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Decentralized Adaptive Regulation for Nonlinear

Systems with iISS Inverse Dynamics
YAN Xue-Hua1, 2 XIE Xue-Jun1, 2 LIU Hai-Kuan1

Abstract This paper considers the decentralized adaptive regulation via output-feedback for nonlinear systems with integral input-
to-state stable (iISS) inverse dynamics, nonlinear uncertainties, and unknown control direction. It is shown that all the signals in the
closed-loop system obtained are bounded, and the asymptotic regulation is achieved. A numerical example shows the effectiveness
of the design.
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The class of input-to-state stable (ISS) systems has been
extensively investigated and has been playing an important
role in the recent literature of nonlinear control theory. For
instance, that cascades of ISS systems or ISS is widely used
in stabilization, and the ISS small-gain theorem also be-
comes a popular tool to establish the stability of feedback
interconnection of ISS systems. However, it is sometimes
the case that feedback design does not render ISS behav-
ior or that only a weaker than ISS property is verified in
recursive design.

Such a weaker, but still very meaningful, property was
given the name of integral ISS (iISS) in [1]. Sontag showed
that iISS is, in general, strictly weaker than ISS, and
he provided a very conservative Lyapunov-type sufficient
condition[1]. Several foundational results were provided
in [2], showing that the iISS property is the most nat-
ural one to be expected for well-behaved nonlinear sys-
tems, and admitting elegant Lyapunov-theoretic character-
ization. Stability criteria similar to the ISS small-gain theo-
rem have been developed for interconnection involving iISS
systems[3−7]. Pepe and Jiang further extended the ISS and
the iISS theories to nonlinear time-delay systems[8]. Re-
cently, Jiang et al. presented a unifying framework for the
problem of robust global regulation via output feedback
for nonlinear systems with iISS inverse dynamics[9]. Mo-
tivated by [9], this paper extends the framework to prac-
tically important classes of large-scale systems. Our main
contributions are composed of two parts.

1) We accomplish variable separation from the input of
iISS inverse dynamics. Moreover, a design function ψi is
chosen to satisfy ψi ≥ 1. All these bring about convenience
to deal with the interaction terms effectively.

2) By combining Nussbaum-type gain approach,
backstepping design technique, and a subtle analysis
approach[10], we propose for the first time a decentralized
adaptive control scheme for a class of large-scale systems in
the presence of uncertain nonlinear functions, unmeasured
iISS inverse dynamics and unknown direction control coef-
ficients. It is shown that all the signals in the closed-loop
system obtained are bounded, and asymptotic regulation is
achieved. A numerical example demonstrates the effective-
ness of the design.
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This paper is organized as follows. Section 1 begins with
some mathematical preliminaries. Section 2 presents the
corresponding output feedback control design procedure.
An example is given in Section 3. Finally, the paper is
concluded in Section 4.

1 Mathematical preliminaries

The following notations will be used throughout this pa-
per. R+ denotes the set of all nonnegative real numbers.
Rn denotes the real n-dimensional space. For a given vec-
tor or matrix X, XT denotes its transpose; |X| denotes the
Euclidean norm of vector X; ‖X‖ denotes the induced ma-
trix norm of matrix X. A function γ : R+ 7→ R+ is of class
K if γ(0) = 0 and γ is continuous and (strictly) increasing;
it is of class K∞ if additionally it is unbounded; a function
β(s, t) : R+×R+ 7→ R+ is of class KL if it is of class K for
each fixed t, and decreases to zero as t →∞ for each fixed
s.

Consider a system with the form of

ẋxx = fff(t,xxx,uuu), xxx ∈ Rn, uuu ∈ Rm, t ∈ R+ (1)

where fff : Rn ×Rm 7→ Rn is locally Lipschitz.
Definition 1. System (1) is iISS with respect to uuu if

there exist functions α ∈ K∞, β ∈ KL, and γ ∈ K such
that for each initial condition xxx(0) ∈ Rn and each measur-
able, locally essential bounded function uuu : R+ 7→ Rm, the
solution xxx(t) exists for each t > 0 and satisfies

α(|xxx(t)|) ≤ β(|xxx(0)|, t) +

∫ t

0

γ(|uuu(τ)|)dτ (2)

In view of [1], iISS property can be equivalently charac-
terized using the Lyapunov function.

Proposition 1. System (1) is iISS if and only if there
exists a positive definite and proper function V , called iISS-
Lyapunov function, such that

α(|xxx|) ≤ V (t,xxx) ≤ α(|xxx|) (3)

∂V

∂t
+

∂V

∂xxx
fff(t,xxx,uuu) ≤ −α(|xxx|) + γ(|uuu|) (4)

where α is a positive definite continuous function, α, α ∈
K∞, and γ ∈ K.

Motivated by [9], we give the following technical result,
which will be used later. For simplicity, we use σ1(s) =
O(σ2(s)) to mean that σ1(s) ≤ cσ2(s) for some constant
c > 0 and all s in a small neighborhood of the origin.

Proposition 2. Consider an iISS system (1) with an
iISS-Lyapunov function V (t,xxx) satisfying (3) and (4), and
take any smooth function φ with the following property

φ2(s) = O(α(s)) (5)
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Moreover, when α is bounded, the following additional con-
dition holds

lim
s→∞

φ2(s)

α(s)
< ∞ (6)

Then, there always exist a positive-definite function σ and
class-K∞ functions ϕi (i = 1, · · · , m) such that

∫ t

0

φ2(|xxx(τ)|)dτ ≤ σ(|xxx(0)|) +

m∑
i=1

∫ t

0

ϕi(|uuui(τ)|)dτ (7)

Moreover, if the iISS-gain γ in (4) satisfies γ(s) = O(s2),
so does ϕi.

Proof. For the proof of this proposition, the reader can
refer to Proposition 2 of [9]. ¤

2 Output-feedback control design

Consider a class of large-scale nonlinear systems com-
posed of N interconnected subsystems with relative degree
ρi described by

η̇ηηi = qi(t,ηηηi, yi) +

N∑

k=1,k 6=i

fff ik(t, yk)

ẋij = xi,j+1 + gij(t,ηηηi, yi) +

N∑

k=1,k 6=i

hj
ik(t, yk)

ẋiρi = βiui + giρi(t,ηηηi, yi) +

N∑

k=1,k 6=i

hρi
ik(t, yk)

yi = xi1, 1 ≤ i ≤ N, 1 ≤ j ≤ ρi − 1 (8)

where ηηηi ∈ Rni and xxxi = (xi1, · · · , xiρi) ∈ Rρi are the
states, ui ∈ R1 and yi ∈ R1 are input and output of the
ith subsystem, respectively; fff ik ∈ Rni and hhhik ∈ Rρi de-
note the interactions from the kth subsystem to the ith
subsystem. It is assumed that yi is measurable and the
uncertain functions qi, gij , fik, and hj

ik(1 ≤ j ≤ ρi) are
locally Lipschitz. Here, βi is an unknown nonzero constant
with indefinite sign. In this section, the following hypothe-
ses are made on system (8).

H1. The ηηηi-subsystem of (8) is iISS with respect to
yyy = (y1, · · · , yN )T in the sense that there exists an iISS-
Lyapunov function Vi0 such that

αi0(|ηηηi|) ≤ Vi0(t,ηηηi) ≤ αi0(|ηηηi|)
∂Vi0

∂t
+

∂Vi0

∂ηηηi

(t,ηηηi)

(
qi(t,ηηηi, yi) +

N∑

k=1,k 6=i

fff ik(t, yk)

)
≤

− αi0(|ηηηi|) + γi0(|yyy|) (9)

where αi0 is a positive definite continuous function, αi0,
αi0 ∈ K∞, and γi0 ∈ K.

H2. For each 1 ≤ j ≤ ρi, there exist two unknown
positive constants, pij1 and pij2, and two known positive
semidefinite, smooth functions φij1 and φij2 such that

|gij(t,ηηηi, yi)| ≤ pij1φij1(|yi|) + pij2φij2(|ηηηi|) (10)

H3. fff ik(t, yk) and hhhik(t, yk) satisfy

|fff ik(t, yk)| ≤ rik1|yk|, ‖hhhik(t, yk)‖ ≤ rik2|yk| (11)

where rik1 and rik2 are unknown constants denoting the
strengths of interactions.

Remark 1. The linear-growth condition in hypothesis
H3 is made only for simplifying the presentation and high-
lighting the main contribution in this paper. In the spirit
of [12−14], it can actually be relaxed by a nonlinear-growth
condition.

The control objective is to design a decentralized adap-
tive controller for each subsystem so that all the signals of
the closed-loop system are bounded over [0,∞), and all the
states, inputs and outputs can be regulated to zero.

2.1 Adaptive backstepping controller design

First, the following filters are introduced to rebuild the
unmeasured partial-states (xi2, · · · , xiρi),

˙̂
ξij = ξ̂i,j+1 − Lij ξ̂i1, 1 ≤ j ≤ ρi − 1

˙̂
ξiρi = ui − Liρi ξ̂i1 (12)

where LLLi = (Li1, · · · , Liρi)
T is chosen such that Ai =(

−LLLi ,
Iρi−1

0, · · · , 0

)
is asymptotically stable. For each

1 ≤ j ≤ ρi, by denoting

ξij =
1

βi
xij (13)

eij =
ξij − ξ̂ij

p∗i
(14)

with ppp∗i = max
{

1
|βi| ,

pij1
|βi| ,

pij2
|βi| , p2

i12 | ∀ 1 ≤ j ≤ ρi

}
, it

follows that

ėeei = Aieeei +
1

p∗i
GGGi(t,ηηηi, yi) +

1

p∗i βi

N∑

k=1,k 6=i

hhhik(t, yk) (15)

with GGGi(t, ηi, yi) = col((gi1(t, ηi, yi)/βi + Li1yi/βi), · · · ,
(giρi(t, ηi, yi)/βi + Liρiyi/βi)). Because Ai is asymptoti-
cally stable, there exists a Pi = PT

i > 0 such that

PiAi + AT
i Pi = −2Iρi (16)

Along the solutions of (15), differentiating the quadratic
function Veeei = eeeT

i Pieeei yields

V̇eeei ≤ −|eeei|2 + 4‖Pi‖2
ρi∑

j=1

(φij1(|yi|) + Lij |yi|)2 +

4‖Pi‖2
ρi∑

j=1

φ2
ij2(|ηηηi|) + 2(N − 1)×

‖Pi‖2
N∑

k=1,k 6=i

r2
ik2y

2
kψk (17)

To summarize, the complete system can be expressed as

η̇ηηi = qqqi(t,ηηηi, yi) +

N∑

k=1,k 6=i

fff ik(t, yk)

ėeei = Aieeei +
1

p∗i
GGGi(t,ηηηi, yi) +

1

p∗i βi

N∑

k=1,k 6=i

hhhik(t, yk)

ẏi = βiξ̂i2 + βip
∗
i ei2 + gi1(t,ηηηi, yi) +

N∑

k=1,k 6=i

h1
ik(t, yk)

˙̂
ξij = ξ̂i,j+1 − Lij ξ̂i1, 1 ≤ j ≤ ρi − 1

˙̂
ξiρi = ui − Liρi ξ̂i1 (18)
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The next task is to design a controller for (18).
Step 1. Begin with the yi-subsystem of (18) and consider

ξ̂i2 as the virtual control input. One can choose for the ith
subsystem the following virtual control law

αi1 = ciN0(ki)ψi(yi)yi, k̇i = Γiψi(yi)y
2
i (19)

where N0(·) is a smooth Nussbaum-type function in-
troduced to counteract the lack of a priori knowl-
edge of the high-frequency-gain sign (sgn(βi)), ci,
Γi > 0 are design constants, and design function
ψi ≥ 1. A Nussbaum-type function N0(·) pos-

sesses the properties limk→∞ sup 1
k

∫ k

0
N0(s)ds = ∞,

limk→∞ inf 1
k

∫ k

0
N0(s)ds = −∞. In this paper, we choose

N0 : s 7→ s2 cos(s). Setting zi1 = ξ̂i2 − αi1(ki, yi), one
obtains

żi1 = υi2− ∂αi1

∂yi

(
βiξ̂i2 +βip

∗
i ei2 +gi1 +

N∑

k=1,k 6=i

h1
ik

)
(20)

where υi2 = ξ̂i3 − Li2ξ̂i1 − ∂αi1
∂ki

Γiψi(yi)y
2
i . Denote Vi1 =

1
2
y2

i + 1
2λi

(p̂i − pi)
2, where λi > 0 is a design parameter,

p̂i is the estimate of pi = max
{
|βi|
2

,
β2

i
4

, p∗i +
(βip∗i )2

4εi1
+

N−1
4

}
, 0 < εi1 < ρ−1

i is a small design parameter.

Step 2. Consider the augmented system composed of

the yi-subsystem and (20) in which υi2 (or equivalently ξ̂i3)
is viewed as the virtual control input. The derivative of the
Lyapunov function Vi2 = Vi1 + 1

2
z2

i1 along the solutions of
(18) satisfies

V̇i2 = ciβiN0(ki)ψi(yi)y
2
i + βiyizi1 + βip

∗
i ei2yi + gi1yi +

N∑

k=1,k 6=i

h1
ikyi + zi1

[
υi2 − ∂αi1

∂yi

(
βi(αi1 + zi1) + gi1 +

βip
∗
i ei2 +

N∑

k=1,k 6=i

h1
ik

)]
+

1

λi
(p̂i − pi) ˙̂pi (21)

By H2 and H3, with Young′s inequality, one obtains

βiyizi1 − βi
∂αi1

∂yi
zi1(αi1 + zi1) ≤

β2
i y2

i ψi +
1 +

(
ciN0ψi

∂αi1
∂yi

)2

2ψi
z2

i1+

|βi|
2

(
1 +

(∂αi1

∂yi

)2
)

z2
i1 (22)

− zi1
∂αi1

∂yi
(βip

∗
i ei2 + gi1) ≤

εi1e
2
i2 +

(
p∗i +

(βip
∗
i )

2

4εi1

) (
∂αi1

∂yi

)2

z2
i1 +

1

4p∗i
g2

i1 (23)

N∑

k=1,k 6=i

h1
ikyi − zi1

∂αi1

∂yi

N∑

k=1,k 6=i

h1
ik ≤

N∑

k=1

rk
i1y

2
kψk +

N − 1

4

(
∂αi1

∂yi

)2

z2
i1 (24)

By setting

Φi1(t, ei2, ηi, yi) = εi1e
2
i2 + βip

∗
i ei2yi + gi1(t, ηi, yi)yi +

β2
i y2

i ψi(yi) +
1

4p∗i
g2

i1, (25)

αi2 = −ci1zi1 + Li2ξ̂i1 +
∂αi1

∂ki
Γiψi(yi)y

2
i −

1 +
(
ciN0ψi

∂αi1
∂yi

)2

2ψi
zi1 −

p̂i

(
1 + 2

(
∂αi1

∂yi

)2
)

zi1 (26)

zi2 = ξ̂i3 − αi2, (27)

τi1 = λi

(
1 + 2

(
∂αi1

∂yi

)2
)

z2
i1 (28)

where ci1 > ρi − 2 is a design parameter. (21) becomes

V̇i2 ≤ ciβiN0(ki)ψi(yi)y
2
i + Φi1 + zi1zi2 − ci1z

2
i1 +

1

λi
(p̂i − pi)

(
˙̂pi − τi1

)
+

N∑

k=1

rk
i1y

2
kψk (29)

and zi2 satisfies

żi2 = υi3 − ∂αi2

∂p̂i

˙̂pi − ∂αi2

∂yi

(
βiξ̂i2 + βip

∗
i ei2 + gi1 +

N∑

k=1,k 6=i

h1
ik

)
(30)

where υi3 = ξ̂i4−Li3ξ̂i1− ∂αi2
∂ki

Γiψi(yi)y
2
i−

∑2
s=1

∂αi2
∂ξ̂is

(ξ̂i,s+1

− Lisξ̂i1).
Step lll = 3, · · ·· · ·· · ·, ρρρiii. It is easy to obtain the following con-

clusion by induction that the time derivative of the aug-
mented function Vil = Vi,l−1 + 1

2
z2

i,l−1 satisfies

V̇il ≤ ciβiN0(ki)ψi(yi)y
2
i + Φi,l−1 + zi,l−1zil − (ci1 − l +

2)× z2
i1 −

∑l−1
s=2 cisz

2
is + 1

λi

(
p̂i − pi −

∑l−1
s=1 λizis

∂αis
∂p̂i

)
×

(
˙̂pi − τi,l−1

)
+

∑N
k=1 rk

i,l−1y
2
kψk (31)

for any l = 3, · · ·, ρi, where

Φi,l−1 = Φi,l−2 + β2
i y2

i ψi(yi) + εi1e
2
i2 +

1

4p∗i
g2

i1 (32)

αil = −ci,l−1zi,l−1 + Lilξ̂i1 +
∂αi,l−1

∂ki
Γiψi(yi)y

2
i +

l−1∑
s=1

∂αi,l−1

∂ξ̂is

(
ξ̂i,s+1 − Lisξ̂i1

)
− zi,l−2 +

∂αi,l−1

∂p̂i
τi,l−1 −

(
ciN0

∂αi1
∂yi

)2

ψi

4
zi,l−1 +

l−2∑
s=1

2zis
∂αis

∂p̂i
λi

(
∂αi,l−1

∂yi

)2

zi,l−1 −

2p̂i

(
∂αi,l−1

∂yi

)2

zi,l−1, 1 ≤ s ≤ l (33)
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zis = ξ̂i,s+1 − αis

(
ki, yi, ξ̂i1, · · · , ξ̂is, p̂i

)
(34)

τi,l−1 = τi,l−2 + 2λi

(
∂αi,l−1

∂yi

)2

zi,l−1 (35)

with ci,l−1 > 0.
Therefore, at step ρi, one obtains the smooth dynamic

output feedback law

k̇i = Γiψi(yi)y
2
i , ˙̂pi = τi,ρi−1

ui = αiρi

(
ki, yi, ξ̂i1, · · · , ξ̂iρi , p̂i

)
(36)

such that the time derivative of the function Viρi = 1
2
y2

i +∑ρi−1
s=1

1
2
z2

is + 1
2λi

(p̂i − pi)
2 satisfies

V̇iρi ≤ ciβiN0(ki)ψi(yi)y
2
i + Φi,ρi−1 − (ci1 − ρi + 2)z2

i1 −
ρi−1∑
s=2

cisz
2
is +

N∑

k=1

rk
i,ρi−1y

2
kψk (37)

2.2 Main result

Now, we state the main theorem in this paper.
Theorem 1. Assume that the hypotheses H1 and H2

hold with the following properties

φ2
ij2(s) = O(αi0(s)), 1 ≤ j ≤ ρi (38)

and that in the case, where αi0 is bounded,

lim
s→∞

sup
φ2

ij2(s)

αi0(s)
< ∞, 1 ≤ j ≤ ρi (39)

If γi0(s) = O(s2) in H1, then the solutions of (8) and (36)
are well-defined and bounded over [0,∞) for appropriately
chosen smooth function ψi. Furthermore,

lim
t→∞

(|xxxi(t)|+ |ηηηi(t)|+ |ui(t)|) = 0 (40)

Proof. Consider the function as follows

Vic = Vei + Viρi (41)

With the help of H2, by (25) and (32), one has

|Φi,ρi−1| ≤ ρiεi1e
2
i2 + (ρi − 1)β2

i y2
i ψi(yi) + ρiφ

2
i12(|ηηηi|) +

θi0

(
y2

i + φi11(|yi|)|yi|+ φ2
i11(|yi|)

)
(42)

where θi0 ≥ max
{

(βip∗i )2

4εi1
+

p2
i12
4

, pi11,
p2

i11
2p∗i

(ρi − 1)
}

. By

H1 and Proposition 2,

∫ t

0

φ2
ij2(|ηηηi(s)|)ds ≤

σij0(|ηηηi(0)|) +

N∑

k=1

∫ t

0

ϕijk(|yk(s)|)ds (43)

holds, where σij0 (1 ≤ j ≤ ρi) are positive definite, and
ϕijk (1 ≤ j ≤ ρi, 1 ≤ k ≤ N) are of class K∞ and quadratic
near the origin. Take a smooth function ψi ≥ 1 so that

ψi(yi)y
2
i ≥max

{
y2

i + |yi|φi11(|yi|) + φ2
i11(|yi|), ϕmji(|yi|)

(φij1(|yi|) + Lij |yi|)2, γm0i(|yi|), ∀1 ≤ j ≤ ρi

1 ≤ m ≤ N
}

(44)

Such a function ψi always exists because of the conditions
of Theorem 1. Then, with (17), (37), (42), and (44), it
follows from (41) that

V̇ic ≤ ciβiN0(ki)ψi(yi)y
2
i − (ci1 − ρi + 2)z2

i1 −
ρi−1∑
s=2

cisz
2
is − (1− ρiεi1)|ei|2 +

[
(ρi − 1)β2

i +

θi0 + 4ρi‖Pi‖2
]
y2

i ψi(yi) + ρiφ
2
i12(|ηηηi|) + 4‖Pi‖2 ×

ρi∑
j=1

φ2
ij2(|ηηηi|) +

N∑

k=1

rk
iρi

y2
kψk(yk) (45)

Integrating both sides of (45), and using (19), (43), and
(44), one has

Vic(t) ≤ ciΓ
−1
i

∫ ki(t)

0

βiN0(s)ds +

N∑
m=1

rm
i Γ−1

m km(t) + di1

(46)
where

rm
i =

{
(ρi − 1)β2

i + θi0 + 8ρi‖Pi‖2 + ρi + ri
iρi

, m = i
ρi + 4ρi‖Pi‖2 + rm

iρi
, m 6= i

di1 = Vic(0)−
N∑

m=1

γm
i Γ−1

m km(0)− ciΓ
−1
i

∫ ki(0)

0

βiN0(s)ds +

ρiσi10(|ηηηi(0)|) + 4‖Pi‖2
ρi∑

j=1

σij0(|ηηηi(0)|)

For the proof of the first statement on the boundedness
property and the second statement on the convergence
property (40), the reader can refer to Theorem 1 of [9]
and Section III-B of [10]. ¤

3 A simulation example

According to the design procedure given in Section 2,
this section considers the control design for the following
interconnected system consisting of two relative degree-two
subsystems and illustrates the dynamics behaviors of all the
closed-loop signals.

η̇1 = −c01η1 + q1(y1)η1 + f1(y2)

ẋ11 = x12 + g11(η1, y1) + h1(y2)

ẋ12 = β1u1

y1 = x11

η̇2 = −c02η2 + q2(y2)η2 + f2(y1)

ẋ21 = x22 + g21(η1, y1) + h2(y1)

ẋ22 = β2u2

y2 = x21 (47)

Let uncertain functions and interconnections be as follows.

q1(y1) = 0.1y2
1 , f1(y2) = y2 sin(y2)

g11(η1, y1) =
4η1

1 + η2
1

cos(y1), h1(y2) = y2

q2(y2) = 0.1y2
2 , f2(y1) = y1 sin(y1)

g21(η2, y2) =
η2

1 + η2
2

cos(y2), h2(y1) = 0

For ηi-subsystem, one employs Vi0 = ln(1 + η2
i ) (i = 1, 2),

ρ1(s) = 1, and ρ2(s) = 2. It follows from (43) and (44)
that ψi(yi) = 4 (i = 1, 2). The design parameters are
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chosen as c01 = c02 = β1 = β2 = 1, c1 = c2 = 0.25, L11 =
L12 = L21 = L22 = 1, c11 = c21 = 0.5, λ1 = λ2 =
0.05, Γ1 = 0.05, Γ2 = 0.3, and the initial conditions are

ξ̂11(0) = ξ̂12(0) = ξ̂21(0) = ξ̂22(0) = 1, η1(0) = η2(0) =
0.1, y1(0) = 0.5, x12(0) = 0.2, y2(0) = 0.8, x22(0) =
0.1, k1(0) = k2(0) = 0, p̂1(0) = 1, p̂2(0) = 0.9.

From Fig. 1, one can see that for linear growth intercon-
nections, the designed decentralized adaptive controllers
are robust to the nonlinear unmodeled dynamics and can
achieve good regulation performance.

(a)

(b)

Fig. 1 Responses of adaptive output feedback system

4 Conclusion

In this paper, a decentralized adaptive output regula-
tion problem is addressed for a class of large-scale nonlin-
ear systems with iISS inverse dynamics, nonlinear uncer-
tainties, and unknown control direction. The main contri-
butions are to deal with the interconnections tactfully by
using variable separation technique and choosing proper
design functions, and to propose a constructive decentral-
ized adaptive control scheme by combining Nussbaum-type
gain approach, backstepping design technique and the sub-
tle analysis approach[10]. It is shown that all the signals
in the closed-loop system obtained are bounded and the
asymptotic regulation is achieved.
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