反应堆临界-燃耗耦合蒙特卡罗计算

邓 $力^1$,谢仲生²,李 树¹

(1. 西安交通大学核科学工程系,陕西西安 710049;
 2. 北京应用物理与计算数学研究所,北京 100088)

摘要:基于连续点截面 MCNP程序,研制了三维多群 P3 中子输运蒙特卡罗程序 MCMG,并与栅元均匀 化程序 WIMS 耦合,实现了临界-燃耗耦合计算。采用 WIMS 产生的 69 群共振、自屏宏观中子截面和 BU GL E 80u47 群微观中子截面,分别计算了简单反应堆和临界实验堆问题,计算结果与其它输运方法 的计算结果和试验结果一致。在相同计算精度下,MCMG的计算时间较 MCNP的计算时间少。 关键词:三维多群 P3;蒙特卡罗;临界-燃耗耦合;临界实验性 中图分类号:0571.51 **文献标识码**:A **文章编号**:1000-6931(2002)02-0168-07

The Coupled Calculation of Criticality and Burnup by Monte-Carlo Method

DENGLi¹, XIE Zhong-sheng², LI Shu¹

(1. Xi 'an Jiaotong University, Xi 'an 710049, China;
2. Institute of the Applied Physics and Computational Mathematics, Beijing 100088, China)

Abstract:Based on the continuous energy cross section Monte Carlo code MCNP a 3-D multigroup P_3 neutron transport Monte-Carlo code MCMG is developed. The MCMG code is realized the coupled calculation of criticality and burnup with the lattice homogeneous code WIMS. It uses the 69-group resonance and self-shield macroscopic neutron cross section which are produced by the WIMS code and BUGL E-80u47-group microscopic neutron cross-section results are in good agreement with the results of other transport methods and experiments. The computational time of the MCMG code is less than that of MCNP code with the same precision.

Key words :3-D multigroup P_3 ; Monte-Carlo; couple of criticality and burnup; critical test reactor

反应堆程序计算方法可归为确定论和蒙特 卡罗(MC)两类。确定论方法的计算效率高,但 对能量和角度的离散给计算结果带来一定误差,且无法计算三维复杂几何问题;MC方法几

收稿日期:2001-03-18;修回日期:2001-03-26 作者简介:邓 力(1960→,男,四川绵竹人,副研究员,博士,反应堆物理专业

何处理能力强,对粒子的跟踪忠实于粒子物理 作用过程,但对大系统和深穿透屏蔽问题,计算 耗时太多,计算结果存在误差涨落。随着计算 机速度的提高,特别是并行多处理机的问世,使 MC方法的应用前景变得十分光明。

如今,MC方法在反应堆数值计算中已成 为主要计算方法,并成为其它数值方法标定的 主要依据。MC粒子输运程序很多,如美国的 MCNP4B中子-光子-电子耦合输运程序^[1]、 KENO-Va,VI多群 MC程序^[2]。MCNP程序 采用连续点截面,可获得较高的精度,但存在以 下不足:1)采用连续截面和精细物理考虑使计 算时间剧增;2)对截面的共振、自屏及温度效 应考虑不够,特别是温度效应,MCNP只对弹 性散射截面作了温度修正,这是很不够的; 3)无燃耗计算功能。

WIMS-D4 栅元程序具有截面均匀化、并群 和燃耗处理能力,宏观截面的产生精细考虑几 何、共振、自屏及温度效应,且具有燃耗计算功 能。但 WIMS 仅是一个反应堆组件计算程序, 只能处理简单几何问题^[3]。因此,研制一具有 三维几何处理能力、可进行反应堆全堆计算的 输运-燃耗耦合 MC 程序是本工作的目的。

1 临界-燃耗耦合 MC 程序研制

基于 MCNP 程序研制三维多群 P₃ 中子输 运-燃耗耦合 MCMG程序,它用反应堆专用多 群中子截面库代替 MCNP 的连续截面,碰撞机 制采用多群处理,角分布采用 P₃ 近似和广义高 斯求积(MORSE^[4]、KENO 程序均采用这种方 法)。如此处理的优点是不会因为 Legendre 展 开项不足而导致角分布出现负值。MCMG程 序保留了 MCNP 程序的输入、降低方差技巧、 计数及绘图功能。

1.1 多群临界计算

MCMG程序求解的多群中子输运方程形式为:

 $\mathbf{L} = (1)$ $\mathbf{\sharp} \mathbf{\Psi}: \mathbf{L} = (L\phi_1, L\phi_2, \dots, L\phi_g, \dots, L\phi_G)^{\mathrm{T}},$ $L\phi_g = (\cdot + \cdot)\phi_g - \frac{1}{g_g = G_4} = \frac{g_g \cdot g}{g_g \cdot g} (r, r, r)$ $(1)\phi_g \cdot (r, r) \cdot \mathbf{d} = (M\phi_1, M\phi_2, \dots, \phi_g, r)$

..., $M\phi_G$)^T, $M\phi_g = \frac{-s}{4} \Big|_{g=G=4}^{1} (f) \Big|_{g}(r) \Big|_{g}(r) \Big|_{g}(r)$)) d , g为 g 群中子裂变向量谱;1 对应高能, G 对应低能。

讨论增殖系统的临界问题可归结为无外 源、定常情况下式(1)的定解问题,亦归结为下 列方程的本征值问题:

$$L = \frac{1}{k_{\text{eff}}} M = M$$
 (2)

= 1/ k_{eff}称为算子 L 的特征值,对应的 为特征函数。采用源迭代法, k_{eff}计算可归结 为:

$$\begin{cases} L \Phi_g^{(h)}(r, \cdot) = \frac{-s}{4} Q_f^{(h-1)}(r) \\ 0 \\ f^{(h)}(r) = \frac{1}{g = G} (-f) \\ h = 1, \dots \end{cases}$$
(3)

 $Q_{f,g}(r,) = \frac{-s}{4} Q_f(r)$ 相当于 Boltzmann 方程的源项。 $Q_f^{(0)}(r)$ 为初始源位置分布,当 源位置分布未知时,可在裂变区任意给定一点 或多点,初始能群 g_0 由裂变中子能谱分布 $_g$ 确定,初始方向为各向同性,初始权按 $\frac{1}{k^{(h-1)}} Q_f^{(h-1)}(r) dr = 1$ 确定。

理论上,系统有效增殖系数 keff定义为相 邻两代中子数比,即:

$$k_{\rm eff} = \lim_{h} k^{(h)} = \lim_{h} \frac{\sqrt{Q_f^{(h)}(r) \, dr}}{\sqrt{Q_f^{(h-1)}(r) \, dr}}$$
(4)

用 MC 方法求 keff 为:

$$k_{\rm eff} = \frac{1}{H - h_1} {}^{H}_{h = h_1 + 1} k^{(h)}$$
(5)

式中: H 为总代数; h_1 为不参加统计的代数(前 h_1 代)。

1.2 程序截面库

目前,MCMG程序配备的反应堆专用截面 库有:1)WIMS 69 群自屏宏观中子截面库; 2)BUGLE-80u47群中子、20 群光子 P₃ 微观截 面库;3)卡片形式输入的少群截面等。

1.3 燃耗计算

用 MCMG 程序计算燃耗时,首先用 WIMS程序计算出每个燃料块、不同燃耗值对 应的宏观中子截面(截面考虑了共振自屏、互屏 及温度效应),并由此构造一参数化截面库供 MCMG插值用。

MCMG程序计算燃耗的基本过程如下: 1) 在 k_{eff} 及中子注量率收敛后,利用该中子注 量率计算每根燃料元件的功率,进而计算它们 的燃耗;2) 利用每根燃料元件的积分燃耗和从 WIMS所计算出的参数化截面库,通过插值求 出新的多群截面,将此截面替代上一步 MCMG 中使用的多群截面,再次计算 k_{eff} 及中子注量 率,如此循环,直到满足结束条件(一般为燃耗 深度或 $k_{eff} = 1$)(图1)。图1中,WIMS产生的 大部分核的截面为 P₀近似,只有少数核的截面 为 P₁近似;NSTEP 为总循环步数。

Fig. 1 The calculated flow coupled of MCMG and WIMS

第 *i* 根燃料元件的功率 *P_i* 和当前燃耗增量 (BU(*i*))的值由下式计算^[5]:

7

$$P_{i} = \prod_{g = G} f_{j,g}(i) \phi_{g}(i)$$
 (6)

$$\widetilde{P}_i = P_v \times \frac{P_i}{N}$$

$$P_j$$

$$(7)$$

$$(\mathrm{BU}(i)) = \mathbf{P}_i \times \frac{t}{m_i}$$
(8)

式中: *f*,*g*(*i*)为第 *i* 根燃料元件、第 *g* 群裂变截 面; *f*,*g*(*i*)为第 *i* 根燃料元件的中子注量率; *P*, 为堆芯总功率; *N* 为堆芯中总的燃料元件个数; *t* 为燃耗步长(天); *m*, 为第 *i* 根燃料元件的初 始铀装量(*t*); 为每次裂变所放出的能量。

2 计算结果

MCMG程序采用少群截面。

2.1 模型1(小LWR堆芯)

模型1为日本京都大学的临界装置,堆芯 外形示于图2。模型采用两群截面,截面数据 参见文献[6]。考虑两种情况:1)控制棒位置 为真空;2)控制棒一半插入。

计算结果列于表 1 和 2,计算中,每代样本数 N、总代数 H 和不参加统计的代数 h₁ 分别为10 000、50 和 10。

表1 模型1 keff比较

Table 1	Comparison	of	k _{eff} for	model	1
---------	------------	----	----------------------	-------	---

方法	控制棒移出下的 k _{eff}	备注	
MC	0.977 8	[6]	
\mathbf{S}_4	0.976 6	[6]	
S_8	0.977 2	[6]	
\mathbf{P}_7	0.976 6	[6]	
MCMG	0.974 8	本工作	

表 2 模型 1 控制棒移出下的分区中子注量率

Table 2 Region-averaged neutron fluence rate

for rod-out case of model 1

		控制棒出分区下的			
方法	能群	中子注量率/ (cm ⁻² µs ⁻¹)			备注
		堆芯	真空	反射层	
MC	1 G	4.78 ×10 ⁻³	1.45 ×10 ⁻³	5.97 ×10 ⁻³	[6]
	$2\mathrm{G}$	8.78 ×10 ⁻⁴	9.77 ×10 ⁻⁴	9.20 ×10 ⁻⁴	
S_8	1 G	4.77 ×10 ⁻³	1.45 ×10 ⁻³	5.94 ×10 ⁻³	[6]
	$2\mathrm{G}$	8.72 ×10 ⁻⁴	9.70 ×10 ⁻⁴	9.15 ×10 ⁻⁴	
P_7	1 G	4.75 ×10 ⁻³	1.41 ×10 ⁻³	5.94 ×10 ⁻³	[6]
	$2\mathrm{G}$	8.65 ×10 ⁻⁴	9.01 ×10 ⁻⁴	9.21 ×10 ⁻⁴	
MCM	G 1 G	4.78 ×10 ⁻³	1.45 ×10 ⁻³	6.00 ×10 ⁻³	本工作
	2 G	8.74 ×10 ⁻⁴	9.71 ×10 ⁻⁴	9.24 ×10 ⁻⁴	

图 2 模型 1 堆芯外型 Fig. 2 Core configuration of model 1

2.2 模型 2(小 FBR 堆芯)

2

堆芯几何示于图 3。使用 4 群截面,截面 数据参见文献[6]。考虑两种情况:1) 控制棒 撤出(控制棒位置由 Na 填充);2) 控制棒半插 入。

计算结果分别列于表 3 和 4。对于情况 1: N = 5 000, H = 50, h₁ = 10; 对于情况 2: N = 30 000, H = 150, h₁ = 10。

表 3 模型 2 的 k_{eff}计算值比较 Table 3 Comparison of k_{eff} for model 2

<u>→->+</u>	1	备注	
万法	控制棒撤出		
MC	0.973 1	0.9589	[6]
S_4	0.973 5	0.9594	[6]
S_8	0.973 4	0.9593	[6]
P_7	0.9794	0.9647	[6]
节块输运	0.9714	0.957 2	[6]
MCM G	0.9760	0.961 6	<u>本工作</u>

图 3 模型 2 堆芯外形 Fig. 3 Core configuration of model 2

		Table 4	Region-averaged neut	ron fluence rate for 1	rod in case of model 2		
 +	41.77		各区的中子注量率/(cm ² µs ⁻¹)				
万法	月已右十	堆芯	径向包层	轴向包层	控制棒位置	控制棒	
MC	1 G	4.35 ×10 ⁻⁵ (0.06%)) 3.32 ×10 ⁻⁶ (0.17%)	5.22 ×10 ⁻⁶ (0.25%)	2.59 ×10 ⁻⁵ (0.43%)	1.66 ×10 ⁻⁵ (0.51 %)	
	$2\mathrm{G}$	2.42 ×10 ⁻⁴ (0.05 %)) 3.04 $\times 10^{-5}(0.09\%)$	4.68 ×10 ⁻⁵ (0.13%)	1.80 ×10 ⁻⁴ (0.23%)	9.11 ×10 ⁻⁵ (0.25%)	
	3 G	1.62 ×10 ⁻⁴ (0.06 %)) 3.21 ×10 ⁻⁵ (0.10%)	4.62 ×10 ⁻⁵ (0.15%)	$1.25 \times 10^{-4} (0.29\%)$	5.18 ×10 ⁻⁵ (0.28%)	
	4 G	6.04 ×10 ⁻⁶ (0.20 %)) 2.00 $\times 10^{-6}(0.32\%)$	3.62 ×10 ⁻⁶ (0.42%)	6.92 ×10 ⁻⁶ (1.50%)	1.11 ×10 ⁻⁶ (0.92%)	
\mathbf{S}_8	1 G	4.35 ×10 ⁻⁵ (0.02 %)) 3.33 $\times 10^{-6}(0.06\%)$	5.27 ×10 ⁻⁶ (0.06%)	2.60 ×10 ⁻⁵ (0.14%)	1.67 ×10 ⁻⁵ (0.11%)	
	$2\mathrm{G}$	2.42 ×10 ⁻⁴ (0.02 %)) 3.08 $\times 10^{-5}(0.02\%)$	4.73 ×10 ⁻⁵ (0.04%)	1.68 ×10 ⁻⁴ (0.14%)	9.24 ×10 ⁻⁵ (0.11%)	
	3 G	1.62 ×10 ⁻⁴ (0.02 %)) 3.23 $\times 10^{-5}(0.06\%)$	4.66 ×10 ⁻⁵ (0.10%)	$1.25 \times 10^{-4} (0.15\%)$	5.24 ×10 ⁻⁵ (0.18%)	
	4 G	6.03 ×10 ⁻⁶ (0.04 %)) 2.00 $\times 10^{-6}(0.12\%)$	3.65 ×10 ⁻⁶ (0.16%)	6.68 ×10 ⁻⁶ (0.14%)	1.11 ×10 ⁻⁶ (1.80%)	
P_7	1 G	4.34 ×10 ⁻⁵	3.39 ×10 ⁻⁶	5.50 ×10 ⁻⁶	2.54 ×10 ⁻⁵		
	$2\mathrm{G}$	2.39 ×10 ⁻⁴	3.47 ×10 ⁻⁵	5.22 ×10 ⁻⁵	1.68 ×10 ⁻⁴		
	3 G	1.62 ×10 ⁻⁴	3.91 ×10 ⁻⁵	5.90 ×10 ⁻⁵	1.30 ×10 ⁻⁴		
	4 G	6.09 ×10 ⁻⁶	2.60 ×10 ⁻⁶	4.88 ×10 ⁻⁶	7.72 ×10 ⁻⁶		
节块	1 G	4.34 ×10 ⁻⁵	3.39 ×10 ⁻⁶	5.35 ×10 ⁻⁶	2.60 ×10 ⁻⁵	1.72 ×10 ⁻⁵	
输运	$2\mathrm{G}$	2.42 ×10 ⁻⁴	3.07 ×10 ⁻⁵	4.73 ×10 ⁻⁵	1.67 ×10 ⁻⁴	9.33 ×10 ⁻⁵	
	3 G	1.62 ×10 ⁻⁴	3.23 ×10 ⁻⁵	4.65 ×10 ⁻⁵	1.24 ×10 ⁻⁴	5.28 ×10 ⁻⁵	
	4 G	6.09 ×10 ⁻⁶	2.00 ×10 ⁻⁶	3.65 ×10 ⁻⁶	6.67 ×10 ⁻⁶	1.14 ×10 ⁻⁶	
MCM G	1 G	4.30 ×10 ⁻⁵ (0.08 %)) 2.81 $\times 10^{-6}(0.24\%)$	4.76 ×10 ⁻⁶ (0.50%)	2.54 $\times 10^{-5}(0.62\%)$	$1.63 \times 10^{-5} (0.67\%)$	
	$2\mathrm{G}$	2.39 ×10 ⁻⁴ (0.04 %)) 2.94 $\times 10^{-5}(0.12\%)$	4.73 ×10 ⁻⁵ (0.24%)	1.64 ×10 ⁻⁴ (0.27%)	9.00 ×10 ⁻⁵ (0.30%)	
	3 G	1.60 ×10 ⁻⁴ (0.04 %)) 3.20 $\times 10^{-5}(0.09\%)$	4.81 ×10 ⁻⁵ (0.42%)	1.21 ×10 ⁻⁴ (0.29%)	5.10 ×10 ⁻⁵ (0.29 %)	
	4 G	5.92 ×10 ⁻⁶ (0.14%)) 1.99 $\times 10^{-6}(0.48\%)$	3.92 ×10 ⁻⁶ (0.96%)	6.51 ×10 ⁻⁶ (0.91%)	1.10 ×10 ⁻⁶ (0.65%)	

表 4 模型 2 控制棒插入下各区中子注量率

从表 4 可看出:除径向和轴向包层中子注 量率外,MCMG与其它方法的计算结果符合很 好,但径向和轴向包层的第一群中子注量率比 其它方法的计算结果分别约低15%和8.8%, 造成这种差异的原因难以分析。

2.3 模型 3(临界实验装置)

由 74 个水栅元块和 17 个燃料栅元块组成 (图 4),每个燃料栅元块由 6 层水隙、燃料交替 组成。图 4 中 1 ~ 7 即为表 6 中的栅元块 1 ~ 7。MCMG分别使用 WIMS-D4 产生的 69 群 自屏宏观截面和 DLC-75/BUGLE-80u47 群中 子、20 群光子 P₃ 截面^[7],WIMS-D4 宽群库基 于 UKNDL,采用 P₁ 近似,BUGLE-80 基于 ENDF/B-IV、V 库。表 5、6 分别列出了 MCMG使用两种截面库和 MCNP 使用 ENDF/B-IV 库连续截面系统 k_{eff} 和堆芯燃料 块注量率计算结果比较,其中:1 群定义为快群 (>0.625 eV);2 群定义为热群(0.625 eV)。

由于用 WIMS 库,计算采用均匀化处理, 对应每个燃料栅元为一均匀化物质,几何相对 简单,故计算较精细,描述省时得多,这种处理 在输运-燃耗耦合迭代计算时很有效。

表 5 模型 3 计算时间及 ketf 结果比较

Table 5 Comparison of keff and

computational time for model 3

模型	CPU 计管时间/min	<i>k</i> eff(误差)
		4 005 4 (0 05 01)
MCNP(ENDF/B-IV)	202	1.0074(0.07%)
$MCMG(WIMS, P_1)$	92	0.978 9(0.07%)
$MCMG(BUGLE-80, P_1)$	170	1.009 6(0.06 %)
$MCMG(BUGLE-80, P_3)$	172	$1.014\ 0(0.07\ \%)$

注: N = 10 000; H = 150; h₁ = 10; 实验值 k_{eff} = 1;计算机 为 Petium -650 微机

图 4 模型 3 几何外形 Fig. 4 Geometry configuration of model 3

表 6 用 MCMG和 MCNP 计算的中子注量率

Table 6	Neutron	fluence	rates	calculated	bv	MCM G and MCNP	
and o	1 wan on	inucinee	iaco	ununu	Ny.	memorana mera	

+m = ++	45.37	用不同程序计算的中子注量率/(cm ² µs ⁻¹)					
竹元块	尼右牛	MCMG(BUGLE-80, P_1)	$MCMG(WIMS, P_1)$	MCNP(ENDF/B-)			
1	1	4. 177 26 ×10 ⁻⁴ (0. 21 %)	4.260 50 ×10 ⁻⁴ (0.21 %)	4. 216 93 ×10 ⁻⁴ (0. 21 %)			
	2	$1.075\ 45\ \times 10^{-4}(0.42\ \%)$	1.053 69 ×10 ⁻⁴ (0.34 %)	1.225 34 ×10 ⁻⁴ (0.41%)			
	总和	5.252 71 ×10 ⁻⁴ (0.20%)	5.314 19 ×10 ⁻⁴ (0.21 %)	5.442 28 ×10 ⁻⁴ (0.21 %)			
2	1	$3.590\ 08\ \times 10^{-4}(0.22\ \%)$	3.529 67 $\times 10^{-4}$ (0.23 %)	3.609 11 ×10 ⁻⁴ (0.23 %)			
	2	$1.03344 \times 10^{-4} (0.43\%)$	9.538 08 ×10 ⁻⁵ (0.36 %)	1.158 72 ×10 ⁻⁴ (0.42%)			
	总和	4. 623 52 $\times 10^{-4}$ (0. 22 %)	4.48348 ×10 ⁻⁴ (0.23%)	4.767 83 ×10 ⁻⁴ (0.22%)			
3	1	3.662 83 ×10 ⁻⁴ (0.22%)	3.710 50 ×10 ⁻⁴ (0.23 %)	3.711 32 ×10 ⁻⁴ (0.22%)			
	2	9.441 63 ×10 ⁻⁵ (0.45%)	9.174 05 ×10 ⁻⁵ (0.36%)	1.081 88 ×10 ⁻⁴ (0.43%)			
	总和	4.607 00 ×10 ⁻⁴ (0.22%)	4.627 90 ×10 ⁻⁴ (0.22 %)	4.793 19 ×10 ⁻⁴ (0.22%)			
4	1	3.670 50 ×10 ⁻⁴ (0.22%)	3.718 46 ×10 ⁻⁴ (0.23 %)	3.716 08 ×10 ⁻⁴ (0.22%)			
	2	9.435 99 ×10 ⁻⁵ (0.44%)	9.150 62 ×10 ⁻⁵ (0.36 %)	$1.083\ 45\ \times 10^{-4}(0.43\ \%)$			
	总和	4.614 10 ×10 ⁻⁴ (0.22%)	4.633 52 ×10 ⁻⁴ (0.22 %)	4.799 53 ×10 ⁻⁴ (0.22%)			
5	1	3.578 15 ×10 ⁻⁴ (0.22%)	3.556 97 ×10 ⁻⁴ (0.23 %)	3.605 91 ×10 ⁻⁴ (0.23 %)			
	2	$1.028\ 90\ \times 10^{-4}(0.43\ \%)$	9.663 91 ×10 ⁻⁵ (0.36%)	1.161 94 ×10 ⁻⁴ (0.42%)			
	总和	4.607 05 $\times 10^{-4}$ (0.22 %)	4.523 36 ×10 ⁻⁴ (0.23 %)	4.767 85 ×10 ⁻⁴ (0.22%)			
6	1	3.706 46 ×10 ⁻⁴ (0.22%)	3.734 32 ×10 ⁻⁴ (0.23 %)	3.720 69 ×10 ⁻⁴ (0.22%)			
	2	9.572 88 ×10 ⁻⁵ (0.44%)	9.212 73 ×10 ⁻⁵ (0.36 %)	1.086 17 ×10 ⁻⁴ (0.43%)			
	总和	4.663 74 ×10 ⁻⁴ (0.22%)	4.655 60 ×10 ⁻⁴ (0.22 %)	4.806 86 ×10 ⁻⁴ (0.22%)			
7	1	3.690 40 ×10 ⁻⁴ (0.22%)	3.726 09 ×10 ⁻⁴ (0.23 %)	3.727 96 ×10 ⁻⁴ (0.22%)			
	2	9.525 94 ×10 ⁻⁵ (0.44%)	9.191 45 ×10 ⁻⁵ (0.36%)	1.088 55 ×10 ⁻⁴ (0.43%)			
	总和	4.643 00 $\times 10^{-4}$ (0.22 %)	4.645 24 $\times 10^{-4}$ (0.22 %)	4.816 50 $\times 10^{-4}$ (0.22 %)			

MCMG使用 BUGLE80 库 P₁、P₃ 的计算 结果与 MCNP 程序使用 ENDF/B- 库连续截 面的计算结果和实验结果基本一致。MCMG 程序使用 WIMS P₁ 宽群库均匀化宏观截面的 计算结果与实验结果的偏差为 1.2%。MCMG 使用两种多群截面库所得中子注量率基本一 致,但热群与 MCNP 之间存在一定差异,这一 差异主要是由多群与连续截面中子热化处理方 法不同所致。

3 结论

7

经多个临界基准模型检验计算,为反应堆 临界和燃耗计算研制的三维多群 P₃ 近似 MC 中子输运-燃耗耦合计算程序MCMG取得了与 其它输运方法和实验一致的结果。对三维复杂 反应堆问题,MCMG程序可进行精细描述或均 匀化处理,且在相同精度下,MCMG程序计算 时间较连续截面、精细物理处理的 MCNP 程序 少得多。此外,MCMG程序可配备多种多群中 子截面库,可用于截面参数之间的比较,目前, MCMG程序已配备的中子截面库有 WIMS、 BUGLE-80库,还可根据需要配备或制作其它 多群截面库。MCMG程序输运模块中增加了 燃耗计算功能,且燃耗计算针对的是燃料块,而 不是裂变核或裂变产物,计算简单省时,可用于 反应堆全堆问题的数值计算。

参考文献:

- Briesmeister JF. MCNP—A General Monte-Carlo Code: for N-Particle Transport Code: LA-12625-M[R]. US: Los Almos National Laboratory, 1997.
- [2] Petrie LM, Landers NF. KENO Va, an Improved Monte-Carlo Criticality Program With Super-grouping: NUREG/CR-0200[R]. USA: ORNL, 1983.
- [3] Halsall MJ. A Summary of WIMSD4 Input Options Aeew-R1327[R]. UK:[s. n.], 1980.
- [4] Emmett MB. MORSECGA, a Monte Carlo Radiation Transport Code With Array Geometry Capability: ORNL-6174[R]. US: ORNL, 1985.
- [5] 李 树. 堆芯燃耗分析系统及其应用[D]. 西安: 西安交通大学核能与热能工程系,2000.
- [6] Takeda T, Ikeda H. 3-D Neutron Transport Benchmarks[J]. J Nucl Sci Technol, 1991, 28 (7):656~669.
- [7] Roussin RW. BUGLE-80 Couple 47 Neutron, 20 Gammaray, P₃ Cross Section Library for LWR Shielding Calculations: DLC-75[R]. US:[s. n.], 1980.