +w,) + P,dF(w,) 4+ P, & F(@, + @, ,,) = 0. (24)

3 Bifurcation analysis

It is easy to see that at (z,A) = (0,0), (20) becomes P,L, (¢, +©.(0,0)) =0, Becauseq, € L,, w, €
M,PL,=L,andL,:M — range L, is regular,it follows from L,®.(0,0) = 0 that
w.(0,0) =0 (25)
and by (15),
G:(0,0) = <¢,, (dF) 0,0 (@, + @) = (¢, s L, (@, + @ (0,0))) =0, (26)
Similarly @, (0,0) =0, G,(0,0) =0,

Because
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(&EF)o.né,&) = 3 t13 2[L(t1$1 +6&) +h(t& +468)] [:,=tz—o
— Y ree b (66 48,80 + (226,80, 278,607, @n
(a+ -1 +1 a+1

where &, , &, and &, , &, are the components of § and & respectively,

28y _ 2 2
(EF)om (@) = (a+1),(a+1 &M, )2 cos*nx 28 cos*nx ’ (28)
27 costnr
2cos’ nr
where f = #Y (a+1—8M,)*/(a+ 1),
Using (21), (25) and (28),we get P,d*F(@,,@,) + P,dF(wz (6,0)) = 4. At (r,A) = (0,0),
(21) becomes
Lwz(0,0) = — (B ¥ )V( cosax 4- 1. 29)
To solve (29), it is assumed that
w3 (0,0) = ! ¢, cosZnz + ¢3s ¢ cosnz +¢;)7. (30)
Substituting (30) into (79} yieldc
_ 1 2 _ by
a = [,8(7+4 d,)) — (—— +1) 1
o = ¥M, (M, —2a—2)
: (a+ D ’
_ a + 1 2 2 4 — 1
= (Zﬂ)' + 4nty + by P 1)
26M,
Gy = +( +1)3(W 2&—2),
2 2br° r 3 -
where D = +1 d,)+—— P By means of ,cos nrdx = 0 we get
G} (0'0) = <¢'.| 9L,,CU,3 (O’O) +d2F(o‘o) (¢,.9¢,.)) = Q. (31)
Furthermore,
(B F),0(6:&:8) = m[utl& + 66 +68)+h(48 + 685+ 48)] |:1=-:3=:3-o
= (—-Zb‘@(el 982 953)/((a+1)‘)’ O)T, (32)

where D(6,564,8) = (511521532 + 511522531 + 512521531) - ‘%(suezzssz + 512521532 + &:2&:60)

+ 3((%1)2&2522632 and §; are the j-th(j=1,2) components of §(i = 1,2,3) . Therefore

(daF)(O.O) (¢n 7¢n 7?-) = (aCOSanI, O)T’

__6b'YM, at+1—0M,., _
where a = a _{_1)‘( g ). At (r,4) = (0,00,
G2 (0,0) = (¢, Lwp (0,0) + 3sz(o.0) (@ w2) + &* Feo,0 (@, 1Pur @)
where
¢5 cos® nx + ¢4 cosnx
sz ) ( n )= 33)
@o (12 47 cycos’nr 4+ 27 (c; —¢y) cosnx ¢

and

4Bty [ —

e ey +M,.c1)+(——) Mic,],

Cs =

+1
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(34)

(35)
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. = (-a%[(cz —a) =t —a + M —a)) + LM — el
Hence
= (g, Ca+ 3¢y 127¢;1)Tcos’ mxr + 3¢5y 67 (o —e1))T cosnx)
3n(a + 3¢c; +4N,7 ¢1 + 4¢g +8N,7 ¢3)/8.

and where L,: M — range L, is regular, Similarly we can obtain

L,,a)p\ (090) = PndFA(¢n)

Gz (0,0)
Next let (24) be evaluated at (v ,A) = (0,0) and (dF3) .0 ¢ = (0 y — M, cosnx )7. Hence we have

Wy (0’0) = (Al COSNT » Az cosnx )T,

1. 56257 dl = 15 [ Ml == 0. 41667 y N1

— 0,35556 , ¢ = 0.08497, ¢, = 0.11111, ¢

. Substituting it into (19) yields

(36)

1,25825 , ¢

2
where A, = z A—fl y Ay =—.4A/I_‘
A+ N2)(2rd =+ 7+ dn®) "
Ga(0,0) = J (=t M,N .cos® nx)nz = —lzt-nzM,,N,.. (37
o
Therefore, G(t , A) is strorgly equivalert (* to
Tglat 3e HANLY €1 +deg + 8N, €))7 — %nzM,,N,,TA =0 (38)
and the approximate expression of the nontrivial solution of (8) is
y=1¢,+w=r1ep, +—2—w,2 (0,0) + Awy (0,0) + 0O | A |+ A |z |+]| & ), (39)
where we (0,0) and w, (0,0) are respectively given by (30) and (36).
0.38 ‘vf‘ 035 T 'b- -
0a3f "-c * ) ﬁ nat . w " ’ 4
0.251 .;;;"‘ 0.25" "at'.'".
o2} ) .‘}' o2 . s M
015} ~~.'-." 048 ) ;; c
S
0.1 .‘ 01 ‘.-0
: "
0.05 :‘ 0.05::
: 9
145 15 5 m 85 SV O sz 184 16 w8 w6 16z ios 65 188 L
Fig 1 Bifurcation diagram star points; solutions of (40); Fig 2 Bifurcation diagram star points; solutions of (40);
dot points; numerical results by difference method dot points; numerical results by pseudo-spectral method
4 Example
Let us taken = 1,a = 0,25, =1, and ¥ = 3, Then simple calculations show that u, = 1.25 , v, =
—0.10667 ,@a = — 2.048 , 8 = 0.85333 , ¢; = 0.31373, ¢; =
= — 1,81509, A, = 0.007429,
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d2
E-‘_I'S — 1,92

A, =—0,017829 and L, = g

2
7.5 —3+d1m

The approximate bifurcation equation is
G(r , A) = 0,06981 vA —0, 98665 © = 0. (40)

The approximate expression of the nontrivial solution of (5) is

p = tcosr + g(O. 31373 cos2x — 0. 35556) + 0. 0074297 Acosx, 41

q = 0. 41667t cosz + %(O. 08497 cos2x + 0.11111) -- 0, 0178297 A cosa, (42)

Figl and Fig2 show the comparison of the approximate solutions of (40, with the numerical results by the
difference method and pseudo-spectral method respectively, The fact thai the approximate solutions(41),

(42) of (5) nearly coincides with the numerical resuits shows che effectiveness of our analysis,
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