Random system of lines in the Euclidean plane E_2

Giuseppe Caristi

Abstract. In this paper we consider a random variable arising from a problem of geometrical intersection between a fixed convex body K and a system of random lines in E_2 .

M.S.C. 2000: 60D05,52A22.

Key words: Geometric probability, stochastic geometry, random sets, random convex sets, integral geometry.

1 Introduction

Let E_2 be the Euclidean plane and let K be a convex non empty and bounded domain of area S_K and with boundary ∂K of length L. We consider a family F of random, uniformly distributed n-lines $\{G_1, ..., G_n\}$ with $n \ge 2$. We assume that if $G_h, G_k \in F$, then $G_h \cap G_k \ne \emptyset$. It is possible that this points belongs to K or not. In this way we have a random variable $X_{(n,K)}$. In this paper we give the following result

Theorem 1. The expression of the mean value $\mathbf{E}(X_{(n,K)})$, the k-moments $\mathbf{E}(X_{(n,K)}^k)$ and the variance $\sigma^2(X_{(n,K)})$ of the random variable $X_{(n,K)}$ can be calculated as follows

$$\mathbf{E}\left(X_{(n,K)}\right) = \alpha \pi \frac{S_K}{L^2}, \qquad \mathbf{E}\left(X_{(n,K)}^k\right) = \left[\sum_{J_1 + \ldots + J_\alpha = k} \frac{k!}{J_1! \ldots J_\alpha!}\right] \frac{\pi S_K}{L^2},$$
$$\sigma^2\left(X_{(n,K)}\right) = \frac{\pi S_K}{L^2}\left(1 - \frac{\pi S_K}{L^2}\right)\alpha^2,$$

where

$$\alpha = \frac{n\left(n-1\right)}{2},$$

and k is a positive integer.

Other results about the computation of the variance are investigated in [2] and an extension in the 3-dimensional Euclidean space of the same problem is studied in [6].

Applied Sciences, Vol.10, 2008, pp. 48-53.

[©] Balkan Society of Geometers, Geometry Balkan Press 2008.

2 Main Results

Let N be the set of natural numbers, $n \ge 2$ a fixed natural integer, $\{G_1, ..., G_n\}$ and K as in introduction. We can state the following

Theorem 2. Let us consider the random variable $X_{(n,K)}$. Then

$$\mathbf{E}\left(X_{(n,K)}\right) = \alpha \pi \frac{S_K}{L^2},$$

where $\alpha = \frac{n(n-1)}{2}$, L is the length of ∂K and S_K is the area of the domain defined by K.

Proof. It is easy to see that, denoting with L the length of ∂K and dG the elementary measure of the lines in the Euclidean plane E_2 , we have

$$\int_{\left\{G\cap K\neq\emptyset\right\}} dG = L$$

Since $G_1, ..., G_n$ are stochastically independent, we get

$$\int_{\left\{G\cap K\neq\emptyset\right\}} dG_1\wedge\ldots\wedge\ dG_n=L^n.$$

If we consider the lines $G_1, ..., G_n$, then the intersection points might belong to K or not. Hence we obtain a random variable which we denote by $X_{(n,K)}$.

In order to compute the variance, we have the following integral

$$\int_{\left\{G\cap K\neq\emptyset\right\}} X_{(n,K)} dG_1 \wedge \ldots \wedge dG_n$$

We define the application $\epsilon_{hk} = 1$ if $G_h \cap G_k \in K$ (with $h \neq k = 1, ..., n$) and zero otherwise. Then

$$X_{(n,K)} = \sum_{h,k=1} \epsilon_{hk}$$

Further, let us consider

$$I_2 := \int_{\left\{G_h, G_k \cap K \neq \emptyset\right\}} \epsilon_{hk} dG_h \wedge dG_k.$$

If $(G_h \cap E_k) \in K$, then we have $\epsilon_{hk} = 1$. We denote with λ_k the chord intercepted by G_k on K (and its length).

We have

$$\int_{\left\{G_{h},G_{k}\cap K\neq\emptyset\right\}}\epsilon_{hk}dG_{h}\wedge dG_{k}=\int_{\left\{G_{k}\cap K\neq\emptyset\right\}}\left(\int_{\left\{G_{k}\cap K\neq\emptyset\right\}}dG_{h}\right)dG_{k},$$

but it is well known that

$$\int_{\left\{G_h\cap\lambda_k\neq\emptyset\right\}} dG_h = \lambda_k,$$

$$\int_{\left\{G_k\cap K\neq\emptyset\right\}}\lambda_k dG_k = \pi S_K.$$

Moreover,

$$\int_{\left\{G\cap K\neq\emptyset\right\}} X_{(n,K)} dG_1 \wedge \ldots \wedge \ dG_n = \int_{\left\{G\cap K\neq\emptyset\right\}} \sum_{h,k=1} \epsilon_{hk} dG_1 \wedge \ldots \wedge \ dG_n = \pi S_K L^{n-2} + \ldots + \pi S_K L^{n-2}.$$

Taking into account that the number of the different sets $\{G_h, G_k\}$ is (the binomial coefficient)

$$\alpha = \frac{n\left(n-1\right)}{2},$$

we have

$$\int_{\left\{G\cap K\neq\emptyset\right\}} X_{(n,K)} dG_1 \wedge \ldots \wedge \ dG_n = \alpha \pi S_K L^{n-2}.$$

By definition,

$$\mathbf{E}\left(X_{(n,K)}\right) := \frac{\int_{\left\{G \cap K \neq \emptyset\right\}} X_{(n,K)} dG_1 \wedge \dots \wedge dG_n}{\int_{\left\{G \cap K \neq \emptyset\right\}} dG_1 \wedge \dots \wedge dG_n}$$

and hence $mathbfE\left(X^2_{(n,K)}\right) = \alpha \pi \frac{S_K}{L^2}.$

Now we compute

$$\mathbf{E}\left(X_{(n,K)}^{2}\right) = \frac{\int_{\left\{G\cap K\neq\emptyset\right\}} X_{(n,K)}^{2} dG_{1} \wedge \ldots \wedge dG_{n}}{\int_{\left\{G\cap K\neq\emptyset\right\}} dG_{1} \wedge \ldots \wedge dG_{n}}.$$

We put

$$J = \int_{\left\{G \cap K \neq \emptyset\right\}} X^2_{(n,K)} dG_1 \wedge \dots \wedge dG_n$$

We can prove that

$$X_{(n,K)}^2 = \left(\sum_{h,k=1} \epsilon_{hk}\right)^2,$$

and then

$$X_{(n,K)}^2 = \sum_{h,k=1} \epsilon_{hk}^2 + 2 \sum_{(h,k)\neq(s,n)} \epsilon_{hk} \epsilon_{sn}.$$

With this observations we can compute the integral

$$J = \int_{\left\{ G \cap K \neq \varnothing \right\}} \left(\sum_{h,k=1} \epsilon_{hk}^2 + 2 \sum_{(h,k) \neq (s,n)} \epsilon_{hk} \epsilon_{sn} \right) dG_1 \wedge \ldots \wedge \ dG_n.$$

50

,

Random system of lines

Considering that

$$\int_{\left\{G\cap K\neq\varnothing\right\}}\epsilon_{hk}^{2}dG_{h}\wedge dG_{k}=\int_{\left\{G_{k}\cap K\neq\varnothing\right\}}\left(\int_{\left\{G_{h}\cap\lambda_{k}\neq\varnothing\right\}}dG_{h}\right)dG_{k},$$

where λ_k is the chord intercepted by G_k on K, we obtain

$$J = \pi S_K L^{n-2} + \dots + \pi S_K L^{n-2} + 2\pi S_K L^{n-2} + \dots + 2\pi S_K L^{n-2}$$

Taking into account that the number of different sets $\{G_h,G_k\}$ is α and that $G_1,...,G_2$ are independent, we infer

$$\mathbf{E}\left(X_{(n,K)}^2\right) = \frac{\pi S_K \alpha L^{n-2}}{L^n} = \frac{\pi S_K \alpha^2}{L^2}.$$

We obtain

Theorem 3. Let us consider the random variable $X_{(n,K)}$. Hence

$$\sigma^2\left(X_{(n,K)}\right) = \frac{\pi S_K}{L^2} \left(1 - \frac{\pi S_K}{L^2}\right) \alpha^2$$

where $\alpha = \frac{n(n-1)}{2}$, L is the length of ∂K and S_K is the area of the domain defined by K.

Moreover, we note that

$$X_{(n,K)}^{k} = \left(\sum_{h,k=1} \epsilon_{hk}\right)^{k},$$

implies

$$\mathbf{E}\left(X_{(n,K)}^{k}\right) = \left[\sum_{J_1+\ldots+J_{\alpha}=k} \frac{k!}{J_1!\ldots J_{\alpha}!}\right] \frac{\pi S_K}{L^2}.$$

3 Applications

1. As first case we consider in the plane a square Q of side a. We can compute the following values

$$\mathbf{E}\left(X_{(n,Q)}\right) = \frac{\alpha\pi}{16} \approx 0,196345\alpha.$$
$$\mathbf{E}\left(X_{(n,Q)}^k\right) = \left[\sum_{J_1+\ldots+J_\alpha=k} \frac{k!}{J_1!\ldots J_\alpha!}\right]\frac{\pi}{16}.$$

and the variance is

$$\sigma^2 X_{(n,Q)} = \frac{\pi}{16} \left(1 - \frac{\pi}{16} \right) \alpha^2 \approx 0,15779\alpha^2.$$

2. Taking in plane a rectangle R of sides a and b we have

$$\mathbf{E}\left(X_{(n,R)}\right) = \frac{\alpha \pi a b}{4\left(a+b\right)^2},$$
$$\mathbf{E}\left(X_{(n,R)}^k\right) = \left[\sum_{J_1+\ldots+J_\alpha=k} \frac{k!}{J_1!\ldots J_\alpha!}\right] \frac{\pi}{4\left(a+b\right)^2},$$

and the variance

$$\sigma^2 X_{(n,Q)} = \frac{\pi}{4(a+b)^2} \left(1 - \frac{\pi}{4(a+b)^2}\right) \alpha^2.$$

3. Let C be a circle of radius δ . We have

$$\mathbf{E}\left(X_{(n,C)}^{k}\right) = \frac{\alpha}{4},$$
$$\mathbf{E}\left(X_{(n,C)}^{k}\right) = \left[\sum_{J_{1}+\ldots+J_{\alpha}=k} \frac{k!}{J_{1}!\ldots J_{\alpha}!}\right]\frac{\alpha}{4}$$

and the variance is

$$\sigma^2\left(X_{(n,C)}\right) = \frac{\pi}{4}\left(1 - \frac{\alpha}{4}\right)\alpha^2 \approx 0,16855\alpha^2.$$

4. As last case we consider an equilateral triangle T of side a, obtaining,

$$\mathbf{E}\left(X_{(n,T)}^{k}\right) = \frac{\alpha\pi\sqrt{3}}{18} \approx 0,3023\alpha,$$
$$\mathbf{E}\left(X_{(n,T)}^{k}\right) = \left[\sum_{J_{1}+\ldots+J_{\alpha}=k} \frac{k!}{J_{1}!\ldots J_{\alpha}!}\right] \frac{\pi\sqrt{3}}{18},$$

and for the variance the expression

$$\sigma^2 \left(X_{(n,T)} \right) = \frac{\pi \sqrt{3}}{18} \left(1 - \frac{\pi \sqrt{3}}{18} \right) \alpha^2 \approx 0,2109\alpha^2.$$

Remark 4. We observe that in examples 1, 3, 4 the functions are independent of the dimension of the convex body.

References

- W. Blaschke, Vorlesungen über Integralgeometrie, III Auflage, V.E.B. Deutscher Verlag der Wiss., Berlin 1955.
- [2] G. Caristi and G. Moltica Bisci, On the variance associated to a family of ovaloids in the Euclidean Sapce E₃, Bollettino U.M.I. (8) 10-B (2007), 87-98.

- [3] E. Czuber, Zur Theorie der geometrischen Wahrscheinlichketein, Sitz. Akad. Wiss. Wien 90 (1884), 719-742.
- [4] R. Deltheil, Probabilitiés géométriques, Gauthier-Villars, Paris 1926.
- [5] A. Duma and M. Stoka, Probabilità geometriche per sistemi di piani nello spazio euclideo E_3 , Rend. Sem. Mat. Messina 7 (2000), 5-11.
- [6] G. Molica Bisci, Random systems of planes in the Euclidean space E_3 , Atti Acc. Scienze di Torino 2005, 43-48.
- [7] H. Poincaré, Calcul des probabilitiés, Ed. 2, Carré, Paris, 1912.

Author's address:

Giuseppe Caristi University of Messina, 75 Via dei Verdi, 98122 Messina, Italy. E-mail: gcaristi@unime.it