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Fusion Algorithm for Remote Sensing Images Based on

Nonsubsampled Contourlet Transform
YANG Xiao-Hui1 JIAO Li-Cheng1

Abstract Considering human visual system and characteristics of images, a novel image fusion strategy is presented for panchro-
matic high resolution image and multispectral image in nonsubsampled contourlet transform (NSCT) domain. The NSCT can give
an asymptotic optimal representation of edges and contours in image by virtue of its characteristics of good multiresolution, shift-
invariance, and high directionality. An intensity component addition strategy based on LHS transform is introduced into NSCT
domain to preserve spatial resolution and color content. Experiments show that the fusion method proposed can improve spatial
resolution and keep spectral information simultaneously, and that there are improvements both in visual effects and quantitative anal-
ysis compared with the traditional principle component analysis (PCA) method, intensity-hue-saturation (IHS) transform technique,
wavelet transform weighted fusion method, corresponding wavelet transform-based fusion method, and contourlet transform-based
fusion method.
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Image fusion is a process by combining two or more
source images from different modalities or instruments into
a single image with more information. The successful fu-
sion is of great importance in many applications, such as
remote sensing, computer vision, medical imaging, and so
on. In the pixel level fusion, some generic requirements can
be imposed on the fusion results[1]:

1) The fused image should preserve all relevant informa-
tion contained in the source images as closely as possible.

2) The fused process should not introduce any artifacts
or inconsistencies, which can distract or mislead the human
observer, or any subsequent image processing steps.

3) In the fused image, irrelevant features and noise
should be suppressed to a maximum extent.

Panchromatic (PAN) images of high spatial resolution
can provide detailed geometric information, such as shapes,
features, and structures of objects of the earth′s surface.
While multispectral (MS) images with usually lower reso-
lution are used to obtain spectral information necessary for
environmental applications. The different objects within
images of high spectral resolution are easily identified.
Data fusion methods aim to obtain the images with high
spatial and spectral resolution, simultaneously. The PAN
and MS remote sensing image fusion is different from other
fusion applications, such as image fusion in military mis-
sions or computer-aided quality control. The specificity is
to preserve the spectral information for subsequent clas-
sification of ground cover. The classical fusion meth-
ods are principle component analysis (PCA), intensity-hue-
saturation (IHS) transform, etc. In recent years, with the
development of wavelet transform theory and multireso-
lution analysis, two-dimensional separable wavelets have
been widely used in image fusion and have achieved good
results[2−4].

Thus, the fusion algorithms mentioned above can hardly
make it by themselves. They usually cause some character-
istic degradation, spectral loss, or color distortion. For ex-
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ample, the IHS transform can enhance texture information
and spatial features of fused images, but suffers from much
spectral distortion. The PCA method will lose some origi-
nal spectral features in the process of principal component
substitution. The wavelet transform (WT) can preserve
spectral information efficiently but cannot express spatial
characteristics well. Furthermore, the isotropic wavelets
are scant of shift-invariance and multidirectionality and fail
to provide an optimal expression of highly anisotropic edges
and contours in images.

Image decomposition is an important link of image fu-
sion and affects the information extraction quality, even the
whole fusion quality. In recent years, along with the devel-
opment and application of the wavelet theory, the favorable
time-frequency localization to express local signal makes
wavelet a candidate in multisensor image fusion. However,
wavelet bases are isotropy and of limited directions and fail
to represent high anisotropic edges and contours in images
well. The MGA emerges, which comes from wavelet mul-
tiresolution, but beyond it. The MGA can take full advan-
tage of the geometric regularity of image intrinsic structures
and obtain the asymptotic optimal representation. As an
MGA tool, the contourlet transform (CT) has the charac-
teristics of localization, multidirection, and anisotropy[5].
The CT can give the asymptotic optimal representation of
contours and has been applied in image fusion effectively.
However, the CT is lack of shift-invariance and results in ar-
tifacts along the edges to some extend. The nonsubsampled
contourlet transform (NSCT) is in virtue the nonsubsam-
pled filter banks to meet the shift-invariance[6]. Therefore,
the NSCT is more suitable for image fusion. To meet dif-
ferent application demands either for human visual or sta-
tistical performance, we propose a highly effective NSCT
fusion algorithm. Experimental results clearly demonstrate
the superiorities of this proposed method when compared
with other fusion algorithms.

This paper discusses the fusion of multispectral and
panchromatic remote sensing images. An NSCT-based
panchromatic and multispectral image fusion method is
presented after analyzing the basic principles of remote
sensing image system and fusion purpose. The rest of this
paper is organized as follows. Section 1 gives the NSCT of
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images. Section 2 introduces a novel fusion algorithm based
on NSCT and LHS transform, and discusses the fusion rules
in detail and approximate NSCT coefficients, respectively.
Section 3 reports about the fusion experiments tested on
PAN and MS image sets using the proposed algorithm
and some other traditional ones, followed by the subjec-
tive and objective evaluations based on them. Conclusions
are drawn in Section 4.

1 Nonsubsampled contourlet trans-
form of images

1.1 Contourlet transform

Do and Vetterli proposed a “true” two-dimensional
transform called contourlet transform, which is based on
nonseparable filter banks and provides an efficient direc-
tional multiresolution image representation. The CT ex-
presses image by first applying a multiscale transform, fol-
lowed by a local directional transform to gather the nearby
basis functions at the same scale into linear structures. For
example, the Laplacian pyramid (LP) is first used to cap-
ture the point discontinuities, and then followed by a di-
rection filter banks (DFB) to link point discontinuities into
linear structures. In particular, contourlets have elongate
supports at various scales, directions, and aspect ratios.
The contourlets satisfy anisotropy principle and can cap-
ture intrinsic geometric structure information of images and
achieve better expression than discrete wavelet transform
(DWT), especially for the edges and contours.

However, because of the downsampling and upsampling,
the CT is lack of shift-invariance and results in ringing ar-
tifacts. However, the shift-invariance is desirable in image
analysis applications, such as edge detection, contour char-
acterization, image fusion, etc[7].

Especially, during the realization of the CT, the analysis
filter banks and synthesis filter banks of LP decomposi-
tion are nonseparable bi-orthogonal filter banks with band
width larger than π/2. Based on multisampled rate theory,
downsample on filtered image may result in lowpass and
highpass frequency aliasing. Therefore, the frequency alias-
ing affects lie in directional subbands, which comes from the
highpass subbands filtered by DFB. The frequency aliasing
will result in information in a direction to appear in dif-
ferent directional subbands at the same time. This must
weaken the directional selectivity of contourlets.

1.2 Nonsubsampled contourlet transform

In order to get rid of the frequency aliasing of contourlets
and enhance directional selectivity and shift-invariance,
Cunha, Zhou, and Do proposed nonsubsampled contourlet
transform based on nonsubsampled pyramid decomposition
and nonsubsampled filter banks (NSFB)[6, 8]. The NSCT is
the shift-invariant version of the CT and is built upon iter-
ated nonseparable two-channel NSFB to obtain the shift-
invariance. The NSCT provides not only multiresolution
analysis but also geometric and directional representation.

Different from the CT, the multiresolution decomposi-
tion step of NSCT is realized by shift-invariant filter banks
satisfying Bozout identical equation (Perfect reconstruc-
tion, PR) and not LP. Because of no downsample in pyra-
mid decomposition, the lowpass subband has no frequency

aliasing, even the band width of lowpass filter is larger than
π/2. Hence, the NSCT have better frequency characteris-
tics than the CT. The two-level NSCT decomposition is
shown in Fig. 1.

(a) NSFB structure that implements the NSCT

(b) Frequency partitioning obtained with the
proposed structure

Fig. 1 Two level nonsubsampled contourlet transform

decomposition

The core of the NSCT is the nonseparable two-channel
NSFB. It is easier and more flexible to design the needed
filter banks that lead to an NSCT with better frequency se-
lectivity and regularity when compared to the correspond-
ing CT. Based on mapping approach and ladder structure
fast implementation, the NSCT frame elements are regu-
lar and symmetric, and the frame is close to a tight frame.
The multiresolution decomposition of NSCT can be real-
ized by nonsubsampled pyramid (NSP), which can reach
the subband decomposition structure similar to LP. On
j-th decomposition, the desired bandpass support of the
low-pass is [−π/2j , π/2j ]2 . And then the corresponding
band-pass support of the high-pass is the complement set
of the low-pass, that is [−π/2j−1, π/2j−1]2/[−π/2j , π/2j ]2.
The filters of subsequent scales can be acquired through
upsampling that of the first stage, which gives the multi-
scale property without the need of additional filters design.
From the computational complexity, one bandpass image is
produced at each stage resulting in J + 1 redundancy. By
contrast, the corresponding nonsubsampled wavelet trans-
form (NSWT) produces three directional images at each
stage and resulting in 3J + 1 redundancy.

In this paper, the NSFB is built from a lowpass analysis
filter H0(z) and H1(z) = 1−H0(z). The corresponding syn-
thesis filter G0(z) = G1(z) = 1. The perfect reconstruction
(PR) condition is given as

H0(z)G0(z) + H1(z)G1(z) = 1 (1)
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In this way, the system is PR.
Since the NSCT is an oversampled redundancy represen-

tation, the PR condition is much easier to satisfy than that
of critically sampled filter banks, and thus allows better
filters to be designed.

The DFB of Bamberger and Smith[9] is constructed by
combining critically sampled two-channel fan filter banks
and resampling operations. The result is a tree-structured
filter banks that split the two-dimensional frequency plane
into directional wedges. In the design of the DFB, a shift-
invariant directional expansion is not obtained because of
existing downsamplers and upsamplers. A shift-invariant
directional expansion can be obtained with a nonsampled
DFB (NSDFB), which is constructed by eliminating the
downsamplers and upsamplers in the DFB tree structure
and upsampling the filters accordingly. The upsampling is
based on the quincunx lattice, in which an image consisting
of rectangular lattices is split into the round and square dot
subsets. The adopted scale factor with rotated ability is as
follows

A =

(
1 1

1 −1

)
(2)

The change of before and after quincunx interpolation is
shown in Fig. 2, where a, b, c, and d are the four sampled
points. The correlation of interpolation results before and
after is given as

(a) The coordinate system before upsampling

(b) The coordinate system after upsampling

Fig. 2 Quincunx upsample

y(n1, n2) =
{

x(
n1 + n2

2
,
n1 − n2

2
), when n1, n2 are even number

0, otherwise

(3)

The corresponding z transform is denoted as

Y (z1, z2) = X(z1z2, z1z
−1
2 ) (4)

The detail proof can be seen in [10].
If we give a two-level four-channel filter banks in the

second level, the upsampled fan filter Uj(z
Q), j = 0, 1, and

when combined with the filters in the first level Ueq
k (z) =

Ui(z)Uj(z
Q) (i = 0, 1), the four directional frequency de-

composition is given. The synthesis filter bank is obtained
similarly.

Just like the critically sampled DFB, all filter banks in
the NSDFB tree structure are obtained from a single NSFB
with fan filters. Moreover, each filter bank in the NSDFB
tree has the same computational complexity as that of the
building-block NSFB.

In order to simplify computation, the NSCT adopts map-
ping approach factor filters into ladder structures. The
Euclidean algorithm enables us to factor the filters into the
following ladder structures[11−12]:

(
H

(1D)
0 (x)

H
(1D)
1 (x)

)
=

N∏
i=0

(
1 0

P
(1D)
i (x) 1

) (
1 Q

(1D)
i (x)

0 1

) (
1

0

)

(5)

where H
(1D)
0 (x) and H

(1D)
1 (x) are adopted 1-D coprime

prototype lowpass and highpass filters. The corresponding
synthetic filters G

(1D)
0 (x) and G

(1D)
1 (x) satisfy the Bezout

identity:

H
(1D)
0 (x)G

(1D)
0 (x) + H

(1D)
1 (x)G

(1D)
1 (x) = 0 (6)

Taking full consideration of the PR and anti-aliasing con-
ditions in designing the filter banks, this paper can choose
the needed prototype filters as

H
(1D)
1 (x) = G

(1D)
0 (−x)

G
(1D)
1 (x) = H

(1D)
0 (−x) (7)

In particular, we adopt the following prototype filter
banks:

H
(1D)
1 (x) =

1

2
(x + 1)[

√
2 + (1−

√
2)x]

G
(1D)
1 (x) =

1

2
(x + 1)[

√
2 + (4− 3

√
2)x + (2

√
2− 3)x2] (8)

2 High resolution and multispectral re-
mote sensing image fusion based on
LHS transform and nonsubsampled
contourlet transform

In this section, an adaptive panchromatic and multi-
spectral remote sensing image fusion technique is presented
based on the NSCT and the LHS transform after analyzing
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the basic principles of PAN image and MS image and fusion
purpose. Here, we adopt an intensity (brightness) compo-
nent addition method, that is, the detail information of the
high-resolution PAN image is added to the corresponding
intensity component of the low-resolution image′s high fre-
quency subbands to preserve some spectral information.

An image can be represented by RGB color system in
computer. However, the RGB color system disagrees with
the comprehensive and cognition habits of the human vi-
sual system. Human always recognize the color with three
features, that is, intensity (I), hue (H), and saturation (S),
called IHS system. I component is decided by the spec-
tral main wave length and denotes the nature distinction.
S component symbolizes the proportion of the main wave
length of the intensity. I component means the brightness
of the spectral. In the IHS space, spectral information is
mostly reflected on the hue and the saturation. From the
visual system, we can conclude that the intensity change
has little effect on the spectral information and is easy to
deal with.

For the fusion of the high-resolution and multispectral
remote sensing images, the goal is ensuring the spectral in-
formation and adding the detail information of high spatial
resolution, therefore, the fusion is even more adequate for
treatment in IHS space.

IHS color space transform means the change of image
from RGB space components to IHS spatial information I
component and spectral information H and S components.
However, the general IHS color system has the disadvantage
that neglects two components when computing the bright-
ness values. The IHS system results in that the brightness
of pure color is the same as the achromatic color. There-
fore, we adopt the LHS color system to solve the problem.
The LHS color system generates the brightness with the
value of 255 to achromatic color pixel and the value of 85
to pure color pixel[13].

The detailed process of the new fusion algorithm is as
follows:

1) Perform polynomial interpolation to keep the edges of
the linear landmark and make the PAN and SPOT images
with the same sizes.

2) Transform the RGB representation of the multispec-
tral image by LHS transformation into the intensity, hue,
and saturation (L, H, S) components.

L =
r + g + b

3
(9)

S = 1− 3× min(r, g, b)

r + g + b
(10)

H =
arccos(0.5× ((r − g) + (r − b)))√

(r − g)2 + (r − b)(g − b)
(11)

The corresponding matrix expression is as follows
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 (12)

H = tan−1(
v1

v2
) (13)

S =
√

v2
1 + v2

2 (14)

3) Apply histogram matching between the original
panchromatic image and multispectral intensity component
to get new panchromatic high-resolution (PAN HR) image
and multispectral intensity (MSI) component image.

4) Decompose the matched MSI image and PAN HR im-
age to get the NSCT decomposition coefficients.

5) Fuse the detail and approximate coefficients of the
MSI and PAN HR according to (15) and (16), respectively.

Fuselow = MSIlow (15)

Fusehigh =
∑

MSIdetails +
∑

PANHRdetails (16)

6) Apply the inverse NSCT transform to the fused detail
and approximate coefficients to reconstruct the new inten-
sity component Inew.

7) Perform the inverse LHS transform to the new inten-
sity component, new I, together with the hue and satura-
tion components, to obtain the fused RGB image.
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3 Experiments and results

The test source images are the SPOT PAN image and
LANDSAT TM 5, 4, 3 bands image of the same area. The
TM image was acquired on February 17, 1993, and the
SPOT PAN image was obtained on May 28, 1995. The two
source images were after geometric adjustment and with
the size of 256× 256.

The fusion methods are traditional PCA and IHS,
wavelet transform-based weighted fusion (WT-W), wavelet
transform and LHS transform-based (WT-LHS), contourlet
transform and LHS transform-based (CT-LHS), and non-
subsampled contourlet transform and LHS transform-based
(NSCT-LHS). Without loss of generality, the decomposi-
tion levels of the adopted transforms are all three. The WT
adopts the 9-7 biorthogonal wavelet. The corresponding
LP filter banks of CT and NSCT are all adopted 9-7 filter
banks obtained from 9-7 1-D prototypes. And the DFB are
adopted “pkva” ladder filters proposed by Phong et al.[14],
which are with the decomposition 0, 3, 4 corresponding
to the three levels of LP decomposition, respectively. The
fusion results are shown in Fig. 3 (see next page).

From the human visual system, we can see that our fu-
sion technique based on the NSCT-LHS can improve spa-
tial resolution and at the same time hold spectral informa-
tion well. Our intensity added fusion technique based on
LHS transform is superior to classical PCA fusion method
and IHS transform fusion method, and the WT-W fusion
method. The fused image has more information of the
source images, which is demonstrated in spatial resolu-
tion, definition, micro-detail difference, and contrast. The
adaptive intensity component addition method preserves
the whole spatial information, which has the advantage of
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(a) SPOT image (b) TM image (c) PCA fusion image (d) IHS fusion image

(e) Wavelet weighted fusion im-
age

(f) Wavelet+LHS fusion image (g) Contourlet+LHS (h) Nonsubsampled contourlet+
LHS

Fig. 3 Remote sensing image fusion based on NSCT and LHS transforms

the utilization of the detail information of the two source
images. The fusion method only uses high-resolution infor-
mation to adjust intensity component and better holds the
multispectral information and texture information and in-
troduces the high-resolution characteristic in multispectral
image. Moreover, the fusion algorithm based on NSCT-
LHS has more outstanding detail information than those
based on WT-LHS and CT-LHS.

Subjective visual perception gives direct comparisons.
However, it is easily influenced by visual psychological fac-
tors. The effect of image fusion should be based on subjec-
tive vision and objective quantitative evaluation criteria.
For the remote sensing images, the desired standard im-
age cannot be acquired. Then, the indexes such as root
mean square error and peak value of signal to noise are
unusable. In this paper, we adopt the following statistic
indexes to performance, such as mean value, standard de-
viation, entropy, average gradient, correlation coefficient,
spectrum distortion, weighted fusion quality index, and
edge-dependent fusion quality index.

1) Mean value (MV ): The MV is the gray mean value of
the pixels in an image and the average brightness reflecting
to human eye. Suppose the size of the image is M by N ,
and that I(i, j) is the pixel in the image. Then the MV is
defined as

MV =
1

MN

N−1∑
i=0

M−1∑
j=0

I(i, j) (18)

2) Standard deviation (STD): The variance of image
reflects the dispersion degree between the gray values and
the gray mean value. The STD is the square root of the
variance. The larger the STD is, the more disperse the
gray level. The definition of the STD is

STD =

√√√√√
N−1∑
i=0

M−1∑
j=0

I(i, j)

NM
(19)

3) Information entropy (IE): The IE of the image is
an important index to measure the abound degree of the
image information. Based on the principle of Shannon in-
formation theory, the IE of the image is definition as

E = −
255∑
i=0

Pi log2 Pi (20)

where Pi is the ratio of the number of the pixels with gray
value equal to i over the total number of the pixels. IE
reflects the capacity of the information carried by images.
The larger the IE is, the more information the image car-
ries.

4) Average gradient (AG): AG is the index to reflect the
expression ability of the little detail contrast and texture
variation, and the definition of the image. The calculation
formula is

g =
1

(M − 1)(N − 1)

(M−1)(N−1)∑
i=1

√
( ∂f

∂x
)2 + ( ∂f

∂y
)2

2
(21)

Generically, the larger g, the more the hierarchy, and the
more definite the fused image.

5) Correlation coefficient (CC): The CC denotes the de-
gree of correlation of two images. The more the CC close
to 1, the higher the correlation degree is. The definition is
denoted as
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corr(
A

B
) =

N∑
j=1

M∑
i=1

(xi, j − µ(A))(x
′
i, j − µ(B))

√
N∑

j=1

M∑
i=1

(xi, j − µ(A))2(x
′
i, j − µ(B))2

(22)

where A and B are two images, xi, j and x
′
i, j denote the

pixels of A and B, respectively, µ(A) and µ(B) are the
corresponding mean values of the two images.

6) Spectrum distortion (SD): SD means the distortion
degree of a multispectral image and is defined as follows:

W =
1

M ×N

N∑
j=1

M∑
i=1

|If (i, j)− I(i, j)| (23)

where I(i, j) and If (i, j) are the pixels of the source and
fused images, respectively. The larger value of W , the
higher the distortion.

7) Bias index: This is an index of the deviation degree
between fused image and low-resolution multispectral im-
age:

Bias =
1

M ×N

N∑
j=1

M∑
i=1

|If (i, j)− I(i, j)|
I(i, j)

(24)

8) Weighted fusion quality index (WFQI) and edge-
dependent fusion quality index (EFQI)[15]: WFQI and
EFQI are evaluation indexes without standard referrence
image and consider some aspect of the human visual sys-
tem. Suppose y

′
A, y

′
B , and y

′
F are edge images of the source

images yA, yA, and fused image yF , respectively. WFQI is
introduced to weight feature information of the fused im-
ages that come from source images. EFQI focuses on hu-
man visual system sensitivity to the edge information. The
two measures have a dynamic range of [−1, 1]. The closer
the value to 1, the higher the quality of the composite image
is.

QWFQI(yA, yB , yF ) =
∑
ω∈Q

c(ω)(ρA(ω)Q0(yA, yF , |ω))+

(1− ρA(ω))Q0(yB , yF , |ω) (25)

QEFQI(yA, yB , yF ) = QWFQI(yA, yB , yF )1−α×
QWFQI(y

′
A, y

′
B , y

′
F )α (26)

where c(ω) = C(ω)/[
∑

ω∈Q C(ω
′
)], and C(ω) =

max(η((yA|ω), η(yB |ω))) denotes the overall saliency of a
window, ρA(ω) = η((yA|ω))/(η((yA|ω) + η(yB |ω)), (yA|ω))
is some salient feature of image yA in the window ω. In this
paper, we select the energy as the salient feature and the
size of the window is 3×3. Q is the summation of the total
windows and Q0 is the general image quality index. The
parameter α in (26) expresses the contribution of the edges
images compared to the original images, and its variation
range is [0, 1]. In this paper, we select α = 0.2. [9] adopted
LOG operator to obtain the edge image. However, the LOG
operator cannot provide the edge directional information
and is sensitive to noise. Therefore, we select Canny op-
erator to detects the edge information, which detects the
edges by searching the local maximum of image gradient.
Canny operator detects the strong edges and weak edges
with two thresholds, respectively, where the thresholds are
system automatic selection. Just when the weak edges and
strong edges are jointed and the weak edges may be com-
bined in the output. The Canny operator is not sensitive
to noise and can detect the true weak edges.

From Table 1, we can see that the quantitative evalua-
tion indexes are in accord with the visual effect. The fusion
results based on our adaptive fusion technique are supe-
rior to the traditional PCA and IHS fusion methods, which
embody the moderate brightness and the dispersion degree
between the gray values, the larger entropy, the stronger
correlation degree, the smaller spectrum distortion degree
and bias deviation degree. From the whole effects, and by
virtue of our proposed adaptive fusion technique, the non-
subsampled contourlet transform-based fused results are
better than those of the wavelet transform-based, and the
contourlet transform-based, respectively, especially for the
spectral holding. The better values are underlined.

The comparison of the histogram images of the R, G, B
components of the TM multispectral image and the NSCT-
based fusion image are shown in Fig. 4 (see next page), re-
spectively.

From the comparison of the R, G, and B components his-
tograms, we can conclude that the dynamic range of fused
image is larger than that of the source image, that is, the
fused image has more detail information and higher special
resolution than that of the source image.

Table 1 Comparison of fusion results

Fusion metgods MV STD IE AG CC SD Bias QW QE

Source image: TM 112.8229 47.6839 4.9623 9.4946 - - - - -

Source image: SPOT 92.4453 42.5459 5.0436 12.749 - - - - -

PCA fusion 94.0803 46.6214 5.0873 18.7378 0.5211 58.4023 0.5829 0.5373 0.5133

IHS fusion 92.4500 50.8016 5.2449 13.8455 0.6564 38.2370 0.3625 0.5195 0.5033

WT-weight fusion 102.8837 37.5430 4.9977 8.8577 0.8520 32.2293 0.2681 0.5157 0.4271

WT-LHS fusion 112.6562 54.3067 5.3260 16.2095 0.9171 14.7896 0.1390 0.5113 0.4392

CT-LHS fusion 112.6634 53.2326 5.3133 16.7984 0.9198 15.0153 0.1399 0.5194 0.4481

NACT-LHS fusion 112.7205 52.6581 5.3046 16.7634 0.9268 14.2235 0.1329 0.5390 0.4704
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(a) R component of TM source image (b) R component of NSCT-LHS fusion image

(c) G component of TM source image (d) G component of NSCT-LHS fusion image

(e) B component of TM source image (f) B component of NSCT-LHS fusion image

Fig. 4 The R, G, and B components histograms of TM source image and the NSCT-LHS fusion image

4 Conclusions

A novel panchromatic high-resolution image and multi-
spectral image fusion technique is proposed in this paper,
which is based on nonsubsampled contourlet transform and
LHS transform. We take full advantage of the nonsubsam-
pled contourlet transform, including good multiresolution,
shift-invariance, and multidirectional decomposition. And
an intensity component addition technique is introduced
into the NSCT domain to better improve the spatial resolu-
tion and hold the spectral information and texture informa-
tion, simultaneously. Experiments show that the proposed

fusion technique is more effective than other traditional fu-
sion methods and has some improvements, especially for
holding of spectral information, texture information, and
contour information.
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