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Abstract This paper presents a framework for multi-object tracking from a single fixed camera.
The potential objects to track are detected with intensity-plus-chromaticity mixture models. The
region-based representations of each object are tracked and predicted using a Kalman filter. A
scene model is created to help predict and interpret the occluded or exiting objects. Unlike the tra-
ditional blind tracking during occlusion, the object states are estimated using partial observations
whenever available. The observability of each object depends on the predictive measurement of the
object, the foreground region measurement, and the scene model. This makes the algorithm more
robust in terms of both qualitative and quantitative criteria.
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1 Introduoction

Tracking non-rigid targets over large ranges ot depth has long been realized as a re-
gion-based correspondence problem, in which each target is mapped from one {rame to the
next according to its position, dimension, colour and other contextual information. When
multiple targets exist and their dimensions are not negligible in comparison with their ve-
locities, occlusion or grouping of these targets is a routine event. This brings about uncer-
tainty for the tracking, because the contextual information is only available for the group
and individual targets cannot be identified.

Existing region-based tracking algorithms use either the measurement for the group or
the prediction for each target to update the target estimate through grouping. Intille, Da-
vis and Bobick updated the centroid of a target using the group measurement and held the
velocity, size and colour estimates’?. Rosales and Sclaroff modelled the two corners of
cach target’s bounding box and updated their positions using the prediction of an Extended
Kalman filter®, Ellis and Xu estimated the target, which is closer to the group in state
distance, using the group measurement and updated the other targets with prediction**.
However, these algorithms all suffer from poor performance for target estimation during
grouping or occlusion. To estimate a target with the group measurement, the estimate of
the target is often seriously discontinuous at the start of grouping and may be so mislead-
ing as to fail to find a match at the end of grouping. Target updating using prediction is
heavily reliant on the motion model and vulnerable to any violation of the underlying as-
sumption during grouping, e. g. the target turning or accelerating, for a first-order motion
model that assumes a linear trajectory and a constant velocity.

We realize that the targets in a group are often partially observable, because some ot
their bounding edges constitute the four bounding edges of the group. i these partial ob-
servations are ted into the estimation process during grouping, the tracker should be more
robust and accurate than those without any observation'*), In this paper, our system as-
sumes that each target has a constant height and width, and models the four bounding ed-
ges of each target using a Kalman filter. Once some edge i1s decided to be observable and its
measurement is input to the tracker, its opposite, uncbservable edge could be roughly de-
duced because the two opposite edges share the “same” (though disturbed by noise) hori-
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zontal or vertical velocity according to the constant height and width assumption. The de-
duction of unobservable variables from observable ones can be either direct or implicit.
The decision of target observability 1s based on the group foreground measurement, target
predictive measurement and a simple scene model.

A related work"® models a pair of hands by two bounding boxes and tracks them using
the CONDENSATION algorithm. It considers an edge to be erroneously observed, when
the observation differs from prediction by a large value, and estimates the “correct” obser-
vation, Our algorithm is different from [ 5] in that it copes with an unlimited number of
targets and the observability for a target i1s decided not only by the underlying target but
also by the others in the same group. In addition, we weight the uncertainty ot the esti-
mated “observation” and account for static occlusions. Another related work™% tracks the
bounding edges of each target using a Kalman filter and weights the measurement covari-
ance with the “visibility” of the bounding edges. It uses optical {low analysis to segment
the observations for individual targets in grouping, which further decides the “visibility” in
tracking. Our algorithm i1s more efficient in that it does not need optical flow analysis.

This paper is organized as follows: in Sections 2 and 3 the foreground detection and
the Kalman f{ilter are described; in Section 4 a scene model for static occlusions is intro-
duced and {ollowed by the concept of partial observation and tracking algorithm in Section
5; experimental results are illustrated in Section 6.

2 Foreground measurement

Our system uses frame differencing for change detection in dynamic images. It com-
pares each incoming frame with an adaptive background image and classities those pixels ot
significant variation into foreground. To maintain a reliable, illumination-invariant change
detector, the probability of observing values, y,; (x> =I=R+ G-+ B and y, (x) =
R/I,G/I], at pixel x is modelled by two mixtures of Gaussians'”**!, The i~th Gaussian
distribution in each mixture model at time % is characterised by its (temporal) mean
i, (x), trace of the covariance matrix, ¢;;(x), and weight. w,.,(x), reflecting the likeli-
hood that the i-th distribution accounts for the data.

At time £, every new pixel value 1s checked against the Gaussian distributions in a
mixture model., For a matched distribution 7, the pixel measurement is incorporated 1n the
estimate of that distribution and the weight 1s increased.:

B (x) =0 —2u, .- (x)+ 8y, (x)

ot (x) = (1 — o 1 (x) + B ye () — . (O |
where 8 controls the background updating rate and 8€ (0.1). For unmatched distribu-
tions, their estimates remain the same but the weights are decreased. If none of the exist-
ing distributions matches the current pixel value, either a new distribution is created, or
the least probable distribution for the background is replaced. The distribution with the
greatest weight, iy, 1s 1dentilied as the a priort background model for time £+1. At time
k, the set of foreground pixels identified is.

Fo = {x:|y(x)—p; o ()| > 2. 50;, 4 (%)} (2)

Suppose F,. and F, ; are the sets of the foreground pixels 1dentified using chromatici-
ty- and intensity-based background models, respectively. The set ol final foreground pix-
els can be computed as the intersection between chromaticity-based foreground (dilated)
and intensity-based foreground.

(1)

= (F,.., ® B)N Fu.; (3)
where @ denotes the morphological dilation and B is the structuring element for dilation.
The fusion between two types of mixture models overcomes the disadvantages of using
each model separately®'. Intensity-based detection is sensitive to illumination changes:
while a foreground region detected using only chromaticity may be split when a part of the
underlying target has a chromaticity similar to the background. In addition, chromaticity-



372 ACTA AUTOMATICA SINICA Vol. 29

based detection is sensitive to noise in poorly-lit regions. By using both models simultane-
ously, in regions with lighting variation, few spurious chromaticity-based foreground re-
gions are produced, which masks spurious intensity-based foregrounds. In poorly-lit re-
gions, few spurious intensity-based foreground regions are detected, which masks the spu-
rious chromaticity-based foregrounds. Split or shrinking chromaticity-based foregrounds,
due to their similar chromaticity to background, can be bridged or re-sized by the morpho-
logical dilation of B. In comparison with intensity-based models, this detection scheme has
been shown to greatly reduce the false positive rate in PETS 2001 Dataset 3, which has
significant illumination variation"*.

The toreground pixels are tiltered by a morphological closing (dilation-plus-erosion)
operation and then clustered into foreground regions using a connected component analy-
sis. A minimum number of foreground pixels is set for each region to rule out small dis-
turbances. A foreground region may correspond to an object, a group ot objects due to dy-
namic occlusion, or part of an object due to static occlusion. It is represented by a fore-
ground measurement vector, f=1[r. ¢. r» ¢ 7r» c¢; ] s where (r., ¢.) is the cen-
troid, (r;s ¢;) and (r,, ¢,) are the two opposite corners of the bounding box. r;, ¢;s 72,
¢, represent the top, left, bottom and right bounding edges, respectively(r,<r; ,c;<<c;).
In this paper, we use f(i) to represent the i-th element of the vector f, e. g. f(1)=r..
The bounding box of each toreground blob covers a rectangular region defined by R, =

{((ryc):r & [r197s |scE 1y |}

3 Object dynamics mode
A Kalman filter'®” based on a first-order motion model is used to track each object ac-
cording to the object measurement vector, z=[7. ¢. r1 ¢ 7 ¢ | . We distinguish
object measurements from foreground measurements, because they are the same only for
separate objects. Because our system aims to monitor pedestrians and vehicles, each target
is assumed to move along a linear trajectory at constant velocity and with constant size. In
practice, any minor violation of this assumption can be encoded in the process covariance
matrix. The state vector used is x =1[r. ¢, 7, ¢. Ari Aca Ar, Ac ]T , Where
(Ar; sAc;) and (Ar; »Ac,) are the relative positions of the two opposite bounding box cor-
ners to the centroid. They not only incorporate height and width intormation, but also ac-
curately represent the bounding box even when the centroid 1s shifted away {from the geo-
metric centre of the bounding box, e, g. due to asymmetry or shadows.
The state transition and measurement equations are:
X, = Ax, 1 + Wi
z, = Hx, 4+,
w, and v, are process noise and measurement noise, respectively, and w,~N(0,Q,), v,~
N{0,R,); the state transition matrix A and measurement matrix H are:

I, ATI, O, O, o o o
2 2 2 2

A — OZ IZ 02 OE . H — Ig Oz Iz Og (5)

0. OO I, O
o 0O, 0O L I, 0O 0O I

where I, and O, are 2 X 2 i1dentity and zero matrices; AT 1s the time interval between

(4)

frames. The a priori estimate X, and a posteriori estimate X, are iteratively computed by

te = A Xy (6)
Xy = X, + Ki(z, — Hx})

where K, 1s the Kalman gain matrix that is sought to minimize the a posteriori error covari-

ance P, in a least-square sense and can also be computed with P, and the a priori error co-
variance P, 1n an 1terative way:

n
|
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P; — AP?—IAT +Q§F1
K,=P,H [HP,H "+ R, | (7)
P, = [I—K,H |P;

4 Scene model

Because the camera 1s fixed, a scene model can be constructed for a specific camera po-
sition. Whilst this is currently done manually, some previous work on path learning "
may be extended to derive an automatic method tor learning the scene model. This model
helps reasoning about the termination and occlusion of objects by scene elements. Three
types of static occlusions in a scene are identified (Fig, 1).

Fig.1 lLong-term occlusions (1.LO) and short-term occlusions (S0O) In a scene

« Border occlusions (BQO), outside the limits of the camera field-of-view (FOV).

+ Long-term occlusions (ILO), where objects may leave the scene earlier than expec-
ted, corresponding to the termination of a record in the object database. The long-term oc-
clusion may exist at the border (e. g. buildings or vegetation) or in the middle of an image
(e.g. at the doors of a building).

» Short-term occlusions (SO), where an object may be temporarily occluded by a static
occlusion, e. g. a tree or a road sign. Prior knowledge of these occlusions helps avoid
missing existing objects and creating “new” objects,.

Each occlusion i1s characterized by 1ts type (BO, LO or SO) and the region (Rg s R0,
or Ry ) delined by its bounding box. The definitions of R,, and Ry, are similar to that of
K/, including the internal region of the underlying bounding box, whilst Ky, covers the re-
gion outside the field-of-view.

Ry = {(ryo):r & [ 7mineTmx |» €& [ Coins Comax |}
The overlap of these static occlusions with the predicted centroid of an object can be used
to predict object terminating (exiting) and occlusion. After the a priori estimate of the
state 1s determined, each object 1s subject to the status prediction based on the scene model
and predictive measurement:

2, = Hx, (8)
An object 1s labelled as PREDICT_ TERMINATED, if 1ts predicted centroid 1s within
the border occlusion (BO) or a long-term occlusion (LO), i.e. (2, {(1),z2;, (2))E Ry, U

N

YO
(U Ripn..). An object is labelled as PREDICT_ OCCLUDED, if its predicted centroid 1s

n=1

wﬂi}
within a short-term occlusion (SO), i.e. (Z; (1.2, (2)) € |UR4«w.,. Currently a rectangu-

n—1

lar bounding box is used for each static occlusion to minimize the computational cost.

5 Partial observability
For tracking multiple objects in a complex scene, 1t 1s noted that the object measure-
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ment z, may be either partly or completely unavailable. This occurs due to dynamic occlu-
sion between objects, static occlusion, or just the failure of foreground detection. Fig. 2
shows some examples of partial observation.

Fig. 2 Partial observations when objects are grouped (a) (b) or behind a static occlusion (¢). Grey lines
represent the foreground bounding boxes; thick and thin black lines represent observable and
unobservable bounding edges of objects, respectively.

S>.1 Deciding observability

We decide the observability of the objects based on the predictive measurement z, »
the foreground measurement f, and the scene model. The outcome is represented by the
observability vector m, ., which has the same dimensions as the object measurement vector
z,» with a one-to-one correspondence in their elements., Each element of m, has only two

possible values: 1 for OBSERVABLE and 0 for UNOBSERVABLE. At the beginning of
iteration (time) k, each object is reset to OBSERVABLE, 1.e. m, (/) =0OBSERVABLE,
[€11,6], and then subject to a 3-stage modification.

1) Observability in grouping (Figs. 2(a) and (b))

For the 7-th tracked object (: € [ 1, N, ]) and j-th foreground measurement (; €
L 1,N/]),a match score based on Mahalanobis distance is computed as:

.o, if (2., (1), 2..(2)) € Ry,
D2 5]) — < — T N . . - -
(fe;, —20..) (HP,,H +R,)™ (fr, —2.)s otherwise

.,

(9
Each object selects its corresponding foreground measurement in terms of minimum match
score within a tolerance e. For the j-th foreground measurement, the objects that best cor-
respond to it form a group of objects that are most likely to be merged:
G, ={ie&|[1,N, |;:j = arg minnE[l,Nf]D(i,n) , D(i,7) <eg} (10)
(; may include multiple objects (multiple-to-one correspondence), one object (one-to-one
correspondence), or be empty (no correspondence). For each object p &€ G, its observ-
ability is modified according to whether its bounding edge(s) i1s (are) also the bounding
edge(s) of the group.

m;,,(3) = UNOBSERVABLE if %;,(3) > min,c {2:,(3)]
m, ,(4) = UNOBSERVABLE it z,,(4) > minqersj 2., (4D}
m;.,(5) = UNOBSERVABLE if % ,(5) << maX,cc {Z:,,(5)}
m,.,(6) = UNOBSERVABLE if £,,(6) << max,¢ {Z,,(6)}

2) Observability of foreground measurement

The observability of object p € G, also depends on the observability of its associated
foreground measurement j. If the bounding box of the underlying foreground region tou-
ches the border of the field-of-view, its relevant bounding edge becomes UNOBSERV-

ABLE and thus inhibits (masks) the relevant observability for the associated object boun-
ding edge, 1. e. :

(11)

m;.,(3) = UNOBSERVABLE if f..,(3) = rm.
my.,(4) = UNOBSERVABLE if f..,(4) = co (12,
m,.,(5) = UNOBSERVABLE if f,,(5) = r,,,
m,.,(6) = UNOBSERVABLE if f..,(6) = ¢y
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3) Observability in occlusion (Fig. 2(c))

When an object is partly hidden behind a static occlusion, the measurement of some of
its bounding edges becomes unreliable. For the i-th object, each of its predicted bounding
edges 1s checked. If either corner delimiting that edge is within a static occlusion detfined 1n

the scene model, that edge becomes UNOBSERVABLE, 1. e. ;
m, (3) =m, (4) = UNOBSERVABLE 1if (2,,(3),z%2,,(4)) € ()

m,.(3) =m,,(6) = UNOBSERVABLE 1t (z,,(3),z,,(6)) & Q (13)
m,. (5 =m, (4) = UNOBSERVABLE 1t (z;,(5),2;,;(4)) € (3

LL)

Whereﬂ RBQU(URUJH)U(URCIJH

n=1
After the observability of the four bounding edges for :-th object 1s determined, the

observability of i1ts centroid can be decided as OBSERV ABILE only when all the four boun-
ding edges are OBSERVABLE, 1. e. .

&
m,%u;(l) — m;:f(Z) — ng”([) (14)
[ =3

5.2 Using observability

For a partially unobservable object, a measurement vector is constituted, whose
members can be classified into two inter-correlated blocks (., i, ) and (c., ¢, ¢5 ).
The inter-block variables are bound by the constant height (Ar, and Ar,;) and constant
width (Ac; and Ac;) assumption. Within each block, it all the variables are unobservable,
the only clue for their measurements are the prediction; if part of its variables are observa-
ble, the unobservable measurements can be jointly deduced from the observable measure-
ments and prediction. Suppose the observability matrix M, is a diagonal matrix whose
main diagonal is the observability vector m, . 1. e. .

M, () = ™ = (15)

0, otherwise
The measurement vector is estimated by

ZE::M,{’fk—Jl‘(I"—Mk)[&'dk_k(l__ﬁ)i;] (16)
where d, is the directly deduced measurements of unobservable variables from observable
measurements using constant height and width assumption, and ¢ controls the combination
weights between the directly deduced measurements and the prediction(0=<Cg<<1). If all

the variables in an inter-correlated block are unobservable, d, =z, for that block and this

1s equivalent to ¢=0. The height and width information 1n the a priorn state estimate x, 1s
used to compute d,.

Because the “measurement” for an unobservable variable 1s estimated rather than an
actual measurement, the corresponding element in the measurement covariance matrix R,
has to be increased by A times (A >1) to reflect increased uncertainty. Suppose R is the
measurement covariance matrix of a completely observable object, the measurement covar-
iance matrix for a partially observable object becomes:

R, = M\RM| +{I—M)DIMR(T—M)" (17)

Because the centroid and bounding edges of each object are measured independently,
R is a diagonal matrix. In addition, M, is diagonal as well, with each element being either
1 or 0. Theretore, the equation above can be simplitied as;

= [ M, + A —M,) |R (18)
Using this equation, an observable variable ol an object 1s updated with a normal covari-
ance value, whilst an unobservable variable is updated with a larger covariance value.
Therefore. the observable bounding edges contribute more to the object estimation than
the unobservable bounding edges.
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In the correspondence of the existing objects and measured toreground regions (Eq.
(10)), 1t is possible that some objects cannot find a match with any foreground region. I

labelled with PREDICT._ TERMINATED, they are assumed to be terminated; if labelled
with PREDICT_- OCCLUDED, they are assumed to be behind some static occlusion and

updated using the predictive state, ¥, = X; ; otherwise, they are assumed to be missing
due to foreground detection failure, updated using the predictive state, and subject to ter-
mination if still unmatched in the following N frames. It is also possible that no existing
object corresponds to a detected foreground region. In this case, a new object is created
and its state is initialised by f, and a zero velocity.

6 Results

To evaluate the performance of our tracking algorithm, we have tested it on a range of
image sequences and compared 1t with other two algorithms using blind tracking through
occlusion. To distinguish the effect of using partial observation, both algorithms were de-
signed to be the same as the new one (e, g. the same Kalman tracker, same state and
measurement vectors ), except their treatment to objects in grouping or occlusion .

« Algorithm 1—The object with the smallest Mahalanobis distance to the group fore-
ground measurement 1s estimated with the measurement of the group, z, = f,; the others

are updated using prediction, 1. e. X; =X, » as in | 3 |.

» Algorithm 2—All the objects in a group are updated using prediction, i. e. X, =

X, » asin | 2].

The 1mage sequences used for the demonstration in this paper are the testing Dataset” 1
(CAM1 and CAM2) for PETS’2001. We processed frames 1 to 2681 at a temporally sub-
sampled rate ot 5 (simulating 5 fps) and at the half trame size (384 X288). N =5 in our
experiments, which is determined to balance between missing true objects for small N and
maintaining many phantom objects for large N. In the image results shown below, black

and white boxes represent foreground measurement f, and object a posteriori estimate x, ,
respectively. A white dotted box represents a partly or completely unobservable object. A
white curve represents the centroid trajectory of an active object.

6.1 Qualitative performance

Fig. 3 shows an example of tracking through occlusion. In this example, a group ot
people (object 4) walk toward and then pass by a stationary car (object 2). At trames 946-
991, both the objects are grouped and segmented as a large foreground blob (Fig. 3(b)).
Algorithm 1 matches the group foreground blob with object 4, the size of which is then
gradually adapted to that of the group measurement. After the group of people is split
from the car and segmented as a separate, smaller foreground blob (Fig. 3(c)), Algorithm
1 rejects the match between this blob and object 4, due to the great difference in size and
position, and creates a new object (Object 6). Theretore, the group of people changes its
label after the occlusion. By using the partial observation, the location and size of object 4
is more accurately estimated during occlusion (Fig. 3(e)). Finally, object 4 is correctly
matched to the separate foreground blob (Fig. 3({)).

Fig. 4 shows another example of tracking through occlusion. In this example, a dark
car (object 11 in top row and object 10 1n bottom row) moves toward a stationary white
van (object 3) and finally occludes 1t. At frames 2246-2496, both the targets are segmen-
ted as a large foreground blob. Algorithm 2 uses linear prediction to update the estimate of
object 11 during the grouping. Because object 11 moves in a non-linear trajectory, there
exist some errors between the estimate and the foreground blob measurement (Fig. 4(b),

1) PETS 2001, http://www. visualsurveillance. org/PETS2001
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(d) (e) ()
Fig.3 Example 1 of object tracking through occlusion., (a) ~ (¢) using Algorithm 1,
and (d) — ({) using partial observation(g=10)

see the unfitted bottom and right bounding edges). These estimation errors accumulate
and object 11 finally fails to match the corresponding foreground blob (Fig. 4(c¢)). Using
the partial observation, the bottom and right bounding edges of object 10 closely fit to the
toreground blob (Figs. 4(e) and ({)). Object 10 even has a non-linear trajectory during
grouping (Fig. 4(1)), which indicates the linear motion model has been continuously adap-
ted to the non-linear motion. It 1s also noted that the estimate ol the top bounding edge of
object 10 18 not accurate (Fig. 4({)), because it has been unobservable for a long time.

i
e
e

SR o Lk e e : ..1 - E

o -1\-'-5- o _"r ; oy "_

(es
S

Fig. 4 Example 2 of object tracking through occlusion. (a)~ (¢) using Algorithm 2 and (d) ~ ()

using partial observation(g=20)

For all the 9 grouping events (19 objects involved) in which objects merge and then
split, we counted the mis-tracking events in which any object in a group changes its label

atter splitting. The resuit shown in Table 1 indicates that the new algorithm performs

more reliably than Algorithms 1 and 2.

Table 1 Counts of erroneous tracking in 9 grouping-and-splitting events

Algorithm 1 Algorithm 2 New (¢=0) New (a=1)
Count of Errors 1 2 0 0
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6.2 Quantitative performance

The advantages of partial observation not only are reflected 1in the qualitative compari-
sons as above, but also exist in some quantitative measures applied to the tracking results
in which both Algorithms 1 and 2 succeed. The first measure is the tracking error between
actual and predictive measurements, i. e.

er = |lzo — %5 | (19)

For objects updated using prediction, this error 1s set to zero.

The second quantitative measure is the path coherence, which represents a measure of
agreement between the derived object trajectory and the motion smoothness con-

straints-*., Suppose s, is the segment vector between the centroid estimates at two consec-
utive frames.,

sp = L& (D —xL,(D) (2 —xL,(2) ] (20)
The path coherence function used is:
By = wn | 1— 3t Se b Ty 1y g Vsl seen (21)
_ | S H H Skt ‘ - L || S H+ "Sk—l-l ‘ .

where the weights w, and w, control the importance of direction coherence and velocity co-
herence (w, =0. 5 and w, =0. 5 in this paper), and &, €[ 0,1 ]. A successful tracking
scheme usually generates low values in tracking error and path coherence function.

These two quantitative measures were selected because they are the basis of most ex-
isting motion correspondence algorithms that usually assume the smoothness of motion.
These measures are demonstrated using the example shown in Fig. 5, which is overlaid by
the tracking result using partial observation. In this example, a white van (object 3) first
passes by a newly stationary dark car (object 2), heads toward and occludes a group ot
people (object 4), decelerates and stops separately at the right border of the FOV. Object
3 has been grouped at frames 806-941. Due to the linear trajectories for the objects in-
volved, Algorithms 1 and 2 also succeed in this example. However, these two algorithms
have different performance based on our quantitative measures.

Fig. 5 Example 3 of object tracking using partial observation(¢=20 )

Fig, 6 shows the tracking errors and path coherence values for object 3 in Fig. 5, re-
sulting from all the three algorithms. There are two points that should be noted. Firstly,
the centroid estimation error only accounts for about one third of the entire tracking error,
because the latter also includes the errors for two bounding corners. Secondly, the zero
values in the tracking error and coherence function for Algorithms 1 and 2 arise from
grouping and state updating using prediction, representing uncertainty rather than periect
tracking. Therefore to be fair, our comparison 1s concentrated on the measures just after
the end of grouping (frame 946). At that time objects 3 and 4 split and are re-tracked; the
tracking error and coherence are expected to have a peak value.

For the 12 objects involved in all the 6 grouping-and-splitting events in which all the
three algorithms succeed, the peak values of the new algorithm are lower than those of Al-
gorithms 1 and 2 in each case; the average peak values are shown in Table 2. The quanti-
tative measures for the new algorithm are much lower than those for Algorithms 1 and 2,
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Fig. 6 (a) Tracking errors in pixels and (b) path coherence. [or object 3 1n Fig. 5, using Algorithm ]

(solid lines), Algorithm 2 (dash lines), and partial observation (¢=0, dot-dash lines)

indicating its improved performance. The reason is that even fed by partial observation on-
ly during grouping, objects could deduce their unobservable bounding edges according to
the built-in relation among members of the measurement vector. For example, on the as-
sumption of constant size, the left and right edges of an object should share a horizontal
velocity, and the top and bottom edges should share a vertical velority. The deduction of
unobservable variables can be either direct (¢=1) or implicit when the Kalman filter seeks
the optimal solution for the a posteriori estimate (¢=0). In both the cases, the measure-
ments of the observable variables are propagated to the unobservable variables. Therefore,
even with an itncomplete measurement input, the objects still have the estimates of all the
four bounding edges adapted to the new, partial measurement. This 1s partly retlected by
the non-zero tracking errors of object 3 during grouping (Fig. 6(a)), which prevents the
tracking errors from accumulating and makes object 3 adaptive to the deceleration. The af-
ter-grouping peak measures of the new algorithms using =1 fluctuate around those using
a=0. Their relative values depend on whether the constant size assumption (¢a=1) or the
constant velocity and size assumption (¢=0) 1s a better fit to the practical situations in the
testing sequences.

Table 2 Quantitative measures of the tracking algorithms

Algorithm 1 Algorithm 2 New (@ =0) New (g —=1)
Tracking errors 28. 27 29. 96 19, 33 16, 81
Path coherence (0. 2765 0. 2461 0.0923 0. 0863

7 Conclusions

We have presented a tracking algorithm utilizing partial observation of each target
through grouping or occlusion. The unobservable variables can be estimated by a Kalman
filter based on the measurement of observable variables, the state prediction, as well as
the scene model. This makes target estimation adaptive to small changes of direction and
accelerations during grouping or occlusion. The new algorithm has advantages over tradi-
tional blind tracking schemes in terms of 32% decrease in tracking error and 63 % decrease
in path coherence value, which leads to smoother object trajectories. It 1s noted that the
improvement 1s still under-estimated because we only accounted for the cases in which both
Algorithms 1 and 2 maintain the tracking successfully. These benefits have also been dem-
onstrated in the on-line 2D tracking systems as part of the IMCASM (Intelligent Mult:-
Camera Surveillance and Monitoring) project.

Acknowledgements The authors would like to thank James Black for the discussion on the
Kalman filter.



380 ACTA AUTOMATICA SINICA Vol. 29

References

1 Intille S S, Davis ] W, Bobick A F. Real-time closed-world tracking, In;Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, San Juan: IEEE Computer Society. 1997. 697 ~703
2  Rosales R, Sclaroff S. Improved tracking of multiple humans with trajectory prediction and occlusion modelling, In,
Proceedings of IEEE Workshop on the Interpretation of Visual Motion, Santa Barbara: IEEE Computer Society,
1998. 117~123
3 Ellis T, Xu M. Object detection and tracking in an open and dynamic world. In: Proceedings of IEEE Workshop on
Performance Evaluation of Tracking and Surveillance, Kauai; IEEE Computer Society, 2001, 31~38
4  Xu M, Ellis T. Partial observation vs. blind tracking through occlusion. In: Proceedings of British Machine Vision
Conference, Cardiff : BMVA, 2002. 777~786
5 Mammen J P, Chaudhuri S, Agrawal T. Simultaneous tracking of both hands by estimation of erroneous observa-
tions, In:Proceedings of British Machine Vision Conference, Manchester.BMVA, 2001, 83~92
6 Dockstader S L., Tekalp A M., Tracking multiple objects in the presence of articulated and occluded motion, In: Pro-
ceedings of [EEE Workshop on Human Motion, Austin:IEEE Computer Society, 2000. 88~35
7 Stauffer C, Grimson W E. Adaptive background mixture models for real-time tracking. In;Proceedings of IEEE
Conference on Computer Viston and Pattern Recognition, Fort Collins: IEEE Computer Society, 1989, 246~252
& Xu M, Ellis T, Hlumination-invariant motion detection using colour mixture models. In:Proceedings of British Ma-
chine Vision Conference, Manchester; BMVA,2001.163~172
9 Kalman R E. A new approach to linear {iltenng and prediction problems. Transcationof ASME-— Journalof Bas-
¢ Engeering, 1960,82-D:; 35~45
10 Makris D, Ellis T. Path detection in video surveillance., Image and Vision Computing , 2002,20(12);: 895~903

11 Sethi I K, Jain R. Finding trajectories of feature points in a monocular image sequence, IEEFE Transactions on PA-
MI, 1987, 9(1); 56~73

Ming Xu Received his bachelor degree(1989) and master degree(1992) from Xi'an Jiaotong University
ol P. R. China in communication engineering and received the Ph. D. degree (2001) in computer vision from
University of Birmingham, UK. He worked with Institute of Artificial Intelligence and Robotics at Xi an
haotong University (1992~~1996) and Information Engineering Centre at City University, London (1999~
2002), before joining Digital Imaging Research Centre at Kingston University, UK. Dr, Xu is a member of
British Machine Vision Association (BMVA) and was awarded a Science and Technology Progress Prize by
the Ministry of Education, P. R. China in 1997. His research interests include motion analysis and tracking,
multi-view techniques, scale-space analysis,

Tim Ellis Received his bachelor degree in physics from the University of Kent at Canterbury in 1974
and his Ph. D. degree in biophysics from London University in 1981, He joined City University in 1979 as a
research fellow, investigating algorithms for surface inspection. In 1984 he was awarded a five year Ad-
vanced Fellowship by the SERC in the field of intelligent instrumentation. In 1989 he was appointed lecturer
in the Department of Electrical, Electronic and Intormation Engineering at City University, and 1s currently
a Reader and Director of the Information Engineering Centre. He 1s leader of the Machine Vision Group,
and past Chairman of the British Machine Vision Association. His research interests include development ot
algorithms for extracting structural primutives {from images, analysis of motion in 1mage sequences, colour
image processing and hardware for image processing. The research is applied to problems of video surveil-
lance and monitoring, object tracking. pose determination and automatic inspection.

F) &6 53 3 | BR B 4 45 1 B AR

Ming Xu Tim Ellis
(In formation Engineering Centre, City University, London, EC1V OHB, H:[H)
(E-mail; {m. xu, t.]j. ellis}@city, ac. uk)

M B RUET--TMERTMEHERBILFATZHWREN X AHEEMEGERSREENF
RS IR B R A IR HAn . 8 T RTINS SR, 2 7T R REL RSN
U MR E RERA B AT H By RS i AT H RS &8 70 S R A6 11 89, X5 H #a 19 30 30 B 2
T B R A A S s R A X e A CROATE E R EUE BRI T AR AR BE L R N8 Y P HE.

SB|E AR W, B A Hi g X
mMESES TP391.41




