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Abstract. In this paper we consider a random variable arising from a
problem of geometrical intersection between a fixed convex body K and
a system of random lines in E2.
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1 Introduction

Let E2 be the Euclidean plane and let K be a convex non empty and bounded domain
of area SK and with boundary ∂K of length L. We consider a family F of random,
uniformly distributed n-lines {G1, ..., Gn} with n ≥ 2. We assume that if Gh, Gk ∈ F ,
then Gh ∩Gk 6= f¡ . It is possible that this points belongs to K or not. In this way
we have a random variable X(n,K). In this paper we give the following result

Theorem 1. The expression of the mean value E
(
X(n,K)

)
, the k-moments E

(
Xk

(n,K)

)

and the variance σ2
(
X(n,K)

)
of the random variable X(n,K) can be calculated as fol-

lows

E
(
X(n,K)

)
= απ

SK

L2
, E

(
Xk

(n,K)

)
=

[ ∑

J1+...+Jα=k

k!
J1!...Jα!

]
πSK

L2
,

σ2
(
X(n,K)

)
=

πSK

L2

(
1− πSK

L2

)
α2,

where

α =
n (n− 1)

2
,

and k is a positive integer.

Other results about the computation of the variance are investigated in [2] and an
extension in the 3-dimensional Euclidean space of the same problem is studied in [6].
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2 Main Results

Let N be the set of natural numbers, n ≥ 2 a fixed natural integer, {G1, ..., Gn} and
K as in introduction. We can state the following

Theorem 2. Let us consider the random variable X(n,K). Then

E
(
X(n,K)

)
= απ

SK

L2
,

where α = n(n−1)
2 , L is the length of ∂K and SK is the area of the domain defined by

K.

Proof. It is easy to see that, denoting with L the length of ∂K and dG the elementary
measure of the lines in the Euclidean plane E2, we have

∫
{

G∩K 6= f¡
} dG = L.

Since G1, ..., Gn are stochastically independent, we get
∫

{
G∩K 6= f¡

} dG1 ∧ ... ∧ dGn = Ln.

If we consider the lines G1, ..., Gn, then the intersection points might belong to K or
not. Hence we obtain a random variable which we denote by X(n,K).

In order to compute the variance, we have the following integral
∫

{
G∩K 6= f¡

} X(n,K)dG1 ∧ ... ∧ dGn

We define the application εhk = 1 if Gh ∩Gk ∈ K (with h 6= k = 1, ..., n) and zero
otherwise. Then

X(n,K) =
∑

h,k=1

εhk.

Further, let us consider

I2 :=
∫

{
Gh,Gk∩K 6= f¡

} εhkdGh ∧ dGk.

If (Gh ∩ Ek) ∈ K, then we have εhk = 1. We denote with λk the chord intercepted
by Gk on K (and its length).

We have

∫
{

Gh,Gk∩K 6= f¡
} εhkdGh ∧ dGk =

∫
{

Gk∩K 6= f¡
}




∫
{

Gk∩K 6= f¡
} dGh


 dGk,

but it is well known that ∫
{

Gh∩λk 6= f¡
} dGh = λk,
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∫
{

Gk∩K 6= f¡
} λkdGk = πSK .

Moreover,
∫

{
G∩K 6= f¡

} X(n,K)dG1 ∧ ... ∧ dGn =
∫

{
G∩K 6= f¡

}
∑

h,k=1

εhkdG1 ∧ ... ∧ dGn =

πSKLn−2 + ... + πSKLn−2.

Taking into account that the number of the different sets {Gh, Gk} is (the binomial
coefficient)

α =
n (n− 1)

2
,

we have ∫
{

G∩K 6= f¡
} X(n,K)dG1 ∧ ... ∧ dGn = απSKLn−2.

By definition,

E
(
X(n,K)

)
:=

∫{
G∩K 6= f¡

} X(n,K)dG1 ∧ ... ∧ dGn

∫{
G∩K 6= f¡

} dG1 ∧ ... ∧ dGn
,

and hence mathbfE
(
X2

(n,K)

)
= απ SK

L2 .

Now we compute

E
(
X2

(n,K)

)
=

∫{
G∩K 6= f¡

} X2
(n,K)dG1 ∧ ... ∧ dGn

∫{
G∩K 6= f¡

} dG1 ∧ ... ∧ dGn
.

We put

J =
∫

{
G∩K 6= f¡

} X2
(n,K)dG1 ∧ ... ∧ dGn

We can prove that

X2
(n,K) =


 ∑

h,k=1

εhk




2

,

and then
X2

(n,K) =
∑

h,k=1

ε2hk + 2
∑

(h,k) 6=(s,n)

εhkεsn.

With this observations we can compute the integral

J =
∫

{
G∩K 6= f¡

}


 ∑

h,k=1

ε2hk + 2
∑

(h,k)6=(s,n)

εhkεsn


 dG1 ∧ ... ∧ dGn.
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Considering that

∫
{

G∩K 6= f¡
} ε2hkdGh ∧ dGk =

∫
{

Gk∩K 6= f¡
}




∫
{

Gh∩λk 6= f¡
} dGh


 dGk,

where λk is the chord intercepted by Gk on K, we obtain

J = πSKLn−2 + ... + πSKLn−2 + 2πSKLn−2 + ... + 2πSKLn−2.

Taking into account that the number of different sets {Gh, Gk} is α and that G1, ..., G2

are independent, we infer

E
(
X2

(n,K)

)
=

πSKαLn−2

Ln
=

πSKα2

L2
.

We obtain

Theorem 3. Let us consider the random variable X(n,K). Hence

σ2
(
X(n,K)

)
=

πSK

L2

(
1− πSK

L2

)
α2,

where α = n(n−1)
2 , L is the length of ∂K and SK is the area of the domain defined by

K.

Moreover, we note that

Xk
(n,K) =


 ∑

h,k=1

εhk




k

,

implies

E
(
Xk

(n,K)

)
=

[ ∑

J1+...+Jα=k

k!
J1!...Jα!

]
πSK

L2
.

3 Applications

1. As first case we consider in the plane a square Q of side a. We can compute the
following values

E
(
X(n,Q)

)
=

απ

16
≈ 0, 196345α.

E
(
Xk

(n,Q)

)
=

[ ∑

J1+...+Jα=k

k!
J1!...Jα!

]
π

16
.

and the variance is

σ2X(n,Q) =
π

16

(
1− π

16

)
α2 ≈ 0, 15779α2.
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2. Taking in plane a rectangle R of sides a and b we have

E
(
X(n,R)

)
=

απab

4 (a + b)2
,

E
(
Xk

(n,R)

)
=

[ ∑

J1+...+Jα=k

k!
J1!...Jα!

]
π

4 (a + b)2
,

and the variance

σ2X(n,Q) =
π

4 (a + b)2

(
1− π

4 (a + b)2

)
α2.

3. Let C be a circle of radius δ. We have

E
(
Xk

(n,C)

)
=

α

4
,

E
(
Xk

(n,C)

)
=

[ ∑

J1+...+Jα=k

k!
J1!...Jα!

]
α

4

and the variance is

σ2
(
X(n,C)

)
=

π

4

(
1− α

4

)
α2 ≈ 0, 16855α2.

4. As last case we consider an equilateral triangle T of side a, obtaining,

E
(
Xk

(n,T )

)
=

απ
√

3
18

≈ 0, 3023α,

E
(
Xk

(n,T )

)
=

[ ∑

J1+...+Jα=k

k!
J1!...Jα!

]
π
√

3
18

,

and for the variance the expression

σ2
(
X(n,T )

)
=

π
√

3
18

(
1− π

√
3

18

)
α2 ≈ 0, 2109α2.

Remark 4. We observe that in examples 1, 3, 4 the functions are independent of the
dimension of the convex body.
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