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Abstract: We propose a two-piece update of projected Hessian algorithm with trust region method for
solving nonlinear equality constrained optimization problems. To deal with large problems, a two-piece up-
date of two-side-reduced Hessian is used to replace the full Hessian matrix. By adopting the /, penalty func-
tion as the merit function, a nonmonotonic backtracking trust region strategy is suggested which does not
require the merit function to its value in every iteration. A correction step is avoided to overcome the
Maratos effect. The proposed algorithm which switchs to nonmonotonic trust region strategy possesses
global convergence while maintaining one step Q-superlinear local convergence rates if at least one of the
update formula is updated in each iteration.

Key words: nonmonotonic technique; two-piece update; superlinear convergence

CLC number: 0221.2 Document code: A Article ID: 1000-5137(2002)04-0008-08

1 Introduction

Consider the {ollowing optimization problem with nonlinear equality constraints:
min f(x)
subject to ¢(x) = 0
where f(z): R"—>R'and c(zx): R"—=R"™, m <{n. GURWITZ™ proposed a two-piece update method
of a projected Hessian matrix. The basic idea can be summarized as follows: let g(z) = V f(xr) €
R", A(x) = Ve(x) = [V (x),, V. (x)] € R™*™. Assuming A(x) has full column rank, then

1.

a QR decomposition can be performed, that is,
R(x)
A(x) = [Y(x), Z(x)] |: 0 }, 1.2

where [Y(x), Z(x)]is an orthogonal matrix, R(x) is a nonsingular upper triangular matrix of order

m, and Z(x) € R"™" " The column vectors of Y(x) and Z(x) form an orthonormal basis {or the
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null space 4" (A(z)") and the range space & (A(x)), respectively. Let

(x,A) = f(x) — Fe(x) (1.3
be the Lagrangian function of problem (1. 1), where A(z) can be obtained by solving the upper trian-
gular equation

R()A(x) =Y (x)g(x). (1. 4>
Let W(x,A) = V1/(x,A) be the Hessian of the function £(z,A) with respect to z. For simplicity, let
f(z,) denote f4; V f(x,) denote g;, etc. In each iteration, let B, denote the current approximation to
ZiW,Z, and D, denote the current approximation to ZfW,Y,. The DFP or BFGS update will be used to
compute B,y and the Broyden update will be used to obtain D,,,. The Gurwitz’s method solves the e-

quation

Ripi =— o (1.5
to obtain p{ , and then solves another equation

Bipi =— Zigt — D,p1 (1.6
to obtain pi. Let

b= Zupi + Yaupd. (1.7
Take

Ty = ZTp + pu. (1.8

The null-space step and the range-space step are respectively defined by
Up =— YT(II.H — ), S = ZZ'(-T&+1 - »TA»)- (1.9

GURWITZ suggested an alternative strategy. If the range-space step is large compared to the null-
space step, then they silmply perform the update rule 1. Similarly, if the null-space step is large com-
pared to the range-space step, then they silmply perform the update rule 2. The update rules 1 and 2
were given in [2].

GURWITZ! discussed only the local Q-superlinear of this original algorithm. It was proved that
if the initial point x, is close enough to the solution of the problem (1.1), =, , and B, = ZTW , Z,
E£H., D,~ZTW.Y. ¥G,, then the iterative sequence of {z,} approaches x,. Furthermore, under
some reasonable conditions, the convergence is at least two-step Q-superlinear. If at least one of the
matrices B, or D), is updated in each iteration, then the rate of convergence is one-step Q-superlinear.

Trust region method and line search are two very popular ways for minimization to assure global
convergence. By using the /; penalty function as a merit function, the resulting algorithm with trust
region strategy shall possess global convergence while maintaining superlinear local convergence rates
under some reasonable conditions.

In this paper we shall extend the nonmonotonic backtracking trust region typed method to two-
piece update algorithm for constrained optimization problems, giving the oretic analysis. In order to
overcome the Maratos effect and ensure a superlinear convergence rate, a correction step in each itera-
tion is added to the algorithm in [27]. The paper is outlined as follows. In section 2, we state a revised
two-piece update of projected Hessian algorithm with backtracking trust region method. The global
convergence of the algorithm is proved in section 3;while the local convergence rates of the roposed al-

gorithm is presented in section 4.
2 Algorithm

The trust region algorithm for solving the problem (1. 1) is simple to explain and motivate. In a

i
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current iteration x, of the algorithm we shall solve a quadratic subproblem

min g'p + %pTW,,p 2.
subject to A} p + ¢, =0 (2.2
gl < 4 (2.3

where 4;is called the trust region radius. It motivates to solve the linear constraint (1.5) at the GUR-

WITZ’s method. This is done by defining a relaxation parameter g, € (% »1) and computing a step p7
that solves the vertical (or normal) subproblem
min [[R] p* + all
subject to [[p*|| << g4 A 2.4
The algorithm is designed so that the full step p need not move any closer to the feasible manifold

than Y, p? does, so we next reformulate (1. 6) as
: o o T,z 1 2N\T
min q,(p*) =(Z, g + Dip))" p* + 7(p Y By p*
subject to ||p*]| << A4, (2.5

where g, € (%—,1) also gives a relaxation parameter. Let the solution of the horizontal (or

tangential) subproblem be denoted by pi. Define the total trust region algorithm as

D= Z,pi + Yopl. (2.6)
We then set

Zipr = 1 + Py 2.7
provided ;4 gives a reduction in the merit function; otherwise, the trust region is reduced and a new
trial step is computed. The merit function is describled as follows.

In order to decide the acceptance of the new point at each iteration, and to adjust the trust region

radius, introducing a merit function is necessary. Here we choose the /; exact penalty function as the

merit function,
Kz) = [ + Srile(@], (2. 8)
i=1

where r; is the 7 -th components of the vector r .
We now describe the complete algorithm.

Algorithm
(1) Choose parameters 0 << 7< 17, <79, <1, 4, tt € ( % 3 1) By >0, 077, <1 <7,

e = 0,8 € (0, %), ac (0,1, 0<TI<TZ<%, an integer M == 0 and p >> 0. Pick a starting point
x4, an initial positive definite matrix By, an initial trust region radius A, € (0, Am.), and a positive
penalty weight vectorr, € R™, Let £(0) = 0 and set £ = 0.
(2) Calculate f, gi, ¢ » and A,. Make a QR decomposition of A, to get Y,, Z,, and R,.
(3 If llaall + IZ7g.ll < €, stop. Otherwise, go to the next step.
(4) Compute the multiplier
A = R;'Yig, 2.9
and solve the vertical subproblem (2. 4) and the horizontal subproblem (2. 5) to the solutions pf and
bi» respectively. Then compute p; given in (1. 7) and hence obtain the following equation
Ridy =— c(z + p) + & + Ripi (2.10)
to get the solution d,.
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(5) Let
Tk s ifr, =¥+ p, )
r = ) 2. 11
. max {r,,¥i} + p, otherwise,

where ¥ = max{|A, | + | (D DRI | IR | (Yige + Dipidil } and 74,5 A and (a); are thei-
th components of the vectors i, A, and a, respectively.

(6) Set ¢ (xy) = max @ (x,—;) . Test the line search condition
0 j<eh)

a(a + a(p + Yid) < alaw) + 120 Do po) (2.12)
where D@, (x;; p,) is the directional derivative of the merit function ¢ in the direction p;.
(7) H the line search condition (2. 12) is not satisfied, choose a new &, — aa, and go to step 6;
otherwise set
ZTir1 = T+ a(py + Yido). (2.13)
(8) Calculate the predicted reduction,

Pred,(p.) = —gZ‘Pt—%(Pf)TBtPZ‘F;r(nl)i{ lei(x) | — | Ve(x) pate: ()| }. (2.14)

(9) Compute

Ared, () = B (Tiw) — AlTi1) > (2.15)
where
@) = F@ + Sram,la@]. (2.16)
(10) Further, compute "
5, = %{%. 2.17)
I 6, << 7%, then set
[y=74,;,
return to step 4. Otherwise, go to the next step.
(11) Set
min{7,4:,Aus}, i O
By = 1D if 7,>0.>mn (2.18)

LAVAN otherwise.
(12) Choose t(# + 1) < min{z(&) + 1, M}. Obtain B4, by updating B, using the DFP formula
or the BFGS formula if and only if update rule 1 holds. And obtain D;,, by updating D, using the
Broyden formula if and only if update rule 2 holds. Set £<—£ + 1 and return to step 2.

Remark 1 An important feature of this algorithm is that we decide whether accept z, + s or z,

+ pr+ Yidias ., by ratio 0,. Therefore, it is allowable that @ (z:,,) > @ (x,) and thus this is a non-
monotonic sequential technique. It is easy to see that the usual monotone algorithms can be viewed as

a special case of the proposed algorithms when M = 0.

3 Convergence Analysis

We make the following assumption in this section.

Assumption A1 The sequence of {z;}, {x: + £:}, and {z; + p. + Y, d.} generated by the algo-



http://www.cqvip.com

£ 000 http:/iwww.cquip.com]

12 LA K2 (A AR 2002 4E

rithms are contained in a compact set % ; f (x) and ¢ (1) are twice continuously differentiable on

%" the matrix A(x) has full column rank over ; thus the matrix R(x) € R”*”in (1. 2) and its

inverse R(x) !are defined and continuous on.%"; {B,} C R™™"are bounded symmetric matrices, and
{D,} C R"*" ™ are bounded matrices.
According to the assumption, there exist some positive constants T, w, b and & such that
GEIRIN<t LEIBI<L, IDI<E, [IWEnI<w, ¥ - 3.
The following two properties have been proved (see Lemma 3.1 in [8]and Lemma 3.5 in [7]).
Lemma 3.1 Under the Assumption Al, the correction vector d, given in (2. 10) satisfies
ldell = OUlp:ll®>. (3.2

Lemma 3.2 For any &, the condition

" o o " A
Er(b+1)‘{ le.(x) | — | Ve (x) pitc,(x0) [} —gTY, p1+ (p2)"D,pt = p min{||c,||, 'ué_‘ ‘ N )

=1

Let pi denote the solution of the horizontal subproblem (2.5). It is easy to obtain

|Zigs+D.pt ”
(P:A )

By the definition of Pred,;(p,) and the update formula (2. 10) of penalty parameter, we get from
(3.3) and (3. 4) that

— (Zl'g‘+D‘PZ)"'Pi—%(PZ)TB‘PE = %IIZ'[J,T‘+D‘PZII min { g,4;, (3.4

A Dy, A
Pred, () = ”Zbgb + Dupill mln{pzA‘,%i—/L“} + pmin{||c|| ,#Z,‘ k. (3.5

Similar to Lemma 3. 4 and Corollary 3.5 in [6], we can also obtain that
Lemma 3.3 There exists a positive constant / such that for all 2

|Ared,(p) — Pred, (p) | < Lpall? << L4 + 1) AL (3.6
Lemma 3.4 Let p, be generated by the proposed algorithm. Then

o, . Zig:. + Dp2 .
D ris p) <= L1120 + Dopill min e, SEEEDIN i, 2 a1

Proof From c;(z; + ) = ci(x) + Ve (@) pe + OUlpl?), i = 1,2, ,m we get
lei(xi + P | — le(xp) | _

lin(} T — | Ve (x)Tp|s i = 1,2, ym
Consider the vertical subproblem (2. 4). Set 1 = — Ric,.
(1) ¥ 1221l < #4445 and hence ¢; + RYp = 0, then piis a solution of the subproblem (2. 4). So
p = ptand we have | Ve, (x| = le(@) |,
# be

(2) If [|[p2]l > mdss then S22 SETh is a feasible solution of the subproblem (2. 4). We have
"
- | vcx(Ib)TPbl <_ |Ci(Ib) | + | Ve, (Ib)TPb+Ci(Ib) |

0N .
<L — e, (x) | » = 1,2, ,m. 3.8)
ST RN @R (

Since pj is the horizontal subproblem (2. 5), it is not difficult to obtain

”Zk g+ DkP‘Z” )
[P )

The directional derivative D@, (z,; p4) of the merit function @ (2) at the point z; along the direction p,

Zige + DipD"pi <<— “Zk g+ + Dipill min{g,4;,

exists and

Do (zis ) = gi b — _}:_l,r(k+1)i|VC;(I§)TP/,|
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= (Z{ g +Dupd" i + g Yl — 2m+n,,\ Vea) " pal — (1 Dipie 3.9
(i) p1 = pi, by the definition of the multiplier 4, in(2.9), we have that
gVt = ARIpp <Al - IREP2I < NAL - Hleslls
and
| (DipD 23| < NPDTDR L - Nl
Hence, the 7., updated in (2.11) implies that the conclusion of the lemma is true.
Gi) 1221l > g4 . Further
121V, p1 + (Dp) 23] < NP g + D" Dilly o2l < mllYigs + (D" Dalli A
which means that the conclusion of the lemma is also true.
As space is limited, we only set out the main results and omit the resemble proofs. Similar to the
proofs of Lemma 3.7 and Lemma 3. 8 in [6], we can also obtain the following lemma and theorem,
respectively.

Lemma 3.5 Suppose that assumption A1l holds. If there exists € > 0 such that

ezl + 125l = € (3.10)
for all £ , then there is an @ > 0 such that
A za, ¥ A (3.1

Theorem 3.6 Suppose that assumption Al holds. Let {z;} C R"be a sequence generated by the
proposed algorithm. Then
liminf {lc¢z |l + 1ZEgull} = 0. (3.12)

4 Local Convergence Rates

In order to get the local convergence rate of the proposed algorithm , more assumptions are needs
Assumption A2 . is a K-K-T point of the problem (1. 1), that is, there is a vector A, € R"
such that
c, =0 and g. — A.A, = 0.
Assumption A3 There exists a constant r => 0 such that
d™(ZTW.Z,))d = t|ld|?, ¥ 4 € R,
Assumption A4

||(Bb - H;)ZZ‘(Ib-f-l _ Ib)” —

lim 0, 4. 1)
k00 ||1b+1 - Ik”
—— T ——
lim ” (D, G.)Zy (xppy -Tb)" = 0. (4.2)
ko0 ||1b+1 - Ib”
Lemma 4.1 Assume that Assumptions A2~A4 hold. f x4+, = zx + px + Yids , then
|Pred, () — Aredi(p) | = oD I* + llp2ID. 4.3)

Proof Similar to the proof of Lemma 4. 2 in [8]. So (4. 3) is true.

Lemma 4.2 Assume that Assumptions A2~ A4 hold. Then
lpzll
T

i Lozl
‘or

Pred, () = Il + e min{l|p7ll, b odipill < 2D s 4. 4

Da(ays p) <— g llall* — pmin{llp2 b odligzdl « 2D (4.5)



http://www.cqvip.com

£ 000 http:/iwww.cquip.com]

14 LR KR (B ARRHERD 2002 4F

Proof The solution pi in the subproblem (2. 5) satisfies that there exists a 4 = 0 such that
(B + D) pi = — (Zigk + Dip?)

and from Assumption A4, for large &
(Zgit DapD)" Pt (PO Bupi < — (oD Bupi— mlpill < — Tl +ollpill-Ipuld. 4.6
Further,
(Zigd"pi = (Zigs + DipD"pi — (p)"Dyipi
<— (BD"Bipi — ()" Dupi <— il + Olgill - 2D
As we know that similar to the proof of Lemma 3. 4,

#15

Predi (p2) = —lIpill? + pmin{llell, =2} + oCl2ill - 20D, 4.7

/‘15

Do (ays p) <~ S 12ilIP — pmin{llal, 22} + oClzil - Il + oCli2lD. (4.8

From the subproblem (2. 4), we know
o2l < IREMICHeell + IRE pt + all] < tlledl.
The above inequality together with (4. 7) and (4. 8) imply that the lemma holds.
Theorem 4.3 Assume that Assumptions A2~ A4 hold. Let {z;} be a sequence generated by the
proposed algorithm. Then
lim {|1Z(z)"g(zD || + lleCzo 1} = 0. 4.9

Proof Similar to the proof of Theorem 4. 2 in [6], we have that (4. 9) holds.

Remark 2 Theorem 3. 6 indicates that at least one limit point of {x;} is a stationary point. In
this, Theorem 4. 3 extends to a stronger result, that is, all the limit points are K-K-T points.

Now, we discuss the convergence rate for the proposed algorithm when B, is positive definite.

Theorem 4. 4 Under the Assumptions A2~ A4, the proposed algorithm is at least two-step Q-

superlinearly convergent, i.e. ,

. T — T

fim J0 =2 0. (4.10
oo [lzimy — x4 ||

Furthermore, if at least one of the matrices B, and D, is updated as GURWITZ’s alternative strategy

given in [6] at each iteration, then the rate of convergence is one-step Q-superlinear, i. e. ,

lim ”J—”A+1 — T ”
oo |l — x|

Proof It is similar to the proof of Theorem 4. 4 in [6]. So (4.10) and (4. 11) hold.

= 0. (4.1D
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