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Abstract: Based on grouped data, the asymptotic normality of the maximum likelihood estimate (MLE) for mean of
the single-parameter exponential distribution is proved from a new point of view, and the asymptotic confidence inter-
val is derived. Comparing the results of CHEN and MIE, a Monte carlo simulation shows that it is a little more effec-
tive.
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1 Introduction and preliminaries

The exponential distribution has an important position in lifetime models. Many authors have contributed
to estimate the parameters of this distribution. For Type-I and Type-II censoring, several statistical analysis
methods have been developed including MLE, BLUE, BLIE and approximated MLE, see Lawless( 1982) ar
Bain and Englhart(1991) 21 For multiple Type-II censoring, Balasabramanian and Balakrishnan(1992) 4l
have discussed BLUE and approximate MLE, Fei and Kong (1994 ) ] have provided approximate and exact
interval estimations for the exponential parameters,

In practice, it is often impossible to continuously observe or inspect the testing process even with censo-
ring or multiple censoring. So, at this time, we might only be able to use means of grouped data. Based on
grouped data, CHEN and CHENG (1988 ) '*! have considered the problem about Weibull parameters estima-
tion. When it comes to estimating the approximate confidence interval for mean of the single-parameter expo-
nential distribution, WANG and WANG (1993) '"! have transformed the grouped data into the complete data

based on binomial distribution. But it is only effective for the equal-distance grouped data, and the estimation
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is also very conservative. The main idea of CHEN and MEI(1996) ) comes from the following. When they
tried to search for the MLE of the mean, they needed to solve the function, such that

& k
g(8) = anA—rj/expf(— AT/0) = an'r,- +nk+1)r,
J=1 =1

(where0 = 7, < 7, < ' < 7, are observed times, Ar; = 7, — 7,_, , n; is the number of the times observed

in the interval [7,_,,7;) , and expf( - A7,/0) =1 —exp( - A7,/6) ).

k
They found that 2 n,7; + n,, 7, isthe sum of n i. i d. random variables
j=1

5
s. t. ¥, = Z'r]—f’('r]—_l <z <7) +7Il(x, >1,)
j=1
( where I'(-) is the identification function, x, ,---,x, e exp(g) ).

Thus, according to the central limit theorem, the interval estimation of g( ) can be got. Then the interval es-
timate of § can be obtained based on the monotone of g( ) .

In this paper, we use a classical way to discuss the asymptotic normality of the MLE from a new point of
view. As for CHEN'' | he has used a complete sample to prove the theorem on the asymptotic normality of
MLE in Section 3, Chapter 4. We also need a complete sample to certify the conditions of the theorem. Obvi-

ously, grouped data sample is not a complete sample. But, if we change our mode of thinking, we can find

that n samples with size N ((x,,-**, %, ), i =1,--,N) can be looked upon as a single sample with size N
(X, , Xy, X; = (%3,",%,)", i =1,---,N). The distribution of the sample is polynomial distribution PN
(n,pi, P4 ) (where, k +1 is the number of intervals of the grouped data) and obviously it contains only

Hig PN(n,p,,"**,pi,). Then, we can use the method of [9] to test

one parameter. Thus, ( X,,---,X})
the asymptotic normality of the MLE from the polynomial distribution. So, we can obtain the asymptotic nor-
mality of MLE from the n samples with each size NV based on exponential distribution. In the later part of this
paper, we prove that the MLE derived from polynomial distribution is the same as MLE directly from exponen-
tial distribution.

In Section 2, the single-parameter exponential distribution with grouped data is linked with polynomial
distribution. In Section 3, MLE of the exponential parameter with grouped data is derived based on the polyno-
mial distribution and its asymptotic normality is also proved. Thus the approximate confidence interval of the
parameter is given. The results of a Monte Carlo study are given in Section 4. New confidence intervals are

shown to be a little more effective than the estimators proposed in [8].
2 Distribution

Suppose that n independent observations are made on a random variable with a single-parameter exponen-
tial distribution

F(x) = {1 —er, 220, (2.1)
0, otherwise,
where § > 0. Further, let0 =, <, < -+ <, <t, = ® be the ordered inspection-time and n, be the
number of failures in (¢,_,,¢;] ,i = 1,2,--- k + 1. Then, the likelihood function is
| k
h( 0) = n: H (e—'i-l/" - e-'.'/l?)n.'( e—'l/ﬂ) gyl (2' 2)

nlng e ngtng, 134
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That is to say the random vector (n, ,n,,"*,n,,,) has the polynomial distribution P,(p,,p,, ** ,pz.; ) , where

p, =e V¢ i =12, kandp,, = e*’. Let the logarithm of 1(8) be denoted by L(§). Then

1 k ul
L(O) = log ' n. + Z nilog(e""'/" _ e-:,-/a) _ Ry k_
nln s

2!"‘":,!":“1! 6
and

~5-1/8 ~5/8

dL _ L€ — Le WIS
@ = Z"'i (e - e-;,-/a)ez + @

i=1

From(2.1), based on the polynomial distribution, the likelihood equation of 6 is
1 k

|1 'n o nl,k!ni,lH]!

(e-z,_,/a _ e-‘i/a)"i,j(e"L/a)"i,ltﬂ
j=1

N & N
oc H(e-;,-_l/a _ e-‘ﬂ),—;"""(e-"/0),-;,"‘-‘“ (2_ 3)
i=1

k+1 N

where Z n,;=n,i=1,2,-- N, and 2 n, ; represents the number of n x N products which fall into the jth
j=1

j-l

interval, j = 1,2,--,k +1. Let LH(9) = H(O) Then

Y/ -t
1€ =170 g e

Nk Nop,
dLH(g)/dg ! ek
L
Let dLH(8)/d8 = 0. We obtain that

2 Zln —W_ ZH‘,‘HLI‘+ 22” Ly (24)

‘Name the left side of equation (2.4) as g(8) . ltis easy to verify that g( 8) is bigger than the right side of e-
quation (2.4) as § approaches to @ . On the other hand g( ) is less than the right side of equation (2.4) as
@ approaches to 0 . At the same time, g(8) is a strictly monotone function. Hence, the solution of equation

(2.4) is unique, and the solution is denoted by 8§, .

3 Asymptotic normality & asymptotic confidence interval

Lemma Equation (2.2) is the distribution of the random vector (r,, n,,*,n,,,) .

The lemma can be proved directly from Section 2.

Theorem According to the distribution (2.2), 8, of g satisfies that:

VN(8, - 6) —N(0,I"'(6)),

where N represents N observation vectors of size n, I( ) is Fisher information function.

Proof Since §, is the unique solution of likelihood function (2.3) , we only need to verify that distribu-
tion (2.2) satisfies the five conditions (see Theorem 4.6 and Theorem 4.9 in[9]) as follows.

(1) Suppose thatx,, x,,:*,x, are iid random vectors coming from a totality whose distribution is f(x,

6)du(x) . The parameter space 6 is one-dimension open interval. Then, f(x,8) > O and df(x,8)/d8 exists
(V6 € @, x € %). Furthermore, le log f(x,6,) | f(x,6,)du < o , where 6, is the true parameter.
ForE[n] = n(e™V® —e™?) <n
L,l L(x,8,) | h(x,6,)du
= El L(x,6,) |
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k+1 n

= EI Zlogl - 2 zloglznlog(e i-176 _ e—ll./g) _ n,‘;t,‘l

%
= (k+2) (_1_+2n*)n - nEn,—(e_""/o —e ) log(e™-V? — ¢7¥%) 4 nYy e% <w
i=1 [

And obviously f(x,0) > 0df(x,0)/d(8) exists (Y0 € @, x € .&). Therefore condition (1) is satisfied.
(2)1(8) >0.

100) = - E(M>

,-_5,1 k 1 k )2 ~(t,=t,_y)/0

=E{03[-2n —W+nmh+;n L]+ _4; -(:,.)/0)2}

t.)’
= 42 :,/o_ 1l/o>o
dL(e) _

(3) E=5% =0

dL(B)

d0

—z i-)/6 ~t;

/0
- te ™ nhltl:

= E( En “n-l/o ~ e_,r_/g)az 02 )

= l[ 2 (ti-le_‘l._l/a - tie_li/o) + tl‘e—”‘/a]
=1

Y is obviously continuous based on (9 € @ ).

(5) VY & (may be the function of @ ), such that E,[J(x,0,6] < o , where J(x,0,p) = supil
azlogf(x,go)/agoz l:1 @ —-61 < &}.
For

- e
| L(p)/dg? | =1 - :nm , + En[

-4y @ 2
t;_ 1e * -t e

( e L-ve _ e-l.-/w)

61/ -1/ 2 -t/ -t
(e M — e 2t — e ”]I
¢4( e“i—l/¢ _ e-l.-/w)2 ¢3 e-l;-l/w - e

i=1

k
1

=1 Zn,-i‘n “2n0 -1 & -’ -201( & - @)1 @'} - ¢nk+1tl¢|

(Based on the Theorem of Mean. Let N, & e [t,,t))

n_-ff+n.- 2np + o 2

- —n, ¢t |
i 4 k+1%%
@ P3

= ..
-
—_

2 n, (220" + 21/¢° + /%) + %n,‘ﬂt,‘
~ @

-

< Y n(32t2/6° + 161/6 +4/6%) +16 %m‘ﬂz,‘, s =07

i=1

0,

5
t
Hence E,J(x,0,¢0) < nY (32t%/6' + 16t/¢° +4/6°) + 16nE" <
=
Correspondingly, Theorem 2 is proved.
Corollary The MLE of § which comes from distribution (2.1) based on a sample of size n x N with
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grouped data is #y. And, it has the same asymptotic normality as 8.

Proof According to equation (2.3), we can get that the likelihood function of a sample with size
N(X,, -+, Xy) based on distribution (2.2) is identical to the likelihood function of a sample with size n x ¥
based on distribution (2. 1) with grouped data. Thus, the MLE of # which comes from distribution (2.2) is i-
dentical to the MLE of 6 which comes from the distribution (2. 1) based on a sample of size n x NV with grouped
data. At the same time, the fisher information matrices are the same. Thus, the corollary is verified.

Replace 0 by §,. The 1 - « approximate confidence interval of § is obtained:

Uy2 Us2
(8p - ———— —=—),

1 aP
JNI T /NIy

where u,a/2} is the @/2 - up quartile of the standard normal distribution.

4 Monte Carlo Simulation and Comparison

To compare the estimate proposed in this article ( based on the polynomial distribution) with other com-
monly used estimates, a Monte Carlo study was undertaken and several cases were considered: When g =1 ,
and @ = 2 , the inspection-time sequence wast =(0.10.30.50.71.01.31.51.61.82.0), wheng =
5,and9=20,t=(124571012151720), and when® =10,: =(12.557.51012 14 20 21 24 30).

In Tables 1 ~2, for different size of sample and different @ s, we compare § ’ s MLE based on the poly-
nomial distribution ( denoted by 8, ) and directly from the exponential distribution ( denoted by 8, ). At the
same time, we compare the 95% confidence interval of g relied on the method proposed by us ( denoted by N-
interval) and the method from CHENG and MIE'®) ( denoted by C- interval). The meaning of n, N and M are

the same as what are proposed in Section 3.
Table 1 nxN xM =10x30 x30

True Value g =1 @=5 6 =10 @ =20

8 1.0026 5.0114 10.1133 19.8784

0c 1.0125 4.979 10.0384 20.2879
(8p-0)2 0.0034 0.1122 0.3375 1.6653
(9 - 0)? 0. 0043 0. 0697 0.4743 2. 0707
N-interval (0. 8874,1,1345) (4. 4817,5. 6460) (8. 5949,10. 8599) (17.1810,22. 8990)
C-interval (0.8992,1.1651) (4.3631,5. 5005) (8.7629,11.1564) (17.1801,23. 6773)

Table2 n xN xM =1x50x30

True Value g =1 0 =5 ¢ =10 =20

8 1.0013 2.0595 4.87 20.7228

0 0.9652 1.9320 5.2705 20.4201
(8p-90) 0.0224 0.1016 0.3643 9.4865
(8 - 6)* 0.0147 0. 1411 0. 6279 8. 4380
N-interval (0. 5853,1.3184) (1.0832,2, 8859) (3.5518,63385) (13.5981,28. 6588)
C-interval (0.7649,1. 4665 ) (1.4540,3.2251) (3. 4897,6.3152) (14. 6666 ,33. 3356)

By Monte Carlo simulation we conclude that:

(1) MLE from the polynomial distribution approximates to that comes directly from the exponential distri-
bution, which verifies the corollary.
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(2) It is obvious that approximate confidence interval of 8 from the polynomial distribution is a little bit

prior to [6], especially when the true value of @ is so different from the mean of the inspection vector ¢.
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