2004, Mar.

由圈长分布确定的偶图

王 敏. 王明磊

(上海师范大学 数理信息学院, 上海 200234)

摘 要: 阶为 n 的图 G 的圈长分布是序列 $(c_1, c_2, ..., c_n)$, 其中 c_i 是图 G 中长为 i 的圈数. 作 者得到如下结果:设 $n = r = \min(n + 6, 2n - 3)$,则 K_n ,是由它的圈长分布确定的.

关键词: 圈: 圈长分布: 偶图: 圈长分布确定的偶图

中图分类号: 0157.5 文献标识码: A 文章编号: 1000-5137(2004)01-0042-03

0 引言

阶为 n 的图 G 的圈长分布是序列 $(c_1, c_2, ..., c_n)$,其中 c_i 是图 G 中长为 i 的圈数. 计算给定图 G 的 圈长分布是一个未解决的困难问题,即使计算 c_n 也是一个很困难的问题 $^{(1)}$. 如果一个图 G 的圈长分布 $(c_1, c_2, ..., c_n)$ 已经知道. 一般来说,具有这样的圈长分布的图 G 不唯一,因而一个自然的问题就是什 么样的图是由它的圈长分布确定的[2].

当 r > n - 3 时, K_n , 的圈长分布的唯一性问题就是一个很困难的问题, 本文对此问题进行了研 究,取得突破性进展,证明了 $K_{n,r}(n-r-\min(n+6,2n-3))$ 是由它的圈长分布确定的.

1 若干引理和命题

我们首先有下述

引理 1 若 G是 n 3 的简单图且对任意不相邻的顶点对 u, v, 均有 $d_G(u) + d_G(v)$ + 1,则 G 含有 - 1 圈.

引理 2 设 G 是简单图, u 和 v 是 G 中不相邻的顶点,且适合 $d_G(u) + d_G(v) + 1$,则 G含有 n - 1 圈当日仅当 G + uv 含有 - 1 圈.

引理3 设 $G = K_{n,n+1} - A$, $A \subseteq E(K_{n,n+1})$, |A| = j, 则当 n = j + 2 时, G 的圈长分布 (c_1, c_2) ..., c_{2n+1}) $+ c_{2n} = 0$.

引理4 当 n j+2 时, $K_{n,n}$ - A(|A|=j) 的圈长分布 $(c_1, c_2, ..., c_{2n})$ 中 c_{2n} 0.

引理 5 当 n j+2 时, $K_{n,n+k}$ - A(|A|=j,k 1) 的圈长分布 $(c_1,c_2,...,c_{n+k})$ 中 $(c_2,c_3,...,c_{n+k})$ 中 $(c_2,c_3,...,c_{n+k})$ 综合引理 3~5 得到下述

收稿日期: 2003-03-30

基金项目: 上海市高校科技发展基金(02D K08)和上海市教委课程建设项目.

作者简介:王敏(1978),女,上海师范大学数理信息学院研究生;王明磊(1979),女,上海师范大学数理信息学 院研究生

命题 1 设 $G = K_{n,r} - A$, $A \subseteq E(K_{n,r})$, |A| = j, r n. 则当 n j+2 时, G 的圈长分布 (c_1, c_2, c_3) ..., c_{n+r}) $+ c_{2n} = 0$.

为证明下节定理,我们还需要下述

引理 ${f 6}^{[3]}$ 设 $G = K_{n,r} - A$, $A \subseteq E(K_{n,r})$, |A| = j , r = n ,则 G 的最大 4 圈数 $c_4(G) = \begin{bmatrix} n \\ 2 \end{bmatrix} \begin{bmatrix} r \\ 2 \end{bmatrix} - j \begin{bmatrix} n-1 \\ 1 \end{bmatrix} \begin{bmatrix} r-1 \\ 1 \end{bmatrix} + (r-1) \begin{bmatrix} j \\ 2 \end{bmatrix}.$

2 主要结果

设 $n = r = \min\{n + 6, 2n - 3\}$,则 G 是完全偶图 K_n ,当且仅当它的圈长分布 $\{c_1, c_2, ..., c_n\}$ c_{n+r})满足

$$c_{i} = \begin{cases} \frac{1}{2} \binom{n}{p} \binom{r}{p} p [(p-1)!]^{2}, & i = 2p, p = 2,3,...,n; \\ 0 &$$
其他.

证明 对于 r = n 的情形,陆宗元在/4/中已证.现在考虑 n < r min/n + 6, 2n - 3/时的情形. 先证必要性. 因为 $K_{n,r}$ 为简单偶图,所以 $c_1 = c_2 = 0$, $c_{2p+1} = 0$, p = 1, 2, ..., n. 又显然对 i > 2n, $c_i = 0$. 对每个 i = 2 p (p = 2, 3, ..., n) , G 有 $\begin{bmatrix} n \\ p \end{bmatrix}$ 个阶为 i 的完全偶子图 $K_{p,p}$. 而每个这样的完全 偶子图 $K_{p,p}$ 有 $\frac{1}{2}$ p $[(p-1)!]^2$ 个 i 圈. 因此 $c_i = \frac{1}{2}$ p $\begin{bmatrix} n \\ p \end{bmatrix}$ $\begin{bmatrix} r \\ p \end{bmatrix}$ $[(p-1)!]^2$.

再证充分性(用反证法). 若 $G = K_{n,r}$, 则 $G = K_{n,r} - A$, A = 1 或 $G = K_{n+k,r-k} - A$, A = 11 $k \left[\frac{r-n}{2} \right]$.

若 $G = K_{n,r} - A$, |A| = 1, 则易知 $c_4(G) < \left| \begin{array}{c} n \\ 2 \end{array} \right| \left| \begin{array}{c} r \\ 2 \end{array} \right|$,这与已知矛盾.

若 $G = K_{n+k, r-k}$ - A, |A| = j 0, 1 k $[\frac{r-n}{2}]$,则由命题 1 知,当 n+k j+2,即 0 j n+ k - 2 时 , $c_{2\,n+2\,k}$ 0 , 这与已知矛盾. 所以 G { $K_{n+\,k,\,r-\,k}$ - A | |A|=j n+k - 1 } ,则显然有 $\max_{|A|=i=n+k+1} c_4(K_{n+k}, r_{-k} - A).$

$$c_4(G) = \binom{n+k}{2} \binom{r-k}{2} - (n+k-1) \binom{n+k-1}{1} \binom{r-k-1}{1} + \binom{n+k-1}{2} (r-k-1).$$
令 $f(k)$ 为上述不等式右边的式子,则上式化为 $c_4(G) = f(k)$. 以下证明 $f(k) < \binom{n}{2} \binom{r}{2}$,即证 $f(k) - \binom{n}{2} \binom{r}{2} < 0.$ 令 $H_k(r) = f(k) - \binom{n}{2} \binom{r}{2}$,由于 $n < r = \min\{n+6, 2n-3\}$,及 $1 = k = \lceil \frac{r-n}{2} \rceil$,

r-n 6及r 2n-3,进一步有1 k 3,n r-n+3

于是当 k=1 时, $H_1(r)=f(1)-\left[\begin{array}{c} n\\2 \end{array}\right]\left[\begin{array}{c} r\\2 \end{array}\right]=\frac{1}{4}\left[\left(-4\,r+6\right)\,n^2+\left(2\,r^2-6\,r+6\right)\,n\,\right]$. 此时 2 r-n6,即 n+2 r n+6.将 r=n+2,n+3,...,n+6分别代入 $H_1(r)$,并结合 n的条件即 n+3,有

$$H_1(n+2) = \frac{1}{4}[-2n^3 + 2n] < 0, \quad H_1(n+3) = \frac{1}{4}[-2n^3 + 6n] < 0,$$

$$H_1(n+4) = \frac{1}{4}[-2n^3 + 14n] < 0, \quad H_1(n+5) = \frac{1}{4}[-2n^3 + 26n] < 0$$

和

$$H_1(n+6) = \frac{1}{4}[-2n+42n] < 0.$$

当 k=2 时,

$$H_2(r) = f(2) - \binom{n}{2} \binom{r}{2} = \frac{1}{4} [(-6r + 12) n^2 + (4r^2 - 22r + 36) n + (2r^2 - 14r + 24)].$$

此时 4 r-n 6,即 n+4 r n+6.将 r=n+4, n+5, n+6 分别代入 $H_2(r)$,并结合 n 的条件,有

$$H_2(n+4) = \frac{1}{4}[-2n(n^2-7)] < 0,$$

$$H_2(n+5) = \frac{1}{4}[-2n(n^2-n-16)+4] < 0$$

和

$$H_2(n+6) = \frac{1}{4}[-2n(n^2-2n-29)+12] < 0.$$

当 k=3 时,

$$H_3(r) = f(3) - \binom{n}{2} \binom{r}{2} = \frac{1}{4} [(-8r + 20) n^2 + (6r^2 - 46r + 100) n + (6r^2 - 54r + 120)].$$

此时 r-n=6,将 r=n+6 代入 $H_3(r)$,并结合 n 的条件即 n-9 得到

$$H_3(n+6) = \frac{1}{4} [-2n(n^2-2n-29) + 12] < 0.$$

因此 $f(k) < \binom{n}{2} \binom{r}{2}$,即 $c_4(G) < \binom{n}{2} \binom{r}{2}$,矛盾. 故 $G \in \{K_{n+k, r-k} A \mid |A| = j \quad n+k-1\}$. 因此, $G = K_{n, r}$.

参考文献:

- [1] BERMOND J C. Hamilton graphs ,in Selected Topics in Graph Theory[M]. Edited by Beineke L W and Wilson R J , Academic Press ,1978.
- [2] SHI YB. Some problems of cycle length distribution[J].南京大学学报(图论专辑).1991, 27:233 234.
- [3] 吴承勋. 几类偶图的圈长分布[J]. 上海师范大学学报(自然科学版), 1993, 22(2):28 32.
- [4] 陆宗元. 几类由圈长分布确定的偶图[J]. 上海师范大学学报(自然科学版),1992,21(4): 24 28.

Bipartite Graphs Determined by Their Cycle Length Distributions

WANG Min, WANG Ming lei

(Mathematics and Sciences College ,Shanghai Normal University ,Shanghai 200234 , China)

Abstract: The cycle length distribution of a graph of order n is $(c_1, c_2, ..., c_n)$, where c_i is the number of cycles of length i. In this paper, we obtain the following result: Let $n = r = \min\{n + 6, 2n - 3\}$, then $K_{n,r}$ is determined by its cycle length distribution.

Key words: cycle; cycle length distribution; bipartite graph; a bipartite graph determined by its cycle length distribution