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A Scaling Trust Region Interior Point
Algorithm for Linear Constrained Optimization
Subject to Bounds on Variables
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Abstract; In this paper we propose a scaling trust region interior point algorithm for linear constrained optimization
subject to bounds on variables. The proposed algorithm is globally convergent and locally fast convergent rate even if
conditions are reasonable. The results of numerical experiment are reported to show the effectiveness of the proposed
algorithm.
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In this paper we consider the trust region interior point algorithm for solving the linear equality constrained
optimization problem subject to bounds on variables:

min  f(x)
st Ax = b, l < x < u. (1.1)
where f; R"— R is smooth nonlinear function, not necessarily convex, A € R™"is a matrix, b € R™ is a vec-
tor, the vectorsl ,u e [RU {2 }}", ]l < u.
There are quite a few articles proposing sequential convex quadratic programming methods with trust re-
gion idea in [1],[2]. These resulting methods generate sequences of points in the interior of the feasible set.

At first we define the scaling matrix D, & diag{D};,D;,---,D;} at the k -th iteration with the component D’ de-
fined as follows

% — 1, ifl, >- oo, anduy, =+ »

. s ifl. =— o du, <+ o
D;‘ déf u; x,‘ | 1 ¢; , and u; (12)

min{x, - I;,u, - x}} ifl, >— oo, ,anduy, <+ »

1 ifl, =— o anduy, =+ =

where x, , [, and u, are the i -th components of the vectors %, land u , respectively. The matrix B, is a symmet-
ric approximation of the Hessian V2f(x,) of the objective function in which B, assumed to be positive semidefi-

nite in [ 1]. A search direction at x, by solving the trust region convex quadratic programming:
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def

min  (d) € gld + 3-d"B,d
st Ad =0, (1.3)
ID'd|| <=4, <% +d<u
where g, = Vf(%x,), d = x — x,, ¢(d) is the local quadratic approximation of f(x) and A, is the trust region
radius. Let d, be the solution of the subproblem.

A solution that minimizes the model function within the trust region is solved as a trial step. If the actual
reduction achieved on the objective function fat this point is satisfactory comparing with the reduction predicted
by the quadratic model, the point is accepted as a new iteration; otherwise the trust region radius is adjusted
and hence the procedure is repeated. The paper is organized as follows. In Section 2, we describe the trust re-
gion interior point algorithm with scaling matrix. In Section 3, weak global convergence of the proposed algo-
rithm is established. Some further strong global convergence and local convergent rate are discussed in Section

4. Finally, the results of numerical experiments are reported in Section 5.
2 Algorithm

In this section we describe a trust region interior point method for linear equality constrained optimization
(1.1) subject to box constraints on variables. The method involves choosing a scaling matrix D, and a quad-
ratic model of the objective function. We motivate our choice of scaling matrix by examining the optimality
conditions for (1.1).

Let the Lagrangian function of problem (1.1)

I(x, A ,u,v) = f(%x) +ATAx—y,T(x—l) - (u - %), (2.1)
where the Lagrangian multipliers A € R™, 0 < u, » € R". Optimality conditions for problem (1.1) are well
established. Assuming feasibility, first-order necessary conditions for x , to be a local minimizer are that there
existu, v, € R"and A, e R" such that

g. A\, —p, +v, =0, pu, =20,», =0,
Ax, = b, I<x, < u, (2.2)
W(l-%) =0, v (u-2.) =0

Now we state the scaling trust region interior point algorithm for optimization problem (1.1).
Imitialization step

Choose parametersO < ) <7, <7, <1,0 <y, <y, <y, <1 <1vy,, € =0. Choose a symmetric matrix
B, . Select an initial trust region radius A, > 0 and a maximal trust region radius A, = A,, give a starting
strictly feasible point x, € int({2) = {x1 Ax = b,1 <x <u}. Setk =0, go to the main step.

Main Step

(1) Evaluatef, = f(%,), & = Vf(%,).

(2) ¥ || P& |l < €, stop with the approximate solution x, , here the projection map P, =7 -
A{(A,A]) 'A, of the null subspace of #(A,) with A, = AD,, 8, & D.g, .

(3) Solve subproblem

min ¢ (d) ¥ gld + 1-d"B,d

(S,) s.t. Ad =0, l<x +d<u, (2.3)
ID'd || < A,
Denote by d, the solution of the subproblem (S,) .
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(4) Compute
Pred(d,) = -¢,(d,), Ared(d,) = f(x,) - flx, +d,). (2.4)

Further, setp, = Ared(d,) /Pred(d,).

(5)Hp, < 7, then the iteration is said to be unsuccessful. LetA, € [y,4,, v,A,], and go to step 3.
Otherwise, that is, p, = 7 is said to be successful iteration, then go to the next step.

(6)Setx,,, = x, +d,, and take

{n A, 724, ifp, < ny,
A = {(n 4, A if g, < pp <1g,
(4;, min{y; A, At ], ifp, = 7,

Calculate f(x,,,) and g;,, .

(7) Update B, to obtain B,,, . Then set k «+— k& + 1 and go to step 2.

Remark In the subproblem (S,) , ¢,(d) is a local quadratic model of the objective function f around
%;. A candidate iterative direction d is generated by minimizing ¢, (d) along the interior points of the feasible
set within the ellipsoidal ball centered at x, with radius A, . A key property of this transformation in ( S, ) is
that D;"d, is at least unit distance from all bounds in the scaled coordinates, i e, an arbitrary step D;'d, to the
point x, + d; does not violate any bound if d,"D;?d, < 1. To see this, first observe that diD}d, =
‘_%(d;‘/D;‘)2 < 1, which implies I1djl < D; , fori = 1,---,n , where d is the i -th component ofd,, D, is
defined given in (1.3). We discuss the correlation of ;, u;, x} and d; in the following cases, respectively.

(i) ¥l >-w andu, =+ w, thenld)) < D} ==x, - I,. So, we havel, <z +d\ < u,.

(ii) B}, =— o andu, <+ », thenld}] < D = u, —-x;,. We havel, < x; + d; < u, as well.

(iii) If}, > - andu; < + o, thenld)l < D; = min{x} -, u, —}}. We can obtainl, < x} +d’ <
u, same as (i) and (ii).

(iv) Ifl; = - o andu, =+ o, thenld;l < D, = 1. Clearly, we can getl, < x} +d} < u,.

Therefore, no matter what case is the sign of d , the inequality I, < x,' + d,’ < u, holds.
3 Global convergence

Assumption 1 The objective function f(x) :R"— R’ is twice continuously differentiable and bounded
blew on R".

Throughout this section we assume that Assumption 1 holds. Givenzx, € int({2) , the algorithm generates
a sequence {x,| C R". In our analysis, we denote the level set of f by

H(xy) =1 xe R f(x) < f(xy),Ax = bl < x < u} .

The following assumption is commonly used in convergence analysis of most methods for linear equality
constrained optimization.

Assumption 2 Sequence {x,} generated by the algorithm is contained in a compact set F(x,) on R" .
Matrix A has full row-rank m .

Assumption 3  D,B,D, is bounded, i e, there existsr > O such that | D,B,D, | < r, V k

Assumption 4 D(x) V’f(x)D(x) is bounded, i e, there exists # > O such that
| D(x) V2f(x)D(x) | < #, here D(x) 4 diag{D'(x) ,D*(x),++,D"(x)}. Furthermore, D'(x) has the
similar definition as (1.2).
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The following lemma establishes the necessary and sufficient condition concerningu, , d,, and A, when d,
solves (2.3), which is similar to proof of Lemma 3.1 in [8] (also [6], [7]).
Lemma 3.1 d, is a solution of subproblem ( S, ) if and only if there existy, = 0, A, € R" such that
(B, +mDi*)d, = —g, +AT A,
Ad, =0,lsx, +d, su (3.2)
m(4A; - d;D;%d,) =0
holds and B, + u,D;” is positive semidefinite in .#(A) .
Similar to Proofs of Lemma 3.3 in [8], we can also obtain following lemma.
Lemma 3.2 Let the step d, be the solution of the trust region subproblem, then there exists 7 such that

the step d, satisfies the following sufficient descent condition.

P&
| DiB.D, |

forallg,, B, andA, , where P, = I - A{(A,A]) 'A,withA, = AD, and g, = D,g, .
Lemma 3.3 Under the Assumptions | ~2. If || P,g, | 5 O, via the finite iterations, we affirmably
obtain a d, such thatp, = Ared(d,) “Pred(d,) = 7. In this case the step is accepted. Thus we takex,,, =

%, + d, as a new iteration.

Pred (d,) = 7 || P,g, | min {1,A,, | (3.3)

Proof From Lemma 3.2 and Assumption 2, lete = | P,2, | , when A, < min|—5—— 1}, we
|1D.B,D, ||
have
. | Pids |l
Pred,(d,) =7 | P min{1,A,,————"——1| = 7eA
' k k ” Itglt ” k ” D,‘B,‘D,‘ ” k
Again, we can obtain
1
I A% +dy) -fl=,) -p(d,) !l =I Td:( sz(xk +£&d,) ~B,)d, |

1 -

S5 | D;'d, | : 2 sz(xb +§£d,)D;, - D,B,D, ||
1

< 5 (r+ £ AL

) .| Ared,(d,) - Pred,(d,) |
. B - E\ Gy LAt
where £ € [0,1]. Thus, lim 1 p, ~ 11 = lim | Pred,(d,) |

4, , such that when A, < A,, p, = 7, which means that the successful step is obtained in the finite iters-
tions. 0

= 0. This shows that there exists

Similar to proof of Lemma 4.1 in [8], we can obtain the following lemma.
Lemma 3.4 Assume that Assumptions 1 ~4 hold. If there exists € > O such that

| Pigill = e (3.4)
for all & , then there is @ > O such that
A,z a, VE (3.5)
2% 1 -7
where o = minl—TM,e—y}] ,and # = min|{1,7}.
r+#f r

Theorem 3.5 Assume that Assumptions 1 ~4 hold. Let {x,] € R” be a sequence generated by the al-
gorithm. Then

liminf || Py | = 0. (3.6)
Proof If the conclusion (3.6) is not true, there for all sufficiently large k, | Pi8. | = € for somee >
0. Along with (3.3) and Lemma 3.4, for a successful interaction with index k , we can get that
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f(%,) - f(%,.,) = nPred(d,) = ﬁ,eminil,A,,,—j—} ,

Summing all the successful iterations from O to k , we have
k

k
fx) =) = 3 ) ~f(ma)] = T riemint 1,4,

i=0
Since f(x,) is bounded blew on R" , we obtain that f(x,) - f(#,,,) is bounded. It implies that
}im A, =0,

which contradicts (3.5) in Lemma 3.4. Hence the conclusion of the theorem is true. g
4 Local Convergence

Theorem 3. 5 indicates that at least one limit point of {x,} is a stationary point. In this section we shall
first extend this theorem to a stronger result and the local convergent rate, but it requires more assumptions.
We denote the sets of active constraints by
I(x) Clit # =1,i=1,-,n}, Q) Elil & =u, i=1,-,n.
To any I(x) U Q(x) C {1,---,n} we associate the optimization subproblem
(P)jyo minf(z); st Ax =b, (x =)y, =0 or (x-u)y, =0
Assumption 5 For all /(x) U Q(x) C {1,:--,n} , the first order optimality system associated to
(P) o has no nonisolated solutions.
Assumption 6 The constraints of (1.1) are qualified in the sense that (ATA), =0, Viegl(z) U
Q(x) implies that A = 0.
Assuming that (A ,u,¥ ) is associated with a unique pair z which satisfies Assumption 5. Define the set of
strictly active constraints as
J(&) = lil @ >0,i=1,-,n},Jp(2) = lil # >0,i=1,-,n},
and the extended critical cone as
T(z) ={de Rl Ad =0,d" =0,i e J;(z) U Jp(%)}
Assumption 7 The solution x, of problem (1.1) satisfies the strong second order condition, that is,
there exists @ > O such that
P IY(x)p = alplf, ¥ p e T(). (4.1)
Givend € A(A) , the null space of A , we define d”, d" as the orthogonal projection of d onto T and N ,
where N is the orthogonal complement of Tin #M(A) ,ie, N = {ze MA) | z2'd =0, V d e T(x)}, which
means thatd = d" +d"and || d|*= ||d" |*+ | d"|*
Similar to Lemma 4.1 in [8], we obtain the following lemma.

Lemma 4.1 Assume that Assumptions 5 ~7 hold. Ifx, is sufficiently close to x, then

d'(B, +2u,D;")d, = 5 | d, "+ x 1 |1, (4.2)

d'(B, + D" )dy = 5 | 4y I + w0 |l 45 |1 (4.3)

where x > 0, x; > 0, and @ given in (4.1), multplier x4, given in (3.1).
Theorem 4.2 Assume that Assumptions 5 ~7 hold. Let {x,} be a sequence generated by the algo-

rithm. Then d,— 0. Furthermore, if x, is close enough tox, , and x, is a strict local minimum of the problem
(1.1), thenx,— x,.
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Proof We can deduce that
| Az, +dy) - f(=) - ¢u(dy) | =1 ;_dkr( V(%) - B)de +o( [dill®) | = o( [l *).
By (3.2), we get that
eld, = - (B, +wDi*)d, - NAdy =~ d[(B, + D) d, <= L1y P~ x| ) I
From (2.4) and (4.2), for a large enough k,
Pred(d,) = df(B, +wDi*)d; - ~-dByd, = 3-di(B, + 2D )d, = 5 Idill* + 5 1] -

where « given in (4.2). As for a large enough k, we obtain that

fi —f(x +dy) fi ~fla +d,) + ¢, (dy)
Pr = Pred(d,) =1+ Pred€dk) =1-

a o Izldk”:) N 2?17).
g,

According to the acceptance rule in step 4, we have

Ax) - f(x) = 7Pred(d,) =22 |d,|* + o( |, ®). (4.4)
Clearly, we know
}LT[f("k) -flzi) ) = 0. (4.5)

(4.4) and (4.5) imply that ;}LT ]l = 0.

Assume that there exists a limit point x , which is a local minimum of f. As the Assumption 3 necessarily
holds in a neighborhood of x,, then z, is the only limit point {x,} in some neighborhood A(x, ;8) ofx, ,
where 8§ > 0 is a small constant. On the other hand, we know that f(x,) = f(x,,,). So, we define / =
inflf(x); x € Mx,;8)\Mx,;6/2)}. Because x, is a strick local minimum of the problem (1.1), we
may assume f > f, . Now, assuming thatf(x,) <fandx, e (%, ;6/2), it follows that f(x,,, ) <7, ld |l
< 6/2 andx,,, € Mx. ;5) ; using the definition of / , we find that x,,, € /#(x,;6/2). This implies that se-
quence |{x,} remains in.#(%,;6/2) . Hence, x,— x,. It means that the conclusion of the theorem is true.

0

Similar to prove Theorem 4 in [8], we can obtain

Theorem 4.3 Assume that assumptions 3 ~5 hold. Let {x,} be a sequence generated by the algorithm.

Then
kli"l | P&l =0 (4.6)

Theorem 4.4 Let {x,} be a sequence propose by the algorithm. Assume that {B,} is bounded, then
(i) any limit point x, of {x,} is a solution of the first-order optimality system associated to problem
(P)1uga,y » thatis,
Vix,) "ATA. -, v, =0,A4x, = b,
(x.)l(z.) =ll(z.);#it =0,igl(x,), (4.7)
(x.)o(z,) = Ugiz,y s Vi- =0, igQ(x,)
(ii) if Assumptions 3 ~4 and (4.7) hold, then x, satisfies the first-order optimality system of (1.1); i
e, there exist A ,e R™, u, ,v,e€ R" such that
VA(x,) -A"A, —pu, +v, =0,
Ax = b, l<x,<u (4.8)
uh(x,~-1) =0, (u-x,) =0.

Proof First we can prove that the sequence {x,} satisfies the following conditions: (i) d,— 0, (ii)
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w0, (i) D[ Vf, - 4"2,1— 0,
Indeed, From Theorem 4.2, we have obtain that (i) holds. Sincef(x) is twice continuously differentia-
ble we have that

fx+dy) = f(z) +gld, + 2df Vi(x)d, +o( |14, ||, (4.9)
Furthermore, by (3.1) we have

gld, + 3-d] Vf(x,)d; = - wd]D;d,. (4. 10)
Hence we obtain that

_ Az) - f(x +dy) = wdiDd, +o( |, [|?) = wd} +o( | dy|2).
Due to the fact that | f(x,) | is bounded from below, we deduce thatyu,A>— 0 as k— . It implies that either

kllmp,k =0 (4.11)
or
lim inf 4, = 0. (4.12)

Now we prove that ify, = & > O for all k sufficiently large, then a contradiction will come into being. From (4.
9) we have that when x, is close enough to x

| Az +dy) ~f(%) g (d) | = o( || @, I%). (4.13)
Again, we have

Pred(d,) = %d[(Bk + D) d, + LHIDd, = L d, = 241 = %Af. (4.14)
By (4.13) ~(4.14), we have that

oo~ 11 = Ared(d,) - Pred(d,) _oCldell )

Pred(d,) 5,432

That means that sequence {p, | converges to unity and not decreased for sufficiently large k¥ , and hence bound-
ed away from zero. So, (4.12) cannot hold.

Theorem 4.3 means ||P,8,|| — O which implies P,2,=[1 - AT (4,A7) "'A, 18,=D,[ V£, —A"A,] because
of A,=AD,, §,=D,g,and A,=(AA,) "'A[g,. By the conditions (i), (ii), (iii) , similar to the proofs of Theo-
rem 2.2 in [1], we can also obtain that the conclusions of the theorem are true. 0

The conclusions of Theorem 4. 4 are the same as theorem 2. 2 in [ 1] under the same as assumptions
in[1].

We now discuss the rate of local convergence for the proposed algorithm.,

Theorem 4.5 Assume that Assumptions 5 ~7 hold. For sufficiently & , then the trust region constraint
is inactive, that is, there exists a A > O such that 4, = A.

—+0 as A,—0

Due to the trust region radius is inactive, the rate of local convergence for the proposed algorithm relies
on the Hessian of objective function at x, and the local convergence rate of d,. If d, becomes the quasi-Newton

step, then the sequence {x,| generated by the algorithm converges x , superlinear.
5 Numerical Experiments

Numerical experiments on the scaling trust region interior point algorithm in this paper have been per-
formed on a Pentium 4 personal computer. In this section we present the numerical results. In order to check
effectiveness of the method , we select the parameters as following: € = 107, 7 = 0. 01, nm =019, =0
75,9 =01,y =0.2,9, =0.5, y, = 2,4, =10, 4, = 1.
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Table 1 Experimental Results

Problem Name n ITR NF NG
HS28 3 9
HS48 5 5 4
HS49 5 36 38 36
HS51 5 3 4 3
HS73 5 14 15 14

The experiments are carried out on 5 standard test problems quoted from [5] ( HS: the problem from
Hock and Schitkowski'®’). ITR, NF and NG stand for the numbers of iterations, function evaluations and gra-

dient evaluations, respectively.
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