
Vol. 33, No. 3 ACTA AUTOMATICA SINICA March, 2007

Ant Colony System Algorithm for Real-Time Globally

Optimal Path Planning of Mobile Robots
TAN Guan-Zheng1,3 HE Huan2 SLOMAN Aaron3

Abstract A novel method for the real-time globally optimal path planning of mobile robots is proposed based on the ant colony
system (ACS) algorithm. This method includes three steps: the first step is utilizing the MAKLINK graph theory to establish the
free space model of the mobile robot, the second step is utilizing the Dijkstra algorithm to find a sub-optimal collision-free path,
and the third step is utilizing the ACS algorithm to optimize the location of the sub-optimal path so as to generate the globally
optimal path. The result of computer simulation experiment shows that the proposed method is effective and can be used in the
real-time path planning of mobile robots. It has been verified that the proposed method has better performance in convergence
speed, solution variation, dynamic convergence behavior, and computational efficiency than the path planning method based on the
genetic algorithm with elitist model.

Key words Mobile robot, globally optimal path planning, ACS algorithm, MAKLINK graph, Dijkstra algorithm

1 Introduction

The globally optimal path planning is an important
problem in navigation of autonomous mobile robots, which
is to find an optimal collision-free path from a starting point
to a goal in a given environment according to some crite-
rion. For this problem, there are many solving methods
now, such as the potential field methods[1], visibility graph
methods[2], and grid methods[3]. The potential field meth-
ods have simpler structures and are used in real-time obsta-
cle avoidance. But, this kind of methods has some inherent
limitations, including trap situations due to local minima,
no passage between closely spaced obstacles, oscillations in
the presence of obstacles, and oscillations in narrow pas-
sages. The main problem of visibility graph methods is
that they have more complicated search paths and lower
search efficiency. In the grid methods where grids are used
to form the map of the environment, the main problem is
how to determine the size of grids. The smaller the size of
grids, the more precise the representation of the environ-
ment. However, using smaller grids will result in exponen-
tial increase in memory space and search range. In recent
years, the research on artificial intelligence has advanced
rapidly, and many intelligent algorithms have been applied
to the path planning of mobile robots, such as the fuzzy
logic and reinforcement learning[4], neural networks[5], ge-
netic algorithms[6], particle swarm optimization[7], and so
on.

Ant system (AS) algorithm is a novel simulated evolu-

tionary algorithm[8]. Its main characteristics include posi-
tive feedback search mechanism, distributed computation,
and the use of a constructive greedy heuristic. So far, AS
algorithm has been used successfully to solve many prac-
tical optimization problems, such as the traveling sales-
man problem[8], the quadratic assignment problem[9], the
discrete optimization problem[10], the optimal controller
design[11], and so on. The ant colony system (ACS) algo-

rithm is an improvement of AS algorithm[12], and is more
robust, faster, and has a better probability in achieving the

Received August 31, 2005; in revised form August 28, 2006
Supported by National Natural Science Foundation of P.R.China

(50275150) and National Research Foundation for the Doctoral Pro-
gram of Higher Education of P. R. China (20040533035)
1. School of Information Science and Engineering, Central South

University, Changsha 410083 P.R.China 2. Center for Space Sci-
ence and Applied Research, Chinese Academy of Sciences, Beijing
100080 P.R.China 3. School of Computer Science, The University
of Birmingham, Birmingham B15 2TT, The United Kingdom
DOI: 10.1360/aas-007-0279

globally optimal solution.
The global path planning of a mobile robot includes two

sub-problems: the free space modeling and the path find-
ing. In this paper, the MAKLINK graph theory is em-
ployed to establish the free space model, then the Dijkstra
algorithm is used to find a sub-optimal collision-free path,
finally the established ACS algorithm is utilized to opti-
mize the location of the sub-optimal path so as to generate
the globally optimal path.

2 Free space modeling of mobile
robot

To use the MAKLINK graph theory[13] to establish the
free space model, the following assumptions need to be
made: 1) the heights of the environment and obstacles can
be ignored; 2) there exist some known obstacles distributed
in the environment, both the environment and the obsta-
cles have a polygonal shape; 3) in order to avoid a moving
path too close to the obstacles, the boundaries of every ob-
stacle can be expanded by an amount that is equal to half
of the greater size in the length and width of the robot′s
body plus the minimum measuring distance of the relevant
sensors. In this case, the size of the robot can be ignored.

Fig. 1 illustrates a moving environment of a mobile robot,
which is a 350 by 350 meters square and includes six ob-
stacles. Points S and T denote the starting point and the
goal respectively.

For each of the obstacles, the black polygon denotes its
original size and the white margin denotes its expanded
part. A black part plus its white margin constitutes a so-
called “grown obstacle”. In Fig. 1, symbols B1, B2, . . . ,
and B23 denote respectively the vertices of these grown
obstacles. The (x, y) coordinates of vertices B1, B2, . . . ,
and B23 are (40, 288), (66, 288), (40, 151), (66, 151), (115,
275), (95, 214), (123, 163), (170, 245), (90, 106), (90, 45),
(183, 45), (183, 106), (238, 311), (212, 248), (274, 268),
(258, 205), (234, 190), (234, 111), (296, 111), (296, 137),
(170,170), (190,150), and (210,170), respectively. The (x,
y) coordinates of the starting point S and the goal T are(15,
335) and (315, 35), respectively.

The free space of a mobile robot in an environment
means the space in which the robot can move freely. A
free space consists of some polygonal areas, each of which
is enclosed by several free MAKLINK lines. A free MAK-
LINK line is defined as: 1) either its two end points are two
vertices on two different grown obstacles or one point is a



280 ACTA AUTOMATICA SINICA Vol. 33

vertex of a grown obstacle and the other is located on a
boundary of the environment; 2) every free MAKLINK line
cannot intersect any of the grown obstacles.

Using the MAKLINK graph theory to establish the free
space model of a mobile robot means finding the free MAK-
LINK line/lines of every vertex on every grown obstacle.
This process can be described as follows: 1) find out the
peripheral boundaries of all the grown obstacles, which are
free MAKLINK lines, for example, lines B1B13, B15B20,
B19B11, and B10B3 in Fig. 1; 2) the perpendicular line from
each vertex of the peripheral boundaries to its adjacent
boundary of the environment is a free MAKLINK line; find
out all of this kind of free MAKLINK lines; 3) find out
all other free MAKLINK lines according to the definition
of free MAKLINK line. Fig. 1 also shows the MAKLINK
graph of this example.

Fig. 1 An environment and its MAKLINK graph

Fig. 2 Network graph for free motion of robot

Assume that symbol l denotes the total number of the
free MAKLINK lines on a MAKLINK graph, the middle
points of these free MAKLINK lines are denoted respec-
tively by v1, v2, . . . , vl. If each pair of the middle points
on two adjacent free MAKLINK lines are connected to-
gether, a network graph can be formed, which gives the
possible paths for the free motion of the mobile robot. For
the example shown in Fig. 1, the free motion network graph
of the robot is shown in Fig. 2, where l = 26.

Points S and T are also denoted by v0 and vl+1, respec-
tively. Fig. 2 is an undirected graph, and denoted by G (V ,
E), where V ={v0, v1, . . . , vl+1} is the set including points
S and T and the middle points of all the free MAKLINK
lines; E is a set of the lines which includes: the lines, each
of which connects a pair of the middle points on two ad-
jacent free MAKLINK lines; the lines connecting point S

and the middle points on the free MAKLINK lines adjacent
to S; and the lines connecting the goal T and the middle
points on the free MAKLINK lines adjacent to T . Using
the undirected graph G (V , E) as the free space model, the
globally optimal path planning can be solved by finding the
shortest path between the given starting point S and goal
Ton G (V , E).

3 Searching for sub-optimal
path using Dijkstra algorithm

The Dijkstra algorithm is widely used to search for the
shortest path on a network graph [14]. In this section, this
algorithm is used to find a sub-optimal path between the
starting point S and goal T .

When using the Dijkstra algorithm, it is needed to cal-
culate the cost function of a path. In general, each edge
on a path will be given a weight, so the cost function can
be defined as the sum of the weights of all the edges of the
path. Here, the length of an edge is used as its weight.

Before using the Dijkstra algorithm, it is necessary to
define the adjacency matrix with weights for the network
graph G(V , E), which is the basis for computing the short-
est path. Each element of the matrix represents the length
of the straight line between two adjacent path nodes on
G(V , E), where a path node means the intersection of the
robot path and a free MAKLINK line. For the problem
discussed here, each element of the adjacency matrix is de-
fined as

adjlist[i][j] =


length(vi, vj), if edge(vi, vj) ∈ E

∞, others
(1)

where adjlist [i][j] is the element corresponding to the
ith row and the jth column of the matrix, length (vi, vj)
is the straight-line distance between the path nodes vi and
vj , i and j = 0, 1, 2, . . . , l, l+1. For the example given in
Fig. 1, using the Dijkstra algorithm the sub-optimal path
is obtained as S→ v1 → v2 → v10 → v11 → v12 → v13 →
v16 → v17 → v24 → T , which is shown in Fig. 3. The length
of this path is 507.692 meters.

Fig. 3 Sub-optimal path generated by Dijkstra algorithm

4 Globally optimal path search-
ing method based on ACS al-
gorithm

Utilizing the Dijkstra algorithm, we obtain a feasible
robot path between the starting point S and the goal T



No. 3 TAN Guan-Zheng et al.: Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning. . . 281

and all the free MAKLINK lines which this path passes
through. But, this path is just a sub-optimal path because
it passes only through the middle points of those free MAK-
LINK lines. In this section, we will adopt the ant colony
system(ACS) algorithm to adjust and optimize the loca-
tions of the path nodes on this sub-optimal path so as to
generate the globally optimal path.

4.1 Description of optimization problem
Assume that the sub-optimal path generated by the Di-

jkstra algorithm is denoted in order by path nodes P0, P1,
P2, . . . , Pd, and Pd+1, where P0 and Pd+1 denote the start-
ing point S and the goal T respectively. At the beginning,
these path nodes lie on the middle points of the relevant
free MAKLINK lines. Now, we need to adjust and optimize
their locations on their corresponding free MAKLINK lines.
The adjustment method is described as follows. Introduc-
ing a parameter hi, the location of Pi on its free MAKLINK
line Pi1Pi2 can be expressed as

Pi = Pi1+(Pi2−Pi1)×hi, hi ∈ [0, 1], i = 1, 2, . . ., d (2)

Obviously, given a set of values to {h1, h2, . . . , hd}, to-
gether with the starting point S and the goal T , a new
robot path can be generated. The different combinations
of parameters h1, h2, . . . , and hd will generate the length-
different paths. Rewriting Pi as Pi(hi) to reflect the influ-
ence of hi on the location of Pi, the objective function of
the optimization problem can be defined as

L =

dX
i=0

length{Pi(hi), Pi+1(hi+1)} (3)

where length {Pi(hi), Pi+1(hi+1)} represents the straight-
line distance between two adjacent path nodes Pi and Pi+1.
In (3), when i=0, P0(h0) means the starting point S; when
i = d, Pd+1(hd+1) means the goal T . Our purpose is to use
the ACS algorithm to find the optimal parameter set {h∗1,
h∗2, . . . , h∗d} such that L has the minimum value.

4.2 Generating method of ant moving
paths

When using the ACS algorithm, a discrete solving space
is needed because the path selection number of an ant in
each step is limited. In order to use the ACS algorithm
conveniently, we express the values of parameters h1, h2,
. . . , and hd on plane O-XY. As shown in Fig. 4, we draw d
lines on O-XY which have equal length and equal interval
and are perpendicular to axis X. The x coordinates of these
lines are represented by 1, 2, . . . , and d in order. Then, we
divide equally each of these lines into ten portions, and thus
eleven nodes are generated on each line. The y coordinates
of the eleven nodes on each line are 0, 0.1, 0.2, . . . , and 1.0,
which represent the eleven possible values of parameter hi

(i=1, 2, . . . , d). Corresponding to the MAKLINK graph,
this means each of the relevant continuous free MAKLINK
lines is transformed into the eleven discrete path nodes with
equal interval. In Fig. 4, the starting point S and the goal
T are also marked, which are located on axis X with point
S at the origin.

Fig. 4 is a grid graph on which there are d×11 nodes in
total. We use nij to denote node j on line hi. Let an ant
depart from the starting point S. In its each step forward,
it chooses a node from the next line hi (i=1, 2, . . . , d) and
then moves to this node along the straight line. When it
arrives at the goal T , it completes one tour. Its moving
path can be expressed as Path={S, n1j , n2j , . . . , ndj , T}.
Fig. 4 shows a moving path of an ant.

Fig. 4 Generating of nodes and moving paths

4.3 Selection of nodes on a moving path
For an ant colony, assume that from any node on line hi

to any node on the next line hi+1, each ant has the same
moving time. So, if all ants depart from the starting point
S at the same time, they will arrive on each line hi (i=1, 2,
. . . , d) at the same time too, and finally arrive at the goal
T at the same time. To this moment, they all complete a
tour, and the ACS algorithm completes an iteration. Let
τ ij(t) represent the concentration of pheromone at node
nij , where t is the iteration counter of the ACS algorithm.
Assume that at initial time t =0 all the nodes have the same
pheromone concentration τ0, that is, τ ij(0)= τ0 (i=1, 2,
. . . , d; j=0, 1, 2, . . . , 10).

Assume the number of ants is m. In moving process,
for an ant k, when it locates on line hi−1, it will choose a
node j from the eleven nodes of the next line hito move to
according to the following random transition rule [12]:

j =


arg maxu∈A

˘
[τiu(t)] · [ηiu]β

¯
, if q ≤ q0

J , if q > q0
(4)

where A represents the set: {0, 1, 2, . . . , 10}; τ iu(t) is the
pheromone concentration of node niu; ηiu represents the
visibility of node niu and is computed by the following (6);
β is an adjustable parameter which controls the relative im-
portance of visibility ηiu versus pheromone concentration
τ iu(t); q is a random variable uniformly distributed over
[0, 1]; q0 is a tunable parameter (0≤ q0 ≤1); and J is a
node which is selected according to the following probabil-
ity formula[12] and “Roulette Wheel Selection Method”:

pk
iJ(t) =

[τiJ(t)] · [ηiJ ]β

10X
w=0

[τiw(t)] · [ηiw]β
(5)

For the visibility ηij of nodenij , we define it as

ηij =
1.1− ˛̨yij − y∗ij

˛̨

1.1
(6)

where yij is the y coordinate of node nij ; the values of y∗ij
are set in the following way. In the first iteration of the
ACS algorithm, the values of y∗ij are set respectively to the
values of parameters h1, h2, . . . , and hd which are corre-
sponding to the path nodes on the free MAKLINK lines
found by the Dijkstra algorithm, from Section 3 we know
all of them are equal to 0.5. In each of the following itera-
tions, the values of y∗ij are set to the values of parameters



282 ACTA AUTOMATICA SINICA Vol. 33

h1, h2, . . . , and hd which are corresponding to the path
nodes on the optimal robot path generated by the ACS
algorithm in the previous iteration.

4.4 Updating rules of pheromone concen-
tration

After each iteration, the pheromone concentration of
each node on the best ant tour T+ generated since the
beginning of the trial needs to be updated using the follow-
ing global pheromone updating rule to encourage the ants
to search for the paths in the vicinity of the best tour T+.

τij(t) ← (1− ρ) · τij(t) + ρ ·∆τij(t) (7)

where nij is a node belonging to T+; 0<ρ<1 is the
pheromone decay parameter; and ∆τ ij(t) is computed by

∆τij(t) = 1/L+ (8)

where L+ is the length of robot path corresponding to T+.
When an ant passes through a node nij , the pheromone

concentration of node nij needs to be updated immediately
using the following local pheromone updating rule:

τij(t) ← (1− ρ) · τij(t) + ρ · τ0 (9)

When a node is visited several times by ants, repeatedly
applying the local updating rule will make the pheromone
level of this node diminish. This has the effect of making
the visited nodes less and less attractive to the ants, which
indirectly favors the exploration of not yet visited nodes.

4.5 Globally optimal path searching algo-
rithm

The ACS algorithm for finding the globally optimal path
of a mobile robot between a given starting point S and a
given goal T in a given environment can be summarized as
follows.

Step 1. Establish the free space model of the robot using
the MAKLINK graph theory, and then find a sub-optimal
collision-free path, S → P1 → P2 →. . . → Pd → T , in the
free space using the Dijkstra algorithm.

Step 2. Define the number of ants m; specify the values
of parameters β, q0, ρ, and τ0; for each ant k (k = 1, 2, . . . ,
m), define a one-dimensional array Pathk with d elements,
in which the y coordinates of the d nodes (not including
points S and T ) that ant k will pass through in each itera-
tion of the algorithm will be stored in order. Array Pathk

can be used to denote the moving path of ant k.
Step 3. Set the iteration counter t = 1 and define the

maximum number of iterations NC ; then place all the m
ants at the starting point S.

Step 4. Set i = 1.
Step 5. Set k = 1.
Step 6. Select a node on line hi for ant k using (4), (5),

and (6), move ant k to this node, and save the y coordinate
of this node into the ith element of Pathk; then, update
the pheromone concentration of this node using the local
pheromone updating rule.

Step 7. Set k ← k+1. If k ≤ m, go to Step 6; otherwise,
continue.

Step 8. Set i ← i+1. If i ≤ d, go to Step 5; otherwise,
continue.

Step 9. Move each ant from its location on line hd to
the goal T .

Step 10. For each ant k (k = 1, 2, . . . , m): a) according
to array Pathk, obtain the values of parameter set {hk

1 , hk
2 ,

. . . , hk
d}; b) according to {hk

1 , hk
2 , . . . , hk

d} determine the
locations of path nodes P k

1 , P k
2 , . . . , and P k

d on their corre-
sponding free MAKLINK lines; and c) use (3) to computer

the length Lk of the robot path, which is corresponding to
the moving path of ant k.

Step 11. Compare the obtained m paths and find the
shortest robot path T t in the current iteration t. Compare
T t with T+, the shortest robot path generated from the
beginning of the trial till the previous iteration t−1 (for
the first iteration, directly denote its shortest path by T+),
and denote the new shortest robot path by T+, then save
the values of h parameter set corresponding to T+ into {h∗1,
h∗2, . . . , h∗d}.

Step 12. Set each element of Pathk to zero, k=1, 2, . . . ,
m.

Step 13. Update the pheromone concentration of each
node on T+ using the global pheromone updating rule.

Step 14. Set t ← t+1. If t <NC and all of the m ants
do not make the same tour, place all the ants at point S
and return to Step 4. If t <NC but all of the m ants make
the same tour or t = NC, then output the optimal (short-
est) robot pathT+and its corresponding parameter set {h∗1,
h∗2, . . . , h∗d}, and stop.

4.6 Parameter setting methods in ACS al-
gorithm

The selections of β, q0, and ρ influence the convergence
speed of the ACS algorithm and the quality of the final so-
lution. By observing the results of simulation experiments
with different β, q0, and ρ, their values were finally deter-
mined as β =2, q0= 0.85, and ρ =0.1.

Using too many ants will increase the opportunities that
every node on the grid graph of Fig. 4 is passed many times
by the ant colony. This makes the pheromone concentra-
tion of every node basically have a uniform change. In this
case, although the stochastic search ability of the ACS algo-
rithm would be enhanced, its convergence speed may slow
down. However, if we use too few ants, the colony of ants
would not produce good cooperation, which may weaken
the global search capability of the ACS algorithm and eas-
ily lead the algorithm to a premature convergence. For the
selection of total number of ants, Dorido and Gambardella
proposed the following formula[12]:

m =
log(ϕ1 − 1)− log(ϕ2 − 1)

q0 · log(1− ρ)
(10)

where ϕ1 and ϕ2 are two parameters such that ϕ1τ0 and
ϕ2τ0 denote the average values of pheromone concentra-
tions of all nodes on the best ant tour T+ before and after
using the global updating rule, respectively. From their
experiments Dorido and Gambardella found that the ACS
algorithm works well when the ratio (ϕ1−1)/(ϕ2−1)≈0.4.
Substituting q0=0.85 and ρ=0.1 into (10), we obtain m=10.

The selection of τ0 is related to ∆τ ij(t). In order to im-
plement the pheromone concentration-based positive feed-
back search mechanism, it must be guaranteed that the
pheromone concentration of each node on the best ant tour
T+ should be reinforced after the pheromone concentra-
tions of these nodes are updated by the global updating
rule. Based on this consideration, according to (7), we
have

(1− ρ) · τij(t) + ρ ·∆τij(t) > τij(t), 1 ≤ t ≤ NC (11)

where τ ij(t) is the pheromone concentration of node nij be-
fore using the global updating rule and NC is the defined
maximum number of iterations. Substituting ∆τ ij(t) =
1/L+ into (11), we obtain

τij(t) < 1
‹
L+, 1 ≤ t ≤ NC (12)



No. 3 TAN Guan-Zheng et al.: Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning. . . 283

When t = 1, because τij(1) = τ0, we have

τ0 < 1
‹
L+ (13)

Formula (13) just gives the rough principle of deter-
mining τ0. For the path planning problem considered
here, the results of many simulation experiments show that
the ACS algorithm has better performance when setting
τ0 = (m × Lsub)

−1, where m is the number of ants and
Lsub is the length of the sub-optimal robot path. For the
example given in Fig.1, m = 10 and Lsub = 507.692, so we
obtain τ0 = 0.0002.

5 Simulation results and com-
parison of ACS algorithm and
GA with elitist model

5.1 Simulation result based on ACS algo-
rithm

In order to examine the performance of the proposed
ACS algorithm, for the example given in Fig. 1, a simula-
tion experiment was executed on a personal computer with
2.66-GHz CPU and 256-MB RAM. The parameters were
set as β = 2, q0 = 0.85, ρ = 0.1, τ0 = 0.0002, m = 10. The
maximum number of iterations NC was set to 200. The
simulation result is shown in Fig. 5.

Fig. 5 Computer simulation result using ACS algorithm

In this figure, the thin solid line denotes the sub-optimal
robot path with the length of 507.692 meters; the bold
solid line denotes the globally optimal robot path with the
length of 440.233 meters, which was obtained from the
ACS algorithm. In this example, d is equal to 9, and
the path nodes needed to be adjusted, P1, P2, P3, P4,
P5, P6, P7, P8, and P9, are located respectively on the
free MAKLINK lines with the points v1, v2, v10, v11, v12,
v13, v16, v17, and v24. The optimal h parameter set for
this example is {h∗1, h∗2, h∗3, h∗4, h∗5, h∗6, h∗7, h∗8, h∗9} =
{0.2, 0.1, 0.0, 0.0, 0.5, 0.5, 0.0, 1.0, 0.7}.

It should be pointed out the globally optimal path gen-
erated by the ACS algorithm is closely related to the num-
ber of dividing portions of each of the free MAKLINK
lines which the optimal path passes through. The more
the portions, the better the obtained result. For exam-
ple, for the above example, if each of the free MAK-
LINK lines is divided into twenty equal portions, the length
of the optimal robot path generated by the ACS algo-
rithm is 439.372 meters and the corresponding optimal
h parameter set {h∗1, h∗2, h∗3, h∗4, h∗5, h∗6, h∗7, h∗8, h∗9}
= {0.20, 0.10, 0.00, 0.00, 0.50, 0.45, 0.00, 1.00, 0.65}. Obvi-

ously, this result is better than 440.233 meters, the result
with only ten equal portions on each of the free MAKLINK
lines. This is because if each of the free MAKLINK lines
is divided into more portions, the obtained optimal robot
path will be closer to its extreme location.

5.2 Comparison of ACS algorithm and
real-coded GA with elitist model

As a comparing object, we also performed a simula-
tion experiment for the given example using the real-coded
genetic algorithm (real-coded GA) with elitist model[15].
In the GA, an individual was encoded as {h1. . . hi. . . hd},
where hi ∈ [0, 1] and i = 1, 2, . . . , d. The parameters of
the GA were specified as: population size m = 50, crossover
probability Pc = 0.6, crossover constant a = 0.5, and mu-
tation probability Pm = 0.05.

1) Comparison of convergence speed

Fig. 6 Convergence tendency of the ACS algorithm

Fig. 7 Convergence tendency of the real-coded GA

Fig. 6 and Fig. 7 show the convergence processes of the
optimal solutions generated respectively by the two algo-
rithms. As can be seen, the ACS algorithm generated the
very stable optimal solution (440.233 meters) just in around
the thirty-fifth iteration, whereas the real-coded GA needed
to execute about two hundred and forty iterations to gen-
erate the stable optimal solution (440.233 meters). Obvi-
ously, the ACS algorithm is much faster than the real-coded
GA in convergence speed.

2) Comparison of solution variation
In order to observe the variation in their optimal so-

lutions, we also performed 100 simulation trials for the
two methods with different random number. The result
is shown in Fig. 8, in which the solid line and the dotted
line represent respectively the variations in the optimal so-



284 ACTA AUTOMATICA SINICA Vol. 33

lutions of the ACS algorithm and the real-coded GA.
We introduce the following evaluation factor δ, called

sample standard deviation:

δ =

vuut 1

N − 1

NX
i=1

(Li − L)2 (14)

where Li is the length of the robot path obtained in the
ith trial, and L̄ is the average length of the robot paths
obtained in N trials.

In N = 100 trials, the maximum and minimum robot
path lengths obtained from the ACS algorithm are 447.020
meters and 440.233 meters respectively, and the sample
standard deviation δ is 1.5644; the maximum and mini-
mum robot path lengths obtained from the real-coded GA
are 452.743 meters and 440.233 meters respectively, and
the sample standard deviation δ is 1.5227. Although the
two methods have almost the same δ value, the maximum
robot path length of the real-coded GA is larger than that
of the ACS algorithm.

Fig. 8 Comparison of variations in the optimal solutions of
both methods (100 trials)

3) Comparison of dynamic convergence behavior
In order to observe the dynamic convergence behavior

of the two algorithms during their evolutionary processes,
two statistic indexes were used in the simulation programs,
that is, the mean value µ and the standard deviation σ.
They are defined as

µ =

mX

k=1

Lk

m
(15)

σ =

vuut 1

m

mX

k=1

(Lk − µ)2 (16)

where Lk represents the solution, i.e., the robot path
length, generated by the k-th individual after an algorithm
completes an iteration, and m denotes the total number of
individuals in the population.

The mean value µ is the average value of the solutions
generated by all individuals in the population after an itera-
tion. The less the µ value, the better the solution generated
by each individual. So, µ reflects the accuracy of an algo-
rithm. The standard deviation σ represents the centrality
of the solutions generated by all individuals after an itera-
tion. The less the σ value, the better the centrality of the

solutions generated by all individuals. So, σ reflects the
convergence speed of an algorithm. During the evolution-
ary processes of the ACS algorithm and the real-coded GA,
after each iteration we recorded their mean value µ and the
standard deviation σ in the current iteration. Fig. 9 and
Fig. 10 show the convergence tendency of µ and σ of the
two algorithms during 200 iterations.

Fig. 9 Convergence tendency of mean value µ using both
algorithms

Fig. 10 Convergence tendency of standard deviation σ using
both algorithms

As can be seen, during 200 iterations, a) in most iter-
ations, the mean value µ of the ACS algorithm is smaller
than that of the real-coded GA, which indicates that the
solutions generated by the ACS algorithm are better than
that of the real-coded GA; b) in most iterations, the stan-
dard deviation σ of the ACS algorithm is smaller than that
of the real-coded GA, which indicates that the centrality
of the solutions generated by the ACS algorithm in each
iteration is better than that of the real-coded GA; c) the
mean value µ and the standard deviation σ of the ACS al-
gorithm become very stable after the thirty-fifth iteration,
whereas the mean value µ and the standard deviation σ of
the real-coded GA still oscillate when achieving the 200th
iteration, which indicates that the convergence speed of the
ACS algorithm is faster than that of the real-coded GA.

4) Comparison of computational efficiency
Table 1 shows the comparison data on computational

efficiency of the two algorithms. As can be seen, the com-
putation efficiency of the ACS algorithm is much higher
than that of the real-coded GA. This is because the ACS
algorithm has faster convergence speed. For the ACS al-
gorithm, the average CPU time needed for generating the
optimal solution is only around one tenth of a second.



No. 3 TAN Guan-Zheng et al.: Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning. . . 285

Table 1 Comparison of computation efficiency of both algorithms

Algorithm Average CPU time per iter-
ation (sec.)

Average number of iterations
needed for convergence

Average CPU time needed
for obtaining optimal solu-
tion (sec.)

ACS algorithm 0.00059 175 0.1033

Real-coded GA 0.00067 912 0.6110

6 Conclusion

This paper presents a new globally optimal path plan-
ning method for mobile robots based on the ACS algorithm.
The results of computer simulation experiments show that
this method is effective. The search time needed for gener-
ating the globally optimal path is just one tenth of a second,
which indicates that this method can be used in the real-
time path planning of mobile robots. It has been verified
that the proposed ACS algorithm has better performance
in convergence speed, solution variation, dynamic conver-
gence behavior, and computational efficiency than the path
planning method based on the real-coded genetic algorithm
with elitist model.

Acknowledgement
The authors gratefully acknowledge the reviewers for

their comments and suggestions which have led to the sig-
nificant improvements of this paper.

References

1 Ge S S, Cui Y J. New potential functions for mobile robot
path planning. IEEE Transactions on Robotics and Automa-
tion , 2000, 16(5): 615∼620

2 Li L, Ye T, Tan M. Present state and future development
of mobile robot technology research. Robot , 2002, 24(5):
475∼480 (in Chinese)

3 Boschian V, Pruski A. Grid modeling of robot cells:
a memory-efficient approach. Journal of Intelligent and
Robotic Systems, 1993, 8(2): 201∼223

4 Yung N H C, Cang Y. An intelligent mobile vehicle naviga-
tor based on fuzzy logic and reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 1999, 29(2): 314∼321

5 Lebedev D. Neural network model for robot path planning in
dynamically changing environment. Modeling and Analysis
of Information Systems, 2001, 18(1): 12∼18

6 Liu C H, Hu J Q, Qi X N. Path design of robot with con-
tinuous space based on hybrid genetic algorithm. Journal of
Wuhan University of Technology (Transportation Science &
Engineering), 2003, 27(6): 819∼821 (in Chinese)

7 Qin Y Q, Sun D B, Li N, Ma Q. Path planning for mobile
robot based on particle swarm optimization. Robot , 2004,
26(3): 222∼225 (in Chinese)

8 Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and
stigmergy. Future Generation Computer Systems, 2000,
16(8): 851∼871

9 Maniezzo V, Colorni A. The ant system applied to
the quadratic assignment problem. IEEE Transactions on
Knowledge Data Engineering, 1999, 11(5): 769∼778

10 Dorigo M, Di Caro G, Gambardella L M. Ant algorithms for
discrete optimization. Artificial Life, 1999, 5(2): 137∼172

11 Tan G Z, Zeng Q D, Li W B. Design of PID controller
with incomplete derivation based on ant system algorithm.
Journal of Control Theory and Applications, 2004, 2(3):
246∼252

12 Dorigo M, Gambardella L M. Ant colony system: a coopera-
tive learning approach to the traveling salesman problem.
IEEE Transactions on Evolutionary Computation, 1997,
1(1): 53∼66

13 Habib M K, Asama H. Efficient method to generate collision
free paths for autonomous mobile robot based on new free
space structuring approach. In: Proceedings of IEEE/RSJ
International Workshop on Intelligent Robots and Systems.
Osaka, Japan, 1991. 563∼567

14 Yan W M, Wu W M. Data Structure. Beijing: Tsinghua
University Press, 1997. 187∼192 (in Chinese)

15 Bhandari D, Murthy C A, Pal S K. Genetic algorithm with
elitist model and its convergence. International Journal of
Pattern Recognition and Artificial Intelligence, 1996, 10(6):
731∼747

TAN Guan-Zheng Ph.D., professor of
Central South University and Visiting Pro-
fessor of the University of Birmingham. His
research interest covers intelligent robotic
systems, artificial intelligence, cognitive
science, and evolutionary computation.
Corresponding author of this paper. E-
mail: tgz csu@yahoo.com.cn

HE Huan Ph.D. candidate at Center for
Space Science and Applied Research, Chi-
nese Academy of Sciences. Her research
interest covers intelligent robotics systems,
artificial intelligence, and space science.

SLOMAN Aaron Ph.D., professor in
the School of Computer Science, the Uni-
versity of Birmingham, UK. His research
interest covers artificial intelligence, cog-
nitive science, and intelligent robotic sys-
tems.


