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Abstract: By means of the theory of universal unfolding, the influence of multimperfections upon the
critical foads of pitchfork structures in engineering is analysed. The estimation formuta for lower bounds on
the increments of the critical loads that are caused by imperfections af the structures is given. and a simple
and available numerical method for computing lower bounds is described.
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1 Introduction

There are inevitabe imperfections in real engineering structures, and some important testst'1?
have shown that the presence of imperfections of structures can decrease the load-bearing capacity. So
the effects of imperfections on critical loads must be considered in designs accotding to the standard of
stability. We describe the still equilibrum state of the perfect engineering structure and the structure
with imperfections respectively as follows,

F(z.A) =0, (1)

Hixz. A, 8 =0, (2

where F;R" X R+ R*, H,R" X R X R' - R"are smooth, x € R*is a state variable vector, A € Ris
the load bearing parameter, 8 € R'is the imperfection parameter vector., Obviously, we have

H{x,A,0) = F(x,4), (3)

Suppose that 4, is the critical load of the perfect structure, and (z,,A,) is the singular point of
(1), Let A* (8) be the critical load of structure (2) with imperfections, The important problem
concerning the effects of impetfection upon critical load is studying the change law of A* () — 4, , we

are especialy interested in the estimation of the lower bound of the increments of critical loads as || 8
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| < e. Using imperfection sensitivity as{ = 1, W. T. KOITER!™ gave a perfect explanation for
most rapidly decline of critical load of structure with imperfections. For some simple singular point as
{>1, many authors (e.g. [5], [10]) have studied the effects of imperfections upon the loadbearing
capacity by a given mode of the imperfection. Because of the randomness of the imperfections modes
in real problem, a statistical method was presented to study the effects of random modes of
imperfections by some authors (e.g. [7],[2]). Because statistical methods is expensive in real use,
this methods sometimes they are not adopted in engineering designing. Another method of studying
the randomness of imperfections mode is to determine the worst direction of the imperfection vector
which causes the maximum change {decrease) of the load —bearing capacity. This method is simple
and available. Though the critical load decreases most rapidly along the critical imperfection direction
in perfect structure, for imperfection structures of strongly nonlinear problems the critical load does
not decrease most rapidly along this direction. Thus, there are some problems needed 1o be further

reserched for stronger nonlinear systems.

2 The case of regular unfolding

We discuss scale problem in this section and the next section. Suppose that f{x, A),R X R— R
is a smooth function in a neighborhood of (0,0) , and (0,0) is a pitchfork point of the equation

Fix, Ay =0. {4)
On the basis of recognition conditions we refer to [3], f{(z,A) has the form
Flx,A) = ax® 4 bxd + 2o, D' + 85 (2, AV + G (2, DA, {5)

in a neighborhood of (0.0} , where a.b are constants and ab < 0 , 8,(x,A} is a smooth function. We
call the item of the form By (z,A)x" + B (x,)2*A + 8,(x,A)& the high order item of F(x.4).

Because of the simple transformation z = {— %)%E‘. without loss of generality, we can always
assume thata = 1. & =— 1. Furthermore, using the theorem of universal unfolding in [3], we can
get

g(l"alloﬂnﬂz): =f(-‘rs'a) +a|+ﬂ'zxzq (6)

which is a universal unfolding of f{z,4) . In this section, we consider the unfolding problem of g

perturbed by high order item with the following form (simply called the regular unfolding problem)

hiz, A ,a2,,B8); = 28 — 24 + oz + ¢ 2?d + ¢ + o + a,2° = 0, (7
where ¢, : R X R X R’ — R are smooth functions such that
¢, x.4,0) = 8,(zx,A). €13
In order to get the critical load of & , consider a system of equations satisfied by the singular point
h(x,A,a,0;,8) = 2° — 2d 4 @2 + ¢ 224 + i + o + a2 = 0, £9)
Bk dot 00 B) = 328 — A+ 2z + 5 (o' + Inz'A + gkt = 0. 10

Because h.{r,4A,q,,a;,8) does not include &, , and
h.(0,0,2,,0,8) =0, ha(0,0,2,,0,8) =— 1% 0,
by applying the implicit function theorem and (10) . we can get a smooth function A= A(z,a,,8) with
A(0,0,8) = 0in a neighborhood of {0,0) . Expanding A (z,4,,0) at {(x,2,) = (0,0) , we get
Az,a, Bt = 32" 4 2@z + Ypoz* + V2o + Vipzdd + Vi, (11)
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where 7, = ¥;(x.a,,8 ) are smooth functions. Substituing (112 into ( 9) ,we can obtain the equation
satisfied by the z -coordinate at the singular point of b
Pty 2, B): = 220 + ozt — @ + Joox' + $uze + dustel + duxa = 0, (12}
where ¢, = ¢, (x,2,8) ere smooth functions. Now using the method in general bifurcation theoryt't)
to discuss the solution of (12), we have the priori estimation of (12) as follows:
Lemma 2.1 There exist a neighborhood V of (x,2,2;, ) at the origin and a constant « > 0

such that every solution {(x.e . B of (12) in V satisfies
[z] < #Cley ¥ + lgy]), 13

Proof Suppose that the conclusion does not hold. Then there exists (z,»a,,,.8.} which

Y
loal? |2
ENIRES

— 0 as 7 — oo, Dividing the two sides of

2

satisfy (£as@ @5} = Dasn— oo, and
(12) by =z, . we have

0= Kentetnl) _p 4 of |2] +

a!u i

x

+

This contradiction shows that the conclusion of Lemma 2. 1 is true.

From ¢13) we can introduce the relation between @, and @,
a, = kaj . or @, = ¥'al. (14)
Let 3t = {(a.a;) e =ka;’l-: k| < do, || < &} and D=l e =Fa, |¥ | £d'y. |a| <

31, 8, U 7%, will cover a neighborhood of the origin in the 4, — @, plane as d, > (a”o)_:;' » where §is a
positive constant. Consider the element (&;,4,) € {3, . Suppose

a, = ko . — dy <k < do (15)
Lett = af Substituting (15} into (123}, Then
@z, 0.4): = 22° + krt — £ + O(|z|* + | 2] + |28 ] + |=*]) = 0. (16}

In terms of the method of Newton polygon and the tightness of [ — d,,d,] , it is easy to obtzin the
small solution of (16) which has the expansion

z(t,B.8) = y(E)t(1 + (1)}, amn
where 0(1? is a uniform infinitesimal with 8in the neighborhood of the origin and ¥ < dyast >0,
and y(&) is the real root of equation

2y + Ry —1=0 (182

(18) has three real roots as #>> 3 ; two real roots (one of these roots is a double root) as2 = 3 ; and
only one real root as k << 3. We denote these real roots by y(%) . Substituting (17) into (11), we
may get the A -coordinate of the singular point of & :

Ma,a,8) = () aF + 31 + o(1)), (19}
where
E(R) = (3¥*(R) + 2ky(R)I(1 + &7, (20}
0. a =10,
k=4 21
Qg &) 1, €, # 0.
Using numerical methods, we get the minimum value £ =— 0.30f §(&) as |B] << oo . For the

regular problem (7}, we have

A (ﬂ.l, az,.B) E (a‘f + ﬂ’z)(l + 0(1)) (22)


http://www.cqvip.com

£ OO0 http://www.cqvip.com|

1 EEIER RS R B R H D 2001 4

The same analysis for the set {2, can also lead to the estimation form (22).

3  Arbitrarily scale unfolding

Suppose A(x,4,3) is an arbitrary { -parameter unfolding of F(x,3) , where fis defined by (53,
a=1, b =— 1. We may get the equation by expanding & ;
Az, A By = £ — 2d 4+ {fhe + @er + fd + @ox® + @r2d + g’} +
{Palz, 4, D" + o (2, A, DA+ (2,4, D3} = 0,
where @, are smooth functions with 2 . @, and ¢, satisfy
@,(0) =0, ¢,(x.4,0) = 8,(x.A).

By primary method. it is easy to get

Xz 1= (1 + p)7r — @ {1 + @)1 — @)t (24)

(23)

ACLB e = (1 — @)1 4+ 8 “3A— 3¢, (1 + %n)%(l B 259
3

2%1@)0(1 - ‘P“)il(]. + %o) i — ﬂu(l + %D)_%i
(@) =g+ @em(l — @) '+ & —w)  +al + @)1 — w7, 26

6B = g(1 4+ @)™ ¥ + 3a (1 + 25U — @), (27)
such that
2 — 1A+ @+ Ao + ®ed + Box® + @ixd + @ex® = X — AX 4 o (B) + w (X" (28)
Obviously, we have from (24}~ {(27)
X{x, ) =z, A =41, a0) =) =0, 2o
and these show that the left of (28) factors through 2* — Ar + a; 4+ a,x® , (24)~(27) are their factor

transformation. Substituting (28) into (23), we obtain

Az, A, 8) = X0 — AX + o + 0, X + Pzt + A 4 i lf = 0, (30}
Now let
z=X(x,B, p= A0, G
and its inverse transformation be denoted by
r=Z{z,, A=M{up), (32)

Now (30) can be rewriten as

Rz, pa )t = 22— pz o+ @ 28+ Pzt + P p + st = 0, (33)
where ¢, are smooth functions of (z,u,8) . If (z,4,8) is a singular point of (33} in a neighborhood of
origin, then (Z(z,8).M(x,£), ) is a singular point of (23) in a neighborhood of the origin; and the
converse proposition is also true. Suppose that (z,x. 8 is a singular point of (33). Then (x,4,8) is

a correspondingly singular point of (23). From M{u.0) = u, we have

1= M8 = M(z,0) + Myiu, 08 + %HFM,,(Z,O)B + OIBIP) =
(34)
AU+ OUIBID) + MpC0,038 + 5-6"M4a (0,038 + OCIBI.

Furthermore, from (25) and A(M (. 3),3) = u, we can obtain
M,g({]y(})ﬁ = (ﬂo)ﬁﬁ, (35}

18 My500.008 = [(oAILROIRT + LAY + 2La3BILRRE) + 7 (RMB. (36)
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where the superscript 0 represents the function value at § = 0. Because {z.x.f) is a singular point of
(33), we can get by (22)

A8 (af () + (AU + a(1)). (37
If we approximately regard (1 + (1)) as 1 and omit G{||#]*) , then it is easy to obtain the estimation

of lower bound of the critical loads for arbitrary unfolding (23} by using (34)~ (377, (26). (27);
(B =— 0. 3[ ()37 + (@B + 10. 3[BT +

(38
0. 20 B (pn5B] — 0. 3BT + TFT(RaY5eB} -
(%n),g:hﬂ(OvU,D)f (ﬁg},%:h,p(ﬂao-ﬂ}. (%[)3=h1ﬂ(0y010)!
where 1 (39)
(@zo)ﬁ = Eh:zﬁ‘({]aa;o) » (ﬂo)gﬂ = h,‘g,g(O,D.o).
i we further omit GC|B|*) in (38), then we have a simple estimation of the lower bound
Ay =— 0. 3[!1,,(0,0.0)!31% + h(0,0,0)8. (40)

When we omit OC||8]|%) . (40) shows that two projections of Son the directions 74¢0.2,0) and #.,{0,
0.0) are the primary items in the influences of imperfection parameters § = (.8, .87 upon
critical loads, In the reduction mentioned above, we suppose thata = 1,6 =— 1in (5). For the

general case, (38) (40) can be respectively modified as

A () = 0,305 [(@a3B1Y — 57 ()38 + {— 0. 3ab7 [ (@ 3BT +

D
0. 2672 [ (g Y510 (02887 + 0. 32~ "5 [ (o 231 + Tlg-b‘zﬁ Tauiaf,
A (B = 0. 30367 [hs(0,0.008]F — 5 h,4(0.0,0)8, (42)
where a=%h4,,(0,0.0), b= h.(0.0,0). (43)

Example In figure ! we illustrate a simple physical system which exhibits a pitchfork
bifurcation. The system consists of two rigid rods of unit length connected by pins which permit
rotation in a plane, it is subjected to a compressive farce A which is resisted by a tarsional spring of unit
strength. The state of the system is described by the angle x measuring the deviation of the rods fram
the horizontal, (ne natural perturbation to consider is a small vertical force £applied to the pin. This
force models the weight of the structure. Another such perturbation comes from imagining that the
torsional spring is slightly asymmetric, exerting zero torque when x = 8 rather than whenx = 0. The
potentizl function with the presence of these two perturbations is

Viz,Ae,8) = (x — 8)°/2 + 2Mcos(z) — 1) + esinlx),
and the equilibrium equation is
hi{x,A,g,6) = x — ¢ — 2Asinl(x) 4+ ecoslx).
Expanding h(x,4,€,8) with x,dat (x,A) = (0,0}, we have
hiz,A,&,8) = ax® + bxd + @, (,8) + @o(e, 8z + @, (e, A +
@ le8)xd 4+ @ (e, + ¢, (6,8 4 h.o. t,
wherea=1/6.b=~ 2, =6~ 8@ =0, @ =— 1/2.¢, = ¥1 = ¥, = 0, and h. 0. t. represents

higher-order terms. Now according to our method mentioned in this paper, we can obtain
ate,d) = L2 — 0, e =~ L3

So we immediately get the estimation formula for the increments of the critical loads that are caused by

£y M(ﬂceuﬁ) = p.
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imperfections of the structure

A (e,8) = —%» + ¢ [ﬁ(e — o 4 %53] + koot
here§" =— 0.3.

Remark Because the imperfection parameters €,8 are
3
4

independent, we do not omit the term ~-¢* in this example.

Figure 1
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