Random system of lines in the Euclidean plane E_{2}

Giuseppe Caristi

Abstract

In this paper we consider a random variable arising from a problem of geometrical intersection between a fixed convex body K and a system of random lines in E_{2}.

M.S.C. 2000: 60D05,52A22.

Key words: Geometric probability, stochastic geometry, random sets, random convex sets, integral geometry.

1 Introduction

Let E_{2} be the Euclidean plane and let K be a convex non empty and bounded domain of area S_{K} and with boundary ∂K of length L. We consider a family F of random, uniformly distributed n-lines $\left\{G_{1}, \ldots, G_{n}\right\}$ with $n \geq 2$. We assume that if $G_{h}, G_{k} \in F$, then $G_{h} \cap G_{k} \neq \varnothing$. It is possible that this points belongs to K or not. In this way we have a random variable $X_{(n, K)}$. In this paper we give the following result

Theorem 1. The expression of the mean value $\mathbf{E}\left(X_{(n, K)}\right)$, the k-moments $\mathbf{E}\left(X_{(n, K)}^{k}\right)$ and the variance $\sigma^{2}\left(X_{(n, K)}\right)$ of the random variable $X_{(n, K)}$ can be calculated as follows

$$
\begin{gathered}
\mathbf{E}\left(X_{(n, K)}\right)=\alpha \pi \frac{S_{K}}{L^{2}}, \quad \mathbf{E}\left(X_{(n, K)}^{k}\right)=\left[\sum_{J_{1}+\ldots+J_{\alpha}=k} \frac{k!}{J_{1}!\ldots J_{\alpha}!}\right] \frac{\pi S_{K}}{L^{2}}, \\
\sigma^{2}\left(X_{(n, K)}\right)=\frac{\pi S_{K}}{L^{2}}\left(1-\frac{\pi S_{K}}{L^{2}}\right) \alpha^{2},
\end{gathered}
$$

where

$$
\alpha=\frac{n(n-1)}{2},
$$

and k is a positive integer.
Other results about the computation of the variance are investigated in [2] and an extension in the 3-dimensional Euclidean space of the same problem is studied in [6].

[^0]
2 Main Results

Let N be the set of natural numbers, $n \geq 2$ a fixed natural integer, $\left\{G_{1}, \ldots, G_{n}\right\}$ and K as in introduction. We can state the following

Theorem 2. Let us consider the random variable $X_{(n, K)}$. Then

$$
\mathbf{E}\left(X_{(n, K)}\right)=\alpha \pi \frac{S_{K}}{L^{2}}
$$

where $\alpha=\frac{n(n-1)}{2}, L$ is the length of ∂K and S_{K} is the area of the domain defined by K.

Proof. It is easy to see that, denoting with L the length of ∂K and $d G$ the elementary measure of the lines in the Euclidean plane E_{2}, we have

$$
\int_{\{G \cap K \neq \varnothing} d G=L
$$

Since G_{1}, \ldots, G_{n} are stochastically independent, we get

$$
\int\{G \cap K \neq \varnothing\}<1 G_{1} \wedge \ldots \wedge d G_{n}=L^{n}
$$

If we consider the lines G_{1}, \ldots, G_{n}, then the intersection points might belong to K or not. Hence we obtain a random variable which we denote by $X_{(n, K)}$.

In order to compute the variance, we have the following integral

$$
\int\{G \cap K \neq \varnothing\}{ }^{X_{(n, K)} d G_{1} \wedge \ldots \wedge d G_{n}}
$$

We define the application $\epsilon_{h k}=1$ if $G_{h} \cap G_{k} \in K$ (with $h \neq k=1, \ldots, n$) and zero otherwise. Then

$$
X_{(n, K)}=\sum_{h, k=1} \epsilon_{h k} .
$$

Further, let us consider

$$
I_{2}:=\int_{\left\{G_{h}, G_{k} \cap K \neq \varnothing\right.} \epsilon_{h k} d G_{h} \wedge d G_{k}
$$

If $\left(G_{h} \cap E_{k}\right) \in K$, then we have $\epsilon_{h k}=1$. We denote with λ_{k} the chord intercepted by G_{k} on K (and its length).

We have

$$
\int\left\{G_{h}, G_{k} \cap K \neq \varnothing\right\} \epsilon_{h k} d G_{h} \wedge d G_{k}=\int\left\{G_{k} \cap K \neq \varnothing\right\}\left(\int_{\left\{G_{k} \cap K \neq \varnothing\right.} d G_{h}\right) d G_{k}
$$

but it is well known that

$$
\int\left\{G_{h} \cap \lambda_{k} \neq \varnothing\right\}<G_{h}=\lambda_{k},
$$

$$
\int\left\{G_{k} \cap K \neq \varnothing\right\}{ }^{\lambda_{k} d G_{k}=\pi S_{K} .}
$$

Moreover,

$$
\begin{gathered}
\int_{\{G \cap K \neq \varnothing} X_{(n, K)} d G_{1} \wedge \ldots \wedge d G_{n}=\int_{\{G \cap K \neq \varnothing} \sum_{h, k=1} \epsilon_{h k} d G_{1} \wedge \ldots \wedge d G_{n}= \\
\pi S_{K} L^{n-2}+\ldots+\pi S_{K} L^{n-2}
\end{gathered}
$$

Taking into account that the number of the different sets $\left\{G_{h}, G_{k}\right\}$ is (the binomial coefficient)

$$
\alpha=\frac{n(n-1)}{2},
$$

we have

$$
\int_{\{G \cap K \neq \varnothing} X_{(n, K)} d G_{1} \wedge \ldots \wedge d G_{n}=\alpha \pi S_{K} L^{n-2}
$$

By definition,
and hence mathbfE $\left(X_{(n, K)}^{2}\right)=\alpha \pi \frac{S_{K}}{L^{2}}$.
Now we compute

$$
\mathbf{E}\left(X_{(n, K)}^{2}\right)=\frac{\left.\int_{\{G \cap K \neq \varnothing}\right\}^{X_{(n, K)}^{2}} d G_{1} \wedge \ldots \wedge d G_{n}}{\int_{\{G \cap K \neq \varnothing\}} d G_{1} \wedge \ldots \wedge d G_{n}}
$$

We put

$$
J=\int_{\{G \cap K \neq \varnothing} X_{(n, K)}^{2} d G_{1} \wedge \ldots \wedge d G_{n}
$$

We can prove that

$$
X_{(n, K)}^{2}=\left(\sum_{h, k=1} \epsilon_{h k}\right)^{2}
$$

and then

$$
X_{(n, K)}^{2}=\sum_{h, k=1} \epsilon_{h k}^{2}+2 \sum_{(h, k) \neq(s, n)} \epsilon_{h k} \epsilon_{s n}
$$

With this observations we can compute the integral

$$
J=\int\{G \cap K \neq \varnothing\}\left(\sum_{h, k=1} \epsilon_{h k}^{2}+2 \sum_{(h, k) \neq(s, n)} \epsilon_{h k} \epsilon_{s n}\right) d G_{1} \wedge \ldots \wedge d G_{n}
$$

Considering that

$$
\int\{G \cap K \neq \varnothing\} \epsilon_{h k}^{2} d G_{h} \wedge d G_{k}=\int\left\{G_{k} \cap K \neq \varnothing\right\}\left(\int_{G_{h} \cap \lambda_{k} \neq \varnothing} d G_{h}\right) d G_{k}
$$

where λ_{k} is the chord intercepted by G_{k} on K, we obtain

$$
J=\pi S_{K} L^{n-2}+\ldots+\pi S_{K} L^{n-2}+2 \pi S_{K} L^{n-2}+\ldots+2 \pi S_{K} L^{n-2}
$$

Taking into account that the number of different sets $\left\{G_{h}, G_{k}\right\}$ is α and that G_{1}, \ldots, G_{2} are independent, we infer

$$
\mathbf{E}\left(X_{(n, K)}^{2}\right)=\frac{\pi S_{K} \alpha L^{n-2}}{L^{n}}=\frac{\pi S_{K} \alpha^{2}}{L^{2}}
$$

We obtain
Theorem 3. Let us consider the random variable $X_{(n, K)}$. Hence

$$
\sigma^{2}\left(X_{(n, K)}\right)=\frac{\pi S_{K}}{L^{2}}\left(1-\frac{\pi S_{K}}{L^{2}}\right) \alpha^{2}
$$

where $\alpha=\frac{n(n-1)}{2}, L$ is the length of ∂K and S_{K} is the area of the domain defined by K.

Moreover, we note that

$$
X_{(n, K)}^{k}=\left(\sum_{h, k=1} \epsilon_{h k}\right)^{k}
$$

implies

$$
\mathbf{E}\left(X_{(n, K)}^{k}\right)=\left[\sum_{J_{1}+\ldots+J_{\alpha}=k} \frac{k!}{J_{1}!\ldots J_{\alpha}!}\right] \frac{\pi S_{K}}{L^{2}}
$$

3 Applications

1. As first case we consider in the plane a square Q of side a. We can compute the following values

$$
\begin{gathered}
\mathbf{E}\left(X_{(n, Q)}\right)=\frac{\alpha \pi}{16} \approx 0,196345 \alpha . \\
\mathbf{E}\left(X_{(n, Q)}^{k}\right)=\left[\sum_{J_{1}+\ldots+J_{\alpha}=k} \frac{k!}{J_{1}!\ldots J_{\alpha}!}\right] \frac{\pi}{16} .
\end{gathered}
$$

and the variance is

$$
\sigma^{2} X_{(n, Q)}=\frac{\pi}{16}\left(1-\frac{\pi}{16}\right) \alpha^{2} \approx 0,15779 \alpha^{2}
$$

2. Taking in plane a rectangle R of sides a and b we have

$$
\begin{gathered}
\mathbf{E}\left(X_{(n, R)}\right)=\frac{\alpha \pi a b}{4(a+b)^{2}} \\
\mathbf{E}\left(X_{(n, R)}^{k}\right)=\left[\sum_{J_{1}+\ldots+J_{\alpha}=k} \frac{k!}{J_{1}!\ldots J_{\alpha}!}\right] \frac{\pi}{4(a+b)^{2}}
\end{gathered}
$$

and the variance

$$
\sigma^{2} X_{(n, Q)}=\frac{\pi}{4(a+b)^{2}}\left(1-\frac{\pi}{4(a+b)^{2}}\right) \alpha^{2}
$$

3. Let C be a circle of radius δ. We have

$$
\begin{gathered}
\mathbf{E}\left(X_{(n, C)}^{k}\right)=\frac{\alpha}{4} \\
\mathbf{E}\left(X_{(n, C)}^{k}\right)=\left[\sum_{J_{1}+\ldots+J_{\alpha}=k} \frac{k!}{J_{1}!\ldots J_{\alpha}!}\right] \frac{\alpha}{4}
\end{gathered}
$$

and the variance is

$$
\sigma^{2}\left(X_{(n, C)}\right)=\frac{\pi}{4}\left(1-\frac{\alpha}{4}\right) \alpha^{2} \approx 0,16855 \alpha^{2}
$$

4. As last case we consider an equilateral triangle T of side a, obtaining,

$$
\begin{gathered}
\mathbf{E}\left(X_{(n, T)}^{k}\right)=\frac{\alpha \pi \sqrt{3}}{18} \approx 0,3023 \alpha \\
\mathbf{E}\left(X_{(n, T)}^{k}\right)=\left[\sum_{J_{1}+\ldots+J_{\alpha}=k} \frac{k!}{J_{1}!\ldots J_{\alpha}!}\right] \frac{\pi \sqrt{3}}{18},
\end{gathered}
$$

and for the variance the expression

$$
\sigma^{2}\left(X_{(n, T)}\right)=\frac{\pi \sqrt{3}}{18}\left(1-\frac{\pi \sqrt{3}}{18}\right) \alpha^{2} \approx 0,2109 \alpha^{2}
$$

Remark 4. We observe that in examples 1, 3, 4 the functions are independent of the dimension of the convex body.

References

[1] W. Blaschke, Vorlesungen über Integralgeometrie, III Auflage, V.E.B. Deutscher Verlag der Wiss., Berlin 1955.
[2] G. Caristi amd G. Moltica Bisci, On the variance associated to a family of ovaloids in the Euclidean Sapce E ${ }_{3}$, Bollettino U.M.I. (8) 10-B (2007), 87-98.
[3] E. Czuber, Zur Theorie der geometrischen Wahrscheinlichketein, Sitz. Akad. Wiss. Wien 90 (1884), 719-742.
[4] R. Deltheil, Probabilitiés géométriques, Gauthier-Villars, Paris 1926.
[5] A. Duma and M. Stoka, Probabilità geometriche per sistemi di piani nello spazio euclideo E_{3}, Rend. Sem. Mat. Messina 7 (2000), 5-11.
[6] G. Molica Bisci, Random systems of planes in the Euclidean space E_{3}, Atti Acc. Scienze di Torino 2005, 43-48.
[7] H. Poincaré, Calcul des probabilitiés, Ed. 2, Carré, Paris, 1912.
Author's address:
Giuseppe Caristi
University of Messina,
75 Via dei Verdi, 98122 Messina, Italy.
E-mail: gcaristi@unime.it

[^0]: Applied Sciences, Vol.10, 2008, pp. 48-53.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2008.

