
Vol. 34, No. 2 ACTA AUTOMATICA SINICA February, 2008

SVM Approximate-based Internal Model

Control Strategy
WANG Yao-Nan1 YUAN Xiao-Fang1

Abstract A support vector machine (SVM) approximate-based internal model control (IMC) strategy is presented for the steam
valving control of synchronous generators. The proposed SVM IMC strategy includes two main parts: SVM approximate inverse
controller and uncertainty compensation in the internal model structure. The SVM inverse controller is derived directly using an
input-output approximation approach via Taylor expansion, and it is implemented through nonlinear system identification without
further online training. Furthermore, a robustness filter is used for uncertainty compensation in the internal model structure.
Simulations show the effectiveness of the SVM IMC strategy for the steam valving control.
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Nonlinear internal model control (NIMC) strategy has
many industrial applications because of its desirable prop-
erties, in particular, good robustness against disturbances,
and model mismatch[1]. In the implementation of NIMC,
the determination of a plant model represents an impor-
tant stage of the development. For most practical applica-
tions, such as chemical and power plants, it is a difficult
task. Furthermore, the inversion of the nonlinear model is
shown to play a crucial role. Some researchers have studied
analytical and numerical iterative algorithms for the con-
struction of nonlinear operator inverses. In this case, the
necessary and sufficient convergence conditions cannot be
ensured. This problem is a great handicap in the process
control applications[2−3]. Because neural networks (NNs)
are capable of approximating any nonlinear dynamics with
an arbitrary degree of accuracy, the neural networks based
nonlinear internal model control (NN IMC) has attracted
much attention[3−5]. NN IMC is an extension of NIMC
with NN model as the internal model and NN inverse con-
troller replacing the inverse controller. However, for NN
IMC, even though the NN model is available, it is still not
easy to design an NN inverse controller. Unfortunately,
most neural networks use gradient-based training method
like back-propagation, often suffering from the existence of
local minima, and it is also not easy to choose a suitable
neural networks structure like the number of hidden neu-
rons.

As a novel breakthrough to NNs, support vector ma-
chines (SVM)[6−8], a novel machine learning algorithm, has
proved to be a powerful alternative in many areas. So far,
several theoretical and experimental studies on model iden-
tification and control using SVM have been reported in the
literature[9−10]. The objective of this paper is to develop
an SVM approximate-based internal model control (SVM
IMC) strategy for the steam valving control of synchronous
generator. In the SVM IMC strategy, SVM approximate
inverse controller is derived directly based on a novel input-
output approximation via Taylor expansion, and it is im-
plemented straightforward through nonlinear system iden-
tification, and furthermore, a robustness filter is used for
uncertainty compensation in internal model structure. Be-
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cause of the innovative approximation, the general SVM
training algorithms, such as those available in SVM tool-
box, can be used directly.

1 Plant dynamical model

Due to the fact that steam valving control of synchronous
generator cannot only improve the transient stability and
dynamic capability but also damp oscillations in power sys-
tems, it has become an important area in power system
control. A multi-machine system may be described by the
following state equation[11]

δ̇i = ωi − ω0

ω̇i = −Di(ωi − ω0)

Hi
+

ω0

Hi
(PHi + CMiPm0i − E

′
qiVs sin δi

X
′
dΣi

)

(1)

where it is assumed that excitation control is static; that

is, the internal voltage E
′
qi(i = 1, 2, · · · , n) is supposed to

be constant, subscript i meaning the ith power-generator
unit. δi is the power angle of the ith generator, in radian; ωi

the relative speed of the ith generator; PHi the mechanical
power of high-pressure steam; CMi the distribution factor
in middle-pressure steam; Pm0i the mechanical input power
in p.u.; Hi the inerta constant in second. If we only consider
the high-pressure steam valve control and neglect fast valve
control, the steam valve control scheme is then described
as

ṖHi = − 1

THΣi
PHi +

CHi

THΣi
Pm0i +

CHi

THΣi
ui (2)

where THΣi = THgi + THi is the equivalent time constant
of high-pressure steam; CHi is the distribution factor in
high-pressure steam; ui is the control signal of steam valve.
Therefore, steam valving control is just to regulate ui for
the stabilization of the power angle δi in each generator.

Suppose the power angle δi is as the output yi, and the
control signal of steam valving ui as the input. It can then
be derived from (1) that

y
(3)
i = −Di

Hi
ÿi +

ω0

Hi
ṖHi − ω0

Hi

E
′
qiVs
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′
dΣi

cos yi · ẏi (3)
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Substituting ṖHi of (2) into (3) yields

y
(3)
i = −ω0

Hi
[
Di

ω0
ÿi+

E
′
qiVs

X
′
dΣi

cos yi·ẏi− CHi

THΣi
(Pm0i−PHi

CHi
+ui)]

(4)
Substituting PHi of (1) into (4) yields a nonlinear rela-

tion

y
(3)
i = g(ÿi, ẏi, yi, ui) (5)

Using the n-order approximation method[12], one has
T ẏ = y(k + 1) − y(k), T 2ÿ = y(k + 1) − 2y(k) + y(k − 1),
T 3y(3) = y(k + 1) − 3y(k) + 3y(k − 1) − y(k − 2), with T
being the sampling period. In this manner, (5) can then be
described in the discrete system as

y(k + 1) = f(y(k), y(k − 1), y(k − 2), u(k)) (6)

where u(k) ∈ R and y(k+1) ∈ R are the control input and
system output at time step k and k+1, respectively. f(·) in
(6) is regarded as an unknown nonlinear mapping, whereas
both the relative degree d and plant order n are known.
(6) is the so-called nonlinear autoregressive moving average
(NARMA) model. For a general discrete-time nonlinear
system, the NARMA model is an exact representation of its
input-output behavior over the range in which the system
operates[13].

2 SVM IMC strategy

The proposed SVM IMC strategy is based on input-
output approximation, which not only avoids complex in-
verse controller development and intensive computation
but also avoids online learning or adjustment. The basic
structure of the SVM IMC strategy is described in Fig. 1,
which is an extension of NN IMC as shown in Fig. 2. The
SVM approximate inverse controller and uncertainty com-
pensation in Fig. 1 are two major parts of this control strat-
egy. Comparing Fig. 1 with the basic structure of NN IMC
in Fig. 2, we find that the SVM approximate inverse con-
troller replaced the NN inverse controller and the approxi-
mate SVM model was used in uncertainty compensation.

Fig. 1 The structure of SVM IMC

Fig. 2 The structure of NN IMC

2.1 SVM approximate inverse controller

It is known that under certain conditions, an exact input-
output representation of the plant is given by the nonlin-
ear autoregressive moving average (NARMA) model in a
neighborhood of the equilibrium state. Even assuming that
such a model is available, determining the control input re-
sulting in a desired output is no longer a simple task be-
cause the output depends nonlinearly on the input. As a
consequence, various approximate methods have been pro-
posed in the literature for the determination of the control
input[5, 13−15]. In this paper, an approximate method via
Taylor expansion is used to design this inverse controller.

2.1.1 Approximate inverse control law

For the NARMA model (6), a Taylor expansion of the
system gives

y(k + 1) = f [Y (k), u(k)] = f [Y (k − 1), u(k − 1)]+

∑ 1

r!

∂rf [Y (k), u(k)]

∂u(k − 1)r
[∆u(k))]r+

∑ 1

r!

∂rf [Y (k), u(k)]

∂Y (k − 1)r
[∆Y (k)]r (7)

where Y (k) = [y(k), y(k − 1), y(k − 2)], ∆ is the increment
operator, and f [Y (k), u(k)] is the output of the system at
time k, just equivalent to (7). Here, f [Y (k−1), u(k−1)] is
the equivalent denotation of y(k), that is, f [Y (k−1), u(k−
1)] = y(k).

Assumption 1[14]. The output of system y(k + 1) is
highly sensitive to the input u(k) in the operating region,
that is,

|∂f [Y (k), u(k)]

∂u(k − 1)
| À |

∑
1
r!

∂rf [Y (k),u(k)]
∂Y (k−1)r [∆Y (k)]r

∆u(k)
| (8)

From this assumption, we can drop the third term on the
right-hand side of (7) to represent the plant by the following
equation:

y(k + 1) = y(k) + f1[Y (k − 1), u(k − 1)] ·∆u(k)+

R[Y (k − 1), u(k − 1), ∆u(k)] (9)

where

f1[Y (k), u(k)] =
∂f [Y (k − 1), u(k − 1)]

∂u(k − 1)
(10)

Theorem 1[15]. The remainder term R[Y (k− 1), u(k−
1), ∆u(k)] in (9) approaches zero at a faster rate than
∆u(k), and there exits a variable ε(k) ∈ (0, +∞] such that

|R[Y (k − 1), u(k − 1), ∆u(k)]

∆u(k − 1)
| ¿ |f1[Y (k), u(k)]| (11)

whenever |∆u(k)| ∈ [0, ε(k)].
Remark 1. According to the Taylor expansion theory,

as |∆u(k)| ∈ [0, ε(k)], R[Y (k − 1), u(k − 1), ∆u(k)] (Also
denoted by Rk in the following text) in (9) is bounded by

|Rk| ≤ r0ε
2(k)

2
(12)

with r0 being a finite positive number.
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From (8)∼(12), the input-output approximate model us-
ing Taylor expansion can be derived by neglecting the re-
mainder Rk and therefore (9) can be rewritten as follows.

y(k + 1) ≈ y(k) + f1[Y (k − 1), u(k − 1)] ·∆u(k) (13)

Obviously, f1[Y (k− 1), u(k− 1)] is a nonlinear function,
and, here, we consider the case where f1[Y (k−1), u(k−1)]
exists but is unknown. Therefore, an SVM network will
be used to estimate f1[Y (k − 1), u(k − 1)] from the input-
output plant signals. Here, the approximation model via
SVM approach is referred to as f̂1[Y (k−1), u(k−1)]. Using
(13), the control law can be determined directly because the
increment ∆u(k) of the control signal appears linearly.

Before the determination of control law, we give the fol-
lowing assumptions:

Assumption 2[16]. 0 < |f1[Y (k − 1), u(k − 1)]| ≤ g0

with g0 as a finite positive number.
Assumption 3[5]. 0 ≤ |∆u(k)| ≤ ε(k) with ε(k) as a

finite positive number.
Assumption 4. |y∗(k)− y∗(k − 1)| ≤ ∆r with ∆r as a

finite positive number.
Assumption 5. f1[Y (k − 1), u(k − 1)] = f̂1[Y (k −

1), u(k − 1)] + ξ(k). ξ(k) is an approximation error and
|ξ(k)| ≤ ξ̄ with ξ̄ being a small positive number; 0 ≤
| ξ(k)

f̂1[Y (k−1),u(k−1)]
| ≤ ξ0 with ξ0 as a finite positive num-

ber smaller than 1.
Remark 2. In Assumption 4, the plant output is re-

quired to slowly track the varying reference signals because
the power angle of synchronous generator cannot change
very fast.

Remark 3. Assumption 5 show that modelling errors
are bounded by finite quantities, and the errors can be
made finitely small using the general SVM approach with
appropriate parameters[7].

Using the input-output approximation model derived in
the former section, the SVM approximate inverse control
law can be determined straightforwardly from (13) as fol-
lows

u(k) = u(k − 1) + ∆u(k) (14)

∆u(k) =
y∗(k + 1)− y(k)

f̂1[Y (k − 1), u(k − 1)]
, for|∆u(k)| ≤ ε(k)

∆u(k) = ε(k) · sign(∆u(k)), for|∆u(k)| > ε(k)

where y∗(k + 1) are the desired trajectory, sign(·) is the
signum function, and ε(k) is not unique because it can be
set at any positive value less than the one known to satisfy
(11). This control law requires precise information about

f̂1[Y (k− 1), u(k− 1)] to compute ∆u(k). In this paper, we

consider the case in which f̂1[Y (k− 1), u(k− 1)] is derived
from SVM network output as in Section 4. The control law
of (14) will be practical only if f̂1[Y (k − 1), u(k − 1)] 6= 0,
and this is conducted under Assumption 2. A key feature
of this approach is that the inverse model controller can
then be simply designed in terms of SVM approximate.

Define control error as

e(k) = y∗(k)− y(k) (15)

From (9), we obtain

e(k + 1) = y∗(k + 1)− y(k + 1) =

y∗(k + 1)− y(k)− f1[Y (k − 1), u(k − 1)]×
∆u(k)−Rk − νk (16)

where νk is modeled as the effect of uncertainties or distur-
bances, |νk| ≤ ν0 with ν0 as a finite positive number.

2.1.2 Stability of approximate control law

The robustness of the stability and the performance for
the control law (14) are given in Theorem 2.

Theorem 2. Under Assumptions 2∼5, using the con-
trol law (14), the solution of error system (16) is uni-
formly ultimately bounded (UUB)[17] for all k with ul-

timate bound limk→∞ |e(k)| ≤ |b1|+2|b2|
2b0

, where b0 =

β(k)α(k)[2−β(k)α(k)], b1 = 2[1−β(k)α(k)][[1−β(k)α(k)]·
∆r− (Rk + νk)], b2 = [[1−β(k)α(k)] ·∆r− (Rk + νk)], and

0 < α(k) ≤ 1, β(k) = f1[Y (k−1),u(k−1)]

f̂1[Y (k−1),u(k−1)]
, ∆r and Rk, νk are

defined in Assumption 4 and (16), respectively.
Proof. Define a variable α(k) where 0 < α(k) ≤ 1 for

all k. The control law (12) is equivalently expressed as

∆u(k) =
y∗(k + 1)− y(k)

f̂1[Y (k − 1), u(k − 1)]
α(k) (17)

where α(k) = 1, if |∆u(k)| ≤ ε(k), and 0 < α(k) < 1, if
|∆u(k)| > ε(k).

Using (17), (16) can be presented as

e(k + 1) = y∗(k + 1)− y(k)−
f1[Y (k − 1), u(k − 1)] ·∆u(k)−Rk − νk =

y∗(k + 1)− y(k)− [f̂1[Y (k − 1), u(k − 1)] + ξ(k)]×
y∗(k + 1)− y(k)

f̂1[Y (k − 1), u(k − 1)]
α(k)−Rk − νk (18)

Let f1[Y (k−1),u(k−1)]

f̂1[Y (k−1),u(k−1)]
= β(k). Then,

e(k+1) = [y∗(k+1)−y(k)](1−β(k) ·α(k))−Rk−νk (19)

Define the Lyapunov candidate V (k) = e2(k). Then,

V (k + 1)− V (k) = e2(k + 1)− e2(k) =

{[y∗(k + 1)− y(k)][1− β(k)α(k)]−Rk − νk}2 − e2(k) =

{[y∗(k) + ∆r − y(k)][1− β(k)α(k)]−Rk − νk}2 − e2(k) =

{[e(k) + ∆r][1− β(k)α(k)]− (Rk + νk)}2 − e2(k) =

β(k)α(k)[β(k)α(k)− 2] · e2(k)+

2[1− β(k)α(k)][[1− β(k)α(k)] ·∆r − (Rk + νk)] · e(k)+

{[1− β(k)α(k)] ·∆r − (Rk + νk)}2 =

− b0e
2(k) + b1e(k) + b2

2 (20)

According to Assumption 5 and (17), b0 = β(k)α(k)[2 −
β(k)α(k)] > 0.

We have

b2
1 + 4b0b

2
2 = 4{[1− β(k)α(k)] ·∆r −

(Rk + νk)}2 = 4b2
2 ≥ 0 (21)
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Therefore, it follows from (20) that V (k+1)−V (k) < 0,

when e(k) >
b1+
√

b21+4b0b22
2b0

or e(k) <
b1−
√

b21+4b0b22
2b0

.

From (21), we have b2
1 + 4b0b

2
2 = 4b2

2. Hence, V (k + 1)−
V (k) < 0 when

e(k) >
b1 + |2b2|

2b0
or e(k) <

b1 − |2b2|
2b0

(22)

Therefore, we can conclude that the solutions of (18) are
uniformly ultimately bounded for all k with ultimate bound
|e(k)|k→∞ ≤ |b1|+2|b2|

2b0
. ¤

2.2 Uncertainty compensation in internal model
structure

2.2.1 Uncertainty compensation

In practice, uncertainties are inevitable. In this paper,
uncertainty attenuation can be achieved via internal model
with a robustness filter as shown in Fig. 1. Then,

y(k + 1) = y(k) + f1[Y (k − 1), u(k − 1)](∆u(k) + ∆uc(k))+

Rk + νk (23)

where ∆uc(k) is the increment output of the robustness
filter. Because ζ(k) = z−1(Rk + ν(k)) and ∆uc(k) =

− F (z)ζ(k)

f̂1[Y (k−1),u(k−1)]
, (23) implies

y(k + 1) =y(k) + f1[Y (k − 1), u(k − 1)]∆u(k)−
β(k)F (z)ζ(k) + Rk + νk (24)

where F1 = 1− β(k)z−1F (z).
Therefore, by suitably choosing filter F (z) , the remain-

der term Rk and disturbance νk can be attenuated to some
extent[5]. Under the control architecture as shown in Fig. 1,
the equivalent control law can be expressed as

u(k) = u(k−1)+
[y∗(k + 1)− y(k)]α(k)− F (z)ζ(k)

f̂1[Y (k − 1), u(k − 1)]
(25)

This control law consists of the SVM approximate inverse
control and uncertainty compensation and, thus, combines
the advantages of both inverse control and nonlinear IMC.

Remark 4. The control law in (25) implies the differ-
ence between the structure of SVM IMC and that of NN
IMC. The plant output yk is used in the SVM approxi-
mate inverse control law. In the mean time, the output of
the robustness filter is the direct input to the plant. Fur-
thermore, the SVM approximate inverse controller and the
uncertainty compensation can be designed separately ac-
cording to the control law (25).

2.2.2 Robustness of stability and performance

Under the SVM IMC strategy, the following result of
the robust stability and performance is common as stated
in Theorem 3.

Theorem 3. Under Assumptions 2 ∼ 5, using the
control law (25), the solution of error system (16) is uni-
formly ultimately bounded (UUB)[17] for all k with ul-

timate bound limk→∞ |e(k)| ≤ |c1|+2|c2|
2b0

, where b0 =

β(k)α(k)[2−β(k)α(k)], c1 = 2[1−β(k)α(k)][[1−β(k)α(k)]·
∆r−F1(Rk +νk)], c2 = [[1−β(k)α(k)] ·∆r−F1(Rk +νk)],
α(k), β(k), ∆r and Rk, νk are the same as defined in The-
orem 2, and F1 is presented in (24).

Proof. Choosing the Lyapunov function as V (k) =
e2(k), one has

V (k + 1)− V (k) = e2(k + 1)− e2(k) =

{[y∗(k + 1)− y(k)][1− β(k)α(k)]+

β(k)F (z)ζ(k)−Rk − νk}2 − e2(k) =

{[y∗(k) + ∆r − y(k)][1− β(k)α(k)]−
F1(Rk + νk)}2 − e2(k) =

{[e(k) + ∆r][1− β(k)α(k)]− F1(Rk + νk)}2 − e2(k) =

β(k)α(k)[β(k)α(k)− 2] · e2(k)+

2[1− β(k)α(k)][[1− β(k)α(k)] ·∆r − F1(Rk + νk)]×
e(k) + {[1− β(k)α(k)] ·∆r − F1(Rk + νk)}2 =

− b0e
2(k) + c1e(k) + c2

2 (26)

Similar to (20), b0 = β(k)α(k)[2−β(k)α(k)] > 0. Similar
to (21), c2

1 + 4b0c
2
2 = 4c2

2 ≥ 0. Hence from (26), V (k + 1)−
V (k) < 0, when e(k) > c1+|2c2|

2b0
or e(k) < c1−|2c2|

2b0
.

Therefore, one concludes that the solutions of (18) are
uniformly ultimately bounded for all k with ultimate bound
|e(k)|k→∞ ≤ |c1|+2|c2|

2b0
. ¤

Remark 5. Comparing Theorem 3 with Theorem 2, we
will find that the error systems for both control law (25) and
control law (14) are uniformly ultimately bounded (UUB)

with ultimate bounds |c1|+2|c2|
2b0

and |b1|+2|b2|
2b0

, respectively.
Comparing c1, c2 with b1, b2, we can conclude that a suit-
able robustness filter F (z) can compensate uncertainty or
disturbance and at the same time improve the tracking ac-
curacy. As the modeling error is larger at high frequencies,
intuitively the addition of a low-pass filter adds robustness
characteristics to the control architecture. The robustness
filter is typically a first-order one with unit gain and fre-
quency response is tuned to eliminate high-frequency noise
introduced by measurement devices[3].

3 Implementation of SVM IMC

The theorems and algorithms presented in the previous
sections require an approximate model f̂1[Y (k−1), u(k−1)]
of f1[Y (k−1), u(k−1)] for the plant. Clearly, those results

are of limited values if the model f̂1[Y (k − 1), u(k − 1)] of

the plant is unknown. How to use SVM to obtain f̂1[Y (k−
1), u(k − 1)] required by the control law (14) and (25).

3.1 SVM based function approximation

Over with ANN and standard SVM[6], least squares
SVM(LS-SVM)[7−8]has the following advantages: no num-
ber of hidden units has to be determined, no centers have
to be specified for the Gaussian kernel, and less parame-
ters have to be prescribed, so LS-SVM is used here for the
model identification.

Let {xt, yt}N
t=1 be the set of input/output training data

with input xt and output yt. Consider the regression model
yt = f(xt) + et, where xt are deterministic points, f is a
smooth function and et are uncorrelated errors. To esti-
mate the nonlinear f , the following model is assumed.

f(xxx) = ωωωTϕϕϕ(xxx) + b (27)

where ϕϕϕ(xxx) denotes an infinite dimensional feature map.
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The regularized cost function of the LS-SVM is given as

min J(ωωω, e) =
1

2
ωωωTωωω + γγγ

1

2

∑
e2

t (28)

s.t. yt = ωωωTϕϕϕ(xt) + b + et, t = 1, · · · , N (29)

To solve this constrained optimization, a Lagrangian is con-
structed

L(ωωω, b, e; α) = J(ωωω, e)−
∑

αt(ωωω
Tϕϕϕ(xt)+ b+ et− yt) (30)

with αt being the Lagrange multipliers. The conditions for
optimality are given by

∂L

∂ω
= 0,

∂L

∂b
= 0,

∂L

∂et
= 0,

∂L

∂αt
= 0 (31)

Substituting (27) ∼ (30) into (31) yields the following
set of linear equations:

[
0 IT

N

IN Ω + γ−1IN

]
·
[
b

ααα

]
=

[
0

yyy

]
(32)

with yyy = [y1, · · · , yN ]T, IN = [y1, · · · , 1]T, ααα =
[α1, · · · , αN ]T, Ωij = K(xi, xj).

The resulting LS-SVM model can be evaluated at a new
point x∗

f̂(x∗) =
∑

αtK(x∗, xt) + b (33)

where M is the number of support vectors (SVs), K(·, ·) is
kernel function, and αt, b are the solutions to (32).

As one of the most popular kernel functions in machine
learning, Gaussian kernel function is selected for controller
design in this paper. It takes the following form:

K(xi, xj) = exp(
−‖xi − xj‖2

2σ2
) (34)

where σ denotes the kernel (bandwidth) parameter.
As the training of LS-SVM is equivalent to a linear pro-

gramming problem, LS-SVM method can realize global op-
timization effectively. Moreover, the learning results decide
the number of SVs and thus the nodes of hidden layer of
SVM network are selected. It is well known that SVM gen-
eralization performance depends on a good setting of hyper-
parameters and the kernel parameters. Bayesian evidence
framework is an effective way for parameters optimization
of LS-SVM regression, and this approach is described in
detail in [7]. According to the Bayesian evidence theory,
the inference is divided into three distinct levels. Training
of the LS-SVM regression can be statistically interpreted
in level 1 inference. The optimal regularization parameter
can be inferred in level 2. The optimal kernel parameter
selection can be performed in level 3.

3.2 Implement of SVM IMC

Because SVM is a universal approximator, it is regarded
as a convenient way to model a nonlinear input-output
mapping. As is well known, system identification can be
carried out using either parallel models or series-parallel
models[13]. In general, most identification schemes use the
series-parallel model, and it is also used in this paper. The
series-parallel model utilizes the plant output to obtain the
estimate at time, and the series-parallel model is used to

predict future values of the output using current values
of inputs and outputs. SVM is used to approximate the
input-output representation (6) as shown in Fig. 3 and is
often called SVM NARMA model. Using the general SVM
learning algorithm, we can reach the approximate model of
(6) as

ŷ(k + 1) = f̂ [Y (k), u(k)] =
∑

αtK[(Y (k), u(k)), (Y (t), u(t))] + b (35)

and therefore we can get the approximate nonlinear func-
tion in the control law, that is,

f̂ [Y (k − 1), u(k − 1)] =
∂f̂ [Y (k − 1), u(k − 1)]

∂u(k − 1)
=

− u(k − 1)

σ2

∑
αtK[(Y (k − 1), u(k − 1)), (Y (t), u(t))]

(36)

where variables are the same as in (33) and (34).

Fig. 3 SVM input/output representation for controller design

4 Simulations

It is assumed that the designer has sufficient prior in-
formation about excitation control and the creation of a
suitable set of training data. The following procedure is de-
signed to generate a set of data that adequately represents
the dynamics of the plant for the anticipated range of input
and output signals. Control signals u(k) that vary in mag-
nitude between 0 and 1 are applied to the plant. This range
of control signal magnitudes is partitioned into 20 equal and
non-overlapping subranges. A control signal u(k) is semi-
randomly generated, and at each instant k is subjected to
the condition that |∆u(k)| = |u(k) − u(k − 1)| = 0.05.
This control signal is applied to the plant and the input-
output data pairs obtained [Y (k), u(k)] are recorded. The
unknown values of f1[Y (k − 1), u(k − 1)] are estimated by
(36).

Because the steady operating state of the power angle
δ is δ ∈ (0, 90), the system is reset whenever appropriate
with the following algorithm.

If max[y(k), y(k − 1), y(k − 2)] ≥ 90 or min[y(k), y(k −
1), y(k−2)] ≤ 0, set u(k) = 1; else set u(k) = u(k−1)−0.05.

The system is reset in this manner to keep the state
of the plant in its anticipated operating region. Special
care is taken to ensure that approximately 30 input-output
data pairs are obtained when the magnitude of the con-
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trol signal is within each of 20 sub-ranges. Using the gen-
eral SVM learning algorithms in Section 4, we can reach
the approximation model f̂1[Y (k − 1), u(k − 1)] and it is
used in the control law (14) and the control law(25). In
our experiment, the training dataset for SVM consisted of
20 × 30 = 600 samples, Gaussian kernel is selected and
the regularization parameter and kernel parameter are de-
termined within Bayesian framework. LS-SVM parameters
are σ = 1.15 and γ = 200. The robustness filter F (z) is
selected as F (z) = 1−r1

1−r1z−1 with r1 = 0.75.

To validate and verify the performance of the SVM IMC
strategy, computer simulations have been carried out on
a typical power system with three synchronous generators
as in [11], and the structure of this system is shown in
Fig. 4, parameters and initial values of Generator 1 and
Generator 2 are given as ω0 = 314.159, D1 = 5, D2 = 3,
H1 = 8, H2 = 10.2, CM1 = 0.7, CM2 = 0.72, CH1 = 0.3,
CH2 = 0.28, Pm01 = 0.82, Pm02 = 0.8, THΣ1 = 0.398,
THΣ2 = 0.4. Particular parameters of the transmission
lines and other components are the same as in [11], and

Generator 3 is taken as reference E
′
q3 = 1∠0◦.

Fig. 4 Typical power system with three generators

Example 1. Control performance of set-point track-
ing. Here, the SVM IMC strategy is compared with con-
ventional PID controller (denoted by PID). The reference
trajectory represents a reduction of δd in Generator 1 from
0.3 to 0.2 initially, maintaining the level at 0.2 closely, and
an increase of δd to 0.25 at t = 10 s. Fig. 5 (a) shows the
performance of the SVM IMC strategy (solid line) and PID
controller (dashed line), Fig. 5 (b) shows the control errors
of the SVM IMC strategy and PID controller. As is evident
in Fig. 5, the SVM IMC strategy can regulate the desired
set-point quickly and smoothly.

To investigate the robustness of the controller, the sys-
tem parameters of Generator 1 are supposed to be changed;
that is, variable values of THΣ are changed from 0.398
to 0.45. The control performances of SVM IMC strategy
and PID controller in this condition are shown in Fig. 6.
Fig. 6 (a) shows the performance of the SVM IMC strat-
egy (Solid line) and PID controller (Dashed line). Fig. 6 (b)
shows the control errors of the SVM IMC strategy and PID
controller. The performance of the PID controller clearly
degrades as the system parameter changes. However, the
SVM IMC strategy still gives a good robustness. Fig. 6
shows that SVM IMC strategy has better robustness than
PID controller when system parameter varies.

Example 2. Control performance at three phase short
fault condition. To further show the competitiveness of
the SVM IMC strategy, its performance is compared with
that of other controllers. Here, comparisons are carried out
between three different controllers: conventional PID con-
troller (CON1), decentralized H∞ controller[11] (CON2),
and the SVM IMC strategy. In Figs. 7 and 8, CON1
(dashed line), CON2 (solid line), SVM IMC strategy (bold
wide solid line denoted) show the dynamic performances of
these three controllers.

Suppose a three phase symmetrical short fault is forced
on Bus 4, Figs. 7 and 8 show two kinds of different cases,
that is, relative short time fault (Fault starts at 0.1 s and
terminates at 0.2 s) and long time fault (Fault starts at
0.1 s and terminates at 0.45 s). It can be observed from
Fig. 7 that power system comes back to former operating
state faster and better controlled by SVM IMC than con-
trolled by conventional PID controller and decentralized
H∞ controller when fault lasts a relative short time. It
can be observed from Fig. 8 that if fault lasts for a long
time, conventional PID controller will lead to instability,
and decentralized H∞ controller takes a very long time to
stabilize system with numerous oscillations, whereas SVM
IMC strategy takes a much short time to stabilize system
with few oscillations. Both simulations show that the SVM
IMC strategy has good dynamic performance and damping
ability.

(a) Control performances

(b) Control errors

Fig. 5 Control performances of set-point tracking
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(a) Control performances

(b) Control errors

Fig. 6 Control performances for set-point tracking with

system parameter varying

(a) Oscillations of δ1 for different controllers

(b) Oscillations of δ2 for different controllers

Fig. 7 Dynamic responses under relative short time

three-phase symmetrical short fault condition

(a) Oscillations of δ1 for different controllers

(b) Oscillations of δ2 for different controllers

Fig. 8 Dynamic responses under long time three-phase

symmetrical short fault condition

5 Conclusion

This paper has presented a novel SVM IMC strategy as
an alternative to IMC methods. In the SVM IMC strat-
egy, only a general identification technique is involved and
the amount of computation is quite small because only one
SVM network requires to be trained for both model approx-
imation and control formulation without further training.
The training of SVM is equivalent to solving a linearly con-
strained quadratic programming problem, which can lead
to a global optimal solution, whereas NN IMC may not
converge to global solutions because of the inherent algo-
rithm design of NNs. Simulations show the effectiveness
of the SVM IMC strategy for the steam valving control of
synchronous generator.

References

1 Morari M, Zafiriou E. Robust Process Control. New Jersey:
Prentice Hall, 1989

2 Economou C G, Morari M, Palsson B O. Internal model
control: extension to nonlinear system. Industrial and Engi-
neering Chemistry, Process Design and Development, 1986,
25(2): 403−411

3 Nahas E P, Henson M A, Seborg D E. Nonlinear internal
model control strategy for neural network models. Comput-
ers and Chemical Engineering, 1992, 16(12): 1039−1057

4 Rivals I, Personnaz L. Nonlinear internal model control using
neural networks: application to processes with delay and
design issues. IEEE Transactions on Neural Network, 2000,
11(1): 80−90



No. 2 WANG Yao-Nan and YUAN Xiao-Fang: SVM Approximate-based Internal Model Control Strategy 179

5 Han X L, Hua D. An approximate internal model-based neu-
ral control for unknown nonlinear discrete processes. IEEE
Transactions on Neural Networks, 2006, 17(3): 659−670

6 Vapnik V N. The Nature of Statistical Learning Theory.
Berlin: Springer-Verlag, 1995

7 Gestel V T, Suykens J A K, Baestaens D E, Lambrechts A,
Lanckriet G, Vandaele B. Financial time series prediction
using least squares support vector machines within the ev-
idence framework. IEEE Transactions on Neural Networks,
2001, 12(4): 809−821

8 Suykens J A K, Lukas L, Vandewalle J. Sparse approxima-
tion using least squares support vector machines. In: Pro-
ceedings of IEEE International Symposium on Circuits and
Systems. Geneva, Switzerland: IEEE, 2000. 757−760

9 Chan W C, Chan C W, Cheung K C, Harris C J. On the
modelling of nonlinear dynamic system using support vec-
tor neural networks. Engineering Applications of Artificial
Intelligence, 2001, 14(2): 105−113

10 Suykens J A K, Vandewalle J, Moor B D. Optimal control
by least squares support vector machines. Neural Networks,
2001, 14(1): 23−35

11 Xi Zai-Rong, Cheng Dai-Zhan. Decentralized steam valving
controller for nonlinear multi-machine power systems. Au-
tomation of Electric Power Systems, 2002, 26(21): 7−11 (in
Chinese)

12 Ge S S, Zhang J, Lee T H. Adaptive MNN control for a class
of non-affine NARMAX systems with disturbances. Systems
and Control Letters, 2004, 53(1): 1−12

13 Narendra K S, Mukhopadhyay S. Adaptive control using
neural networks and approximate models. IEEE Transac-
tions on Neural Networks, 1997, 8(3): 475−485

14 Adetona O, Sathananthan S, Keel L H. Robust adaptive
control of nonaffine nonlinear plants with small input sig-
nal changes. IEEE Transactions on Neural Networks, 2004,
15(2): 408−416

15 Adetona O, Garcia E, Keel L H. A new method for the con-
trol of discrete nonlinear dynamic systems using neural net-
works. IEEE Transactions on Neural Networks, 2000, 11(1):
102−112

16 Levin A U, Narendra K S. Control of nonlinear dynamical
systems using neural networks-part II: observability, identifi-
cation, and control. IEEE Transactions on Neural Networks,
1996, 7(1): 30−42

17 Spooner J T, Maggiore M, Ordonez R, Passino K M. Sta-
ble Adaptive Control and Estimation for Nonlinear Systems:
Neural and Fuzzy Approximator Techniques. New York: Wi-
ley, 2002. 568

WANG Yao-Nan Received his Ph.D.
degree from Hunan University. He was a
postdoctor at National University of De-
fense Technology and Alexander von Hum-
boldt Stiftung. Currently, he is a profes-
sor in College of Electrical and Informa-
tion Engineering, Hunan University. His
research interest covers intelligent control,
intelligent image processing, and intelligent
robotics. E-mail: yaonan@hnu.cn

YUAN Xiao-Fang Ph.D. candidate at
College of Electrical and Information En-
gineering, Hunan University. He received
his bachelor degree from Hunan University
in 2006. His research interest covers intel-
ligent control and neural networks. Corre-
sponding author of this paper.
E-mail: yuanxiaof@21cn.com


