Orders of the Renner Monoids of Adjoint Type

LEI Jie, LI Zhou, CAO You-an

(Department of Mathematics, Xiangtan University, Hunan 411105, China) (E-mail: epsilonmaths@yahoo.com.cn)

Abstract In this paper, we find the orders of the Renner monoids for \mathcal{J} -irreducible monoids $\overline{K^*\rho(G)}$, where G is a simple algebraic group over an algebraically closed field K, and $\rho: G \to \operatorname{GL}(V)$ is the irreducible representation associated with the highest root.

Keywords Renner monoid; Weyl group; type map; \mathcal{J} -irreducible monoid; order.

Document code A MR(2000) Subject Classification 20G20; 20M07 Chinese Library Classification 0152.7

1. Introduction

A linear algebraic monoid is an affine variety defined over an algebraically closed field K together with an associative morphism and an identity. An algebraic monoid is irreducible if it is irreducible as a variety. The unit group of an algebraic monoid is an algebraic group. An irreducible monoid is reductive if its unit group is a reductive group.

Let M be a reductive monoid with unit group G, and let $B \subset G$ be a Borel subgroup, $T \subset B$ be the maximal torus, and $W = N_G(T)/T$ be the Weyl group. Let $\overline{N_G(T)}$ be the Zariski closure of $N_G(T)$ in M. Then $R = \overline{N_G(T)}/T$, called the Renner monoid of M, is an inverse monoid with unit group W. Let \overline{T} be the Zariski closure of T in M and $E(\overline{T}) = \{e \in \overline{T} \mid e^2 = e\}$ be the set of idempotents in \overline{T} . Then we have $R = \langle W, \Lambda \rangle$, where $\Lambda = \{e \in E(\overline{T}) \mid Be = eBe\}$ is the cross-section lattice of M.

Definition 1.1^[7] Let $M, G, B, T \subset B, W$ be as above. Let Δ be the fundamental root system relative to T and B, and $S = \{s_{\alpha} \mid \alpha \in \Delta\}$ be the set of simple reflections that generate the Weyl group. The Putcha's type map $\lambda : \Lambda \to 2^{\Delta}$ is defined by $\lambda(e) = \{\alpha \in \Delta \mid s_{\alpha}e = es_{\alpha}, s_{\alpha} \in S\}$.

Definition 1.2^[7] Let M be a reductive monoid with zero. The monoid M is called \mathcal{J} -irreducible if $\Lambda \setminus \{0\}$ has a unique minimal idempotent.

Let G be a simple algebraic group, and let $\rho: G \to \operatorname{GL}(V)$ be an irreducible representation. Then $M = \overline{K^*\rho(G)}$ is a \mathcal{J} -irreducible monoid^[8, Corollary 8.3.3]. Let $\lambda_*(e) = \bigcap_{f \leq e} \lambda(f)$, $\lambda^*(e) = \bigcap_{f \geq e} \lambda(f)$, and $W(e) = W_{\lambda(e)}$, the associated parabolic subgroup of W as in Section 7.5 of Ref. [9]. Then we have the following theorem^[1], which offers a general formula for the order of a

Received date: 2006-06-06; Accepted date: 2007-03-23

Foundation item: the National Natural Science Foundation of China (No. 10471116).

Renner monoid of a reductive monoid with zero.

Theorem 1.1 (Theorem 3.2 of Ref. [1]) Let M be a reductive monoid with zero and type map λ . Let λ^* and λ_* be defined as above. Then the order of the Renner monoid R of M is:

$$|R| = 1 + \sum_{e \in \Lambda \setminus \{0\}} |WeW| = 1 + \sum_{e \in \Lambda \setminus \{0\}} \frac{|W|^2}{|W_{\lambda^*(e)}| \times |W_{\lambda_*(e)}|^2}.$$

Note that $\lambda^*(e)$ and $\lambda_*(e)$ are subsets of the set S given in Definition 1.1. Let $W_{\lambda^*(e)}$ and $W_{\lambda_*(e)}$ be the parabolic subgroups associated with $\lambda^*(e)$ and $\lambda_*(e)$ of W respectively. We put a brief and alternate proof of the above theorem in the next section, and after that we give a complete list of the orders of the Renner monoids of all \mathcal{J} -irreducible monoids for adjoint type in Section 3.

2. An alternate proof of Theorem 1.1

Let $W \times W$ act on R by: $(w_1, w_2) \cdot r = w_1 r w_2^{-1}$. Then the set of $(W \times W)$ -orbits of R is isomorphic to Λ as a lattice and $R = \bigsqcup_{e \in \Lambda} WeW$. Clearly, $|R| = \sum_{e \in \Lambda} |WeW|$. This tells us that as long as a formula for the number of elements in each WeW is obtained, where $e \in \Lambda$, then the order of R is done. We give a basic proof here. First of all, we need the following results, which are due to Putcha and Renner^[9, Section 7.5.1].

- (i) $\lambda^*(e) = \{a \in \Delta \mid s_\alpha e = es_\alpha \neq e\}.$
- (ii) $\lambda_*(e) = \{a \in \Delta \mid s_\alpha e = es_\alpha = e\}.$
- (iii) For $e \in \Lambda$, $\lambda(e) = \lambda^*(e) \sqcup \lambda_*(e)$.

(iv) For $e \in \Lambda$, $W(e) \cong W_{\lambda^*(e)} \times W_{\lambda_*(e)}$ and $w^*w_* = w_*w^*$ for $w^* \in W_{\lambda^*(e)}$ and $w_* \in W_{\lambda_*(e)}$.

Then let e and f be two arbitrary idempotents in $E(R)(=E(\overline{T}))$ and let w be an arbitrary element in the Weyl group W. Firstly, if we = f, then f = we = wee = fe. Since we = f, we get $e = w^{-1}f = w^{-1}ff = ef$. Therefore, e = f. Similarly, if ew = f then e = f. Secondly, if we = e, then $wew^{-1}w = e$, which means $wew^{-1} = e$. Hence, ew = we = e. Similarly, if ew = e, then we = e. Finally, we come to the conclusion that $\{w \in W \mid we = ew = e\} = \{w \in W \mid we = ew = e\}$ $e \} = \{ w \in W \mid ew = e \}$. Hence, it follows from Definition 1.1, Definition 1.2 and (ii) that if $e \in \Lambda$, then $W_{\lambda(e)} = \{ w \in W \mid we = ew \}$, and $W_{\lambda_*(e)} = \{ w \in W \mid we = e \} = \{ w \in W \mid ew = e \}$.

For $e \in \Lambda$, let $(W \times W)_e = \{(w_1, w_2) \in W \times W \mid w_1, w_2 \in W, w_1 e w_2^{-1} = e\}$ be the isotropic group of e. Now we prove that $(W \times W)_e = \{(w, ww_*) \in W \mid w \in W_{\lambda(e)} \text{ and } w_* \in W_{\lambda_*(e)}\}$. Actually, it is straightforward to check that the set on the right-hand side is contained in the one of the left-hand side. On the other hand, for any $(w_1, w_2) \in (W \times W)_e$, $w_1 e w_2^{-1} = e$ and then $w_1 e w_1^{-1}(w_1 w_2^{-1}) = e$. According to the former argument, we know it means that $w_1 e w_1^{-1} = e$. Hence $w_1 \in W_{\lambda(e)}$. Similarly, $w_2 \in W_{\lambda(e)}$. It follows from $w_1 e w_1^{-1} = e$ and $w_1 e w_1^{-1} w_1 w_2^{-1} = e$ that $ew_1w_2^{-1} = e$. Thus, $w_1w_2^{-1} \in W_{\lambda_*(e)}$, and $(w_1, w_2) = (w_1, w_1(w_1^{-1}w_2))$ belongs to the set on the right-hand side. As a natural result, we finally get

- $\begin{array}{ll} (\mathrm{i}) & |(W \times W)_e| = |W_{\lambda(e)}| \times |W_{\lambda_*(e)}| = |W_{\lambda^*(e)}| \times |W_{\lambda_*(e)}|^2, \\ (\mathrm{ii}) & |WeW| = \frac{|W|^2}{|(W \times W)_e|} = \frac{|W|^2}{|W_{\lambda^*(e)}| \times |W_{\lambda_*(e)}|^2}. \end{array}$

Then Theorem 1.1 follows from (ii).

3. Application to \mathcal{J} -irreducible monoids

For completeness, we list all Dynkin diagrams and orders of the Weyl groups of simple groups here for the reference of the next subsections.

$$B_l: \qquad \bigcirc \begin{array}{c} 1 & 2 & l-1 & l \\ \bigcirc \hline & \bigcirc \end{array} \\ \alpha_0 = \lambda_2 = \alpha_1 + 2\alpha_2 + \dots + 2\alpha_l; \quad |W| = (l!)2^l, \ l \ge 2. \end{array}$$

$$\alpha_0 = 2\lambda_1 = 2\alpha_1 + \dots + 2\alpha_{l-1} + \alpha_l; \quad |W| = (l!)2^l, \ l \ge 3.$$

$$\mathbf{D}_l: \qquad \begin{array}{c} 1 & 2 \\ \bigcirc & & & \\ \bigcirc & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$\alpha_0 = \lambda_2 = \alpha_1 + 2\alpha_2 + \dots + 2\alpha_{l-2} + \alpha_{l-1} + \alpha_l; \quad |W| = (l!)2^{l-1}, \ l \ge 4.$$

 $\alpha_0 = \lambda_6 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 + 2\alpha_6; \quad |W| = 2^7 3^4 5.$

E₇:
$$1 3 4 5 6 7$$

 $\alpha_0 = \lambda_1 = 2\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + \alpha_7; \quad |W| = 2^{10}3^45 \times 7.$

Orders of the Renner monoids of adjoint type

0-0-

3

 $\alpha_0 = \lambda_1 = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 5\alpha_4 + 6\alpha_5 + 4\alpha_6 + 2\alpha_7 + 3\alpha_8; \ |W| = 2^{14}3^55^27.$

F₄:
$$\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ & & & & \\ & & & \\ & & & \\ & \alpha_0 = \lambda_1 = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4; \quad |W| = 2^7 3^2. \end{array}$$

 \circ

G₂:
$$\begin{array}{c} 1 & 2 \\ \bigcirc & \bigcirc \\ \alpha_0 = \lambda_1 = 2\alpha_1 + 3\alpha_2; \quad |W| = 12. \end{array}$$

Note that the number above or beside each node is the index of the associated fundamental root, α_0 is the highest root and λ_i is the *i*-th fundamental dominant weight relative to the fundamental root system Δ .

3.1. Type map of \mathcal{J} -irreducible monoids

Putcha and Renner found the type maps of the \mathcal{J} -irreducible monoids in Ref. [7].

Theorem 3.1 (Theorem 4.16 of Ref. [7]) Let M be a \mathcal{J} -irreducible monoid associated with a dominant weight μ and $J_0 = \{\alpha \in \Delta \mid \langle \mu, \alpha \rangle = 0\}$ (see [9, p.16] for the bracket \langle , \rangle). Let e_0 be the unique minimal idempotent in $\Lambda \setminus \{0\}$. Then

(i) $\lambda^*(\Lambda \setminus \{0\}) = \{X \subset \Delta \mid X \text{ has no connected component that lies entirely in } J_0\}.$

(ii) $\lambda^*(e) \in \lambda^*(\Lambda \setminus \{0\})$ and $\lambda_*(e) = \{a \in J_0 \setminus \lambda^*(e) \mid s_a s_\beta = s_\beta s_\alpha \text{ for all } \beta \in \lambda^*(e)\}$ for $e \in \Lambda \setminus \{0\}$. Specially, $\lambda(e_0) = \lambda_*(e_0) = J_0$.

For the remainder of this paper, we assume that $M = \overline{K^*\rho(G)}$ where G is a simple algebraic group over K, and $\rho: G \to \operatorname{GL}(V)$ is an irreducible representation associated with the highest root α_0 .

3.2. Orders of Renner monoids for adjoint type

The orders of Renner monoids of \mathcal{J} -irreducible monoids associated with the first fundamental dominant weight λ_1 were found by Li, Li and Cao^[1]. Since the highest root is just the first fundamental dominant weight in the cases of type E_7, E_8, F_4, G_2 , and two times in the case of C_l . For these cases the orders of the Renner monoids are completely the same as those in Ref. [1]. Therefore, we list the orders for all the cases but omit the proof for types C_l, E_7, E_8, F_4 and G_2 .

Theorem 3.2 Let R be the Renner monoids of \mathcal{J} -irreducible monoids M associated with the highest root. Then

$$(A_l) |R| = 2(l+1)^2 \sum_{r=0}^{l} {\binom{l}{r}}^2 r! + \sum_{i=1}^{l-2} \sum_{j=1}^{l-1-i} {\binom{l+1}{i+1}}^2 (i+1)! {\binom{l-i}{j+1}}^2 (j+1)! - l^4 - 2l^3 - 3l^2 - 2l^4 -$$

$$\begin{split} 4l - 1 + (l+1)!. \\ (B_l) & |R| = \sum_{r=0}^{l} 4^r {\binom{l}{r}}^2 (r+1)! - 20l^4 + 40l^3 - 28l^2 + 2^{l+1}l \cdot l! + 2^{l}l!. \\ (C_l) & |R| = \sum_{r=0}^{l} 4^r {\binom{l}{r}}^2 r! + 2^{l}l!. \\ (D_l) & |R| = \sum_{r=0}^{l} 4^r {\binom{l}{r}}^2 (r+1)! - 20l^4 + 40l^3 - 28l^2 - 2^{2l-1}(l+1)! + 2^{l}l \cdot l! + 2^{l-1}l!. \\ (E_6) & |R| = 113068225 = 5^2 \times 4522729. \\ (E_7) & |R| = 44520456709 = 281 \times 158435789. \\ (E_8) & |R| = 332011601568001 = 4969 \times 7187 \times 9296867. \\ (F_4) & |R| = 103105 = 5 \times 17 \times 1213. \end{split}$$

$$(G_2)$$
 $|R| = 121 = 11^2.$

Proof The main procedure of the proof for each case is to calculate the orders of two-sided W orbits WeW for $e \in \Lambda \setminus \{0\}$ by using Theorem 1.1.

(a) Type A_l: $J_0 = \{\alpha_2, \alpha_3, \dots, \alpha_{l-1}\}$. It follows from Theorem 3.1 that

$$\begin{split} \lambda^*(\Lambda \setminus \{0\}) = & \{\phi, \{\alpha_1\}, \{\alpha_1, \alpha_2\}, \dots, \{\alpha_1, \alpha_2, \dots, \alpha_{l-1}\}, \\ & \{\alpha_l\}, \{\alpha_{l-1}, \alpha_l\}, \dots, \{\alpha_2, \alpha_3, \dots, \alpha_l\}, \\ & \{\alpha_1, \alpha_2, \dots, \alpha_l\}, \{\alpha_1, \dots, \alpha_{i-1}, \alpha_i, \alpha_{l-j+1}, \dots, \alpha_l\} : 1 \le i \le l-j-1 \le l-2\}. \end{split}$$

If $e = e_0$ is the minimal idempotent in $\Lambda \setminus \{0\}$, we get $\lambda^*(e_0) = \phi, \lambda_*(e_0) = J_0$. Hence

$$|We_0W| = \frac{|W|^2}{|W_{J_0}|^2} = \frac{|W(A_l)|^2}{|W(A_{l-2})|^2} = \frac{((l+1)!)^2}{((l-1)!)^2} = l^2(l+1)^2.$$
(1)

If e is any idempotent other than e_0 in $\Lambda \setminus \{0\}$, and when $\lambda^*(e) = \{\alpha_1, \ldots, \alpha_r\}$ with $1 \leq r \leq l-1$, then by Theorem 3.1, $\lambda_*(e) = \{\alpha_{r+2}, \ldots, \alpha_{l-1}\}$ for $1 \leq r \leq l-3$ and $\lambda_*(e) = \phi$ for r = l-2 and l-1. Hence, for $1 \leq r \leq l-3$, $W_{\lambda^*(e)} \cong W(A_r), W_{\lambda_*(e)} \cong W(A_{l-r-2})$.

For r = l - 2 and l - 1, $W_{\lambda^*(e)} \cong W(A_r)$, $W_{\lambda_*(e)} \cong 1$.

So, $|W_{\lambda^*(e)}| = (r+1)!$ and $|W_{\lambda_*(e)}| = (l-r-1)!$ for $1 \le r \le l-1$. It follows from Theorem 1.1 that,

$$|WeW| = \frac{((l+1)!)^2}{(r+1)!((l-r-1)!)^2}.$$
(2)

Obviously, when $\lambda_*(e) = \{\alpha_{l-r+1}, \alpha_{l-r}, \dots, \alpha_l\}$ with $1 \le r \le l-1$, this case is complete the same as the above case.

When $\lambda^*(e) = \{\alpha_1, \alpha_2, \dots, \alpha_l\}, e$ is the identity element in $\Lambda \setminus \{0\}$. Hence,

$$|WeW| = |W| = (l+1)!.$$
(3)

When $\lambda^*(e) = \{\alpha_1, \dots, \alpha_{i-1}, \alpha_i, \alpha_{l-j+1}, \dots, \alpha_l\}, 1 \le i \le l-j-1 \le l-2$, we have $\lambda_*(e) = \{\alpha_{i+2}, \alpha_{i+3}, \dots, \alpha_{l-j-2}, \alpha_{l-j-1}\}$ for $l-j-i \ge 3$ and $\lambda_*(e) = \phi$ for l-j-i = 2 and 1. Hence, for $l-j-i \ge 3$, $W_{\lambda^*(e)} \cong W(A_i) \times W(A_j), W_{\lambda_*(e)} \cong W(A_{l-j-i-2})$ and for l-j-i = 2 and 1, $W_{\lambda^*(e)} \cong W(A_i) \times W(A_j), W_{\lambda_*(e)} \cong 1$. Thus, $|W_{\lambda^*(e)}| = (i+1)!(j+1)!$ and $|W_{\lambda_*(e)}| = (l-j-i-1)!$, for $1 \le i \le l-j-1 \le l-2$. Hence,

$$|WeW| = \frac{((l+1)!)^2}{(i+1)!(j+1)!((l-j-i-1)!)^2}.$$
(4)

Therefore, from (1)-(4) and Theorem 1.1, we have

$$\begin{split} |R| = &1 + l^2 (l+1)^2 + 2 \sum_{r=1}^{l-1} \frac{((l+1)!)^2}{(r+1)!((l-r-1)!)^2} + (l+1)! + \\ &\sum_{1 \le i \le l-j-1 \le l-2} \frac{((l+1)!)^2}{(i+1)!(j+1)!((l-j-i-1)!)^2} \\ = &2(l+1)^2 \sum_{r=0}^l \binom{l}{r}^2 r! + \sum_{i=1}^{l-2} \sum_{j=1}^{l-1-i} \binom{l+1}{i+1}^2 (i+1)! \binom{l-i}{j+1}^2 (j+1)! \\ &l^4 - 2l^3 - 3l^2 - 4l - 1 + (l+1)!. \end{split}$$

(b) Type B_l: $J_0 = \{\alpha_1, \alpha_3, \dots, \alpha_l\}$. It follows from Theorem 3.1 that

$$\lambda^{*}(\Lambda \setminus \{0\}) = \{\phi, \{\alpha_{2}\}, \{\alpha_{2}, \alpha_{3}\}, \dots, \{\alpha_{2}, \alpha_{3}, \dots, \alpha_{l}\}, \\ \{\alpha_{1}, \alpha_{2}\}, \{\alpha_{1}, \alpha_{2}, \alpha_{3}\}, \dots, \{\alpha_{1}, \alpha_{2}, \dots, \alpha_{l}\}\}.$$

If $e = e_0$ is the minimal idempotent in $\Lambda \setminus \{0\}$, we get

$$|We_0W| = \frac{|W|^2}{|W_{J_0}|^2} = \frac{|W(B_l)|^2}{|W(A_1) \times W(B_{l-2})|^2} = \frac{(2^l l!)^2}{(2!(l-2)!2^{l-2})^2} = 4(l-1)^2 l^2.$$
(5)

If e is any idempotent other than e_0 in $\Lambda \setminus \{0\}$, and when $\lambda^*(e) = \{\alpha_2, \alpha_3, \dots, \alpha_{r+1}\}$ with $1 \leq r \leq l-1$, by Theorem 3.1, $\lambda_*(e) = \{\alpha_{r+3}, \dots, \alpha_l\}$ for $1 \leq r \leq l-3$ and $\lambda_*(e) = \phi$ for r = l-2 and l-1. Therefore, for $1 \leq r \leq l-3$, $W_{\lambda^*(e)} \cong W(A_r), W_{\lambda_*(e)} \cong W(B_{l-r-2})$, where $B_1 \cong A_1$ when r = l-3, for r = l-2, $W_{\lambda^*(e)} \cong W(A_{l-2}), W_{\lambda_*(e)} \cong 1$, and for $r = l-1, W_{\lambda^*(e)} \cong W(B_{l-1}), W_{\lambda_*(e)} \cong 1$.

So, $|W_{\lambda^*(e)}| = (r+1)!$ and $|W_{\lambda_*(e)}| = 2^{l-r-2}(l-r-2)!$ for $1 \le r \le l-2$, $|W_{\lambda^*(e)}| = 2^{l-1}(l-1)!$ and $|W_{\lambda_*(e)}| = 1$ for r = l-1. It follows from Theorem 1.1 that for $1 \le r \le l-2$,

$$|WeW| = \frac{(2^{l}l!)^{2}}{(r+1)!(2^{l-r-2}(l-r-2)!)^{2}} = 4^{r+2}(r+2)\binom{l}{r+1}^{2}(r+2)!.$$
(6)

and for r = l - 1,

$$WeW| = \frac{(2^{l}l!)^{2}}{2^{l-1}(l-1)!} = 2^{l+1}l\,l!.$$
(7)

It is similar to calculate the remaining cases:

For $\lambda^*(e) = \{\alpha_1, \alpha_2, \dots, \alpha_{r+1}\}$ with $1 \leq r \leq l-1$, we have $\lambda_*(e) = \{\alpha_{r+3}, \dots, \alpha_l\}$ for $1 \leq r \leq l-3$ and $\lambda_*(e) = \phi$ for r = l-2 and l-1. It is easy to get that for $1 \leq r \leq l-2$,

$$|WeW| = \frac{(2^{l}l!)^{2}}{(r+2)!(2^{l-r-2}(l-r-2)!)^{2}} = 4^{r+2} \binom{l}{r+2}^{2} (r+2)!.$$
(8)

and for r = l - 1, $\lambda^*(e) = \{\alpha_1, \alpha_2, \dots, \alpha_l\}$, e is the identity element and so

$$|WeW| = |W| = 2^{l} l!. (9)$$

Therefore, from (5)-(9) and Theorem 1.1, we have

$$|R| = 1 + 4(l-1)^2 l^2 + \sum_{r=1}^{l-2} 4^{r+2}(r+2) \binom{l}{r+2}^2 (r+2)! + 2^{l+1} l \cdot l! +$$

$$\sum_{r=1}^{l-2} 4^{r+2} \binom{l}{r+2}^2 (r+2)! + 2^l l!$$

= $\sum_{r=0}^{l} 4^r \binom{l}{r}^2 (r+1)! - 20l^4 + 40l^3 - 28l^2 + 2^{l+1}l \cdot l! + 2^l l!.$

(d) Type D_l: $J_0 = \{\alpha_1, \alpha_3, \dots, \alpha_l\}$. It follows from Theorem 3.1 that

$$\lambda^{*}(\Lambda \setminus \{0\}) = \{\phi, \{\alpha_{2}\}, \{\alpha_{2}, \alpha_{3}\}, \dots, \{\alpha_{2}, \alpha_{3}, \dots, \alpha_{l-2}\}, \\ \{\alpha_{2}, \dots, \alpha_{l-2}, \alpha_{l-1}\}, \{\alpha_{2}, \dots, \alpha_{l-2}, \alpha_{l}\}, \{\alpha_{2}, \dots, \alpha_{l-2}, \alpha_{l-1}, \alpha_{l}\}, \\ \{\alpha_{1}, \alpha_{2}\}, \{\alpha_{1}, \alpha_{2}, \alpha_{3}\}, \dots, \{\alpha_{1}, \alpha_{2}, \alpha_{3}, \dots, \alpha_{l-2}\}, \\ \{\alpha_{1}, \dots, \alpha_{l-2}, \alpha_{l-1}\}, \{\alpha_{1}, \dots, \alpha_{l-2}, \alpha_{l}\}, \{\alpha_{1}, \dots, \alpha_{l-2}, \alpha_{l-1}, \alpha_{l}\}\}.$$

If $e = e_0$ is the minimal idempotent in $\Lambda \setminus \{0\}$, we get

$$|We_0W| = \frac{|W|^2}{|W_{J_0}|^2} = \frac{|W(D_l)|^2}{|W(A_1) \times W(D_{l-2})|^2} = \frac{(2^{l-1}l!)^2}{(2!\,2^{l-3}\,(l-2)!)^2} = 4(l-1)^2 l^2.$$
(10)

For $1 \leq r \leq l-5$ and $\lambda^*(e) = \{\alpha_2, \alpha_3, \dots, \alpha_{r+1}\}$, by Theorem 3.1, we have $\lambda_*(e) = \{\alpha_{r+3}, \dots, \alpha_l\}$. So, $W_{\lambda^*(e)} \cong W(A_r)$ and $W_{\lambda_*(e)} \cong W(D_{l-r-2})$, where $D_3 \cong A_3$ when r = l-5. Thus, $|W_{\lambda^*(e)}| = (r+1)!$ and $|W_{\lambda_*(e)}| = 2^{l-r-3}(l-r-2)!$. Therefore,

$$|WeW| = \frac{(2^{l-1}l!)^2}{(r+1)!(2^{l-r-3}(l-r-2)!)^2} = 4^{r+2}(r+2)\binom{l}{r+2}^2(r+2)!.$$
 (11)

For r = l-4 and $\lambda^*(e) = \{\alpha_2, \dots, \alpha_{l-3}\}$, we have $\lambda_*(e) = \{\alpha_{l-1}, \alpha_l\}$. So, $W_{\lambda^*(e)} \cong W(A_{l-4})$ and $W_{\lambda_*(e)} \cong W(A_1) \times W(A_1)$. It follows that $|W_{\lambda^*(e)}| = (l-3)!$ and $|W_{\lambda_*(e)}| = 4$. Therefore,

$$|WeW| = \frac{(2^{l-1}l!)^2}{(l-3)! 4^2} = 2^{2l-6}(l-2)(l-1)l \cdot l!.$$
(12)

For r = l - 3 and $\lambda^*(e) = \{\alpha_2, \ldots, \alpha_{l-2}\}$, we have $\lambda_*(e) = \phi$. So, $W_{\lambda^*(e)} \cong W(A_{l-3})$ and $W_{\lambda_*(e)} \cong 1$. We have $|W_{\lambda^*(e)}| = (l-2)!$ and $|W_{\lambda_*(e)}| = 1$. Therefore,

$$|WeW| = \frac{(2^{l-1}l!)^2}{(l-2)!} = 2^{2l-2}(l-1)l \cdot l!.$$
(13)

For r = l - 2, it follows that $\lambda^*(e) = \{\alpha_2, \ldots, \alpha_{l-2}, \alpha_{l-1}\}$ or $\lambda^*(e) = \{\alpha_2, \ldots, \alpha_{l-2}, \alpha_l\}$, we have both $\lambda_*(e) = \phi$, $W_{\lambda^*(e)} \cong W(A_{l-2})$ and $W_{\lambda_*(e)} \cong 1$. Thus, $|W_{\lambda^*(e)}| = (l-1)!$ and $|W_{\lambda_*(e)}| = 1$. Therefore,

$$|WeW| = \frac{(2^{l-1}l!)^2}{(l-1)!} = 2^{2l-2}l \cdot l!.$$
(14)

For r = l - 1, $\lambda^*(e) = \{\alpha_2, \ldots, \alpha_l\}$, we have $\lambda_*(e) = \phi$. So, $W_{\lambda^*(e)} \cong W(D_{l-1})$ and $W_{\lambda_*(e)} \cong 1$. Thus, $|W_{\lambda^*(e)}| = 2^{l-2}(l-1)!$ and $|W_{\lambda_*(e)}| = 1$. Hence,

$$|WeW| = \frac{(2^{l-1}l!)^2}{2^{l-2}(l-1)!} = 2^l l \cdot l!.$$
(15)

The argument is similar for the remaining cases. It is easy to find that:

100

For $1 \le r \le l-5$ and $\lambda^*(e) = \{\alpha_1, \ldots, \alpha_{r+1}\}$, by Theorem 3.1, we have $\lambda_*(e) = \{\alpha_{r+3}, \ldots, \alpha_l\}$, and

$$|WeW| = \frac{(2^{l-1}l!)^2}{(r+2)!(2^{l-r-3}(l-r-2)!)^2} = 4^{r+2} \binom{l}{r+2}^2 (r+2)!.$$
 (16)

For r = l - 4 and $\lambda^*(e) = \{\alpha_1, \dots, \alpha_{l-3}\}$, we have $\lambda_*(e) = \{\alpha_{l-1}, \alpha_l\}$, and

$$|WeW| = \frac{(2^{l-1}l!)^2}{(l-2)! 4^2} = 2^{2l-6}(l-1)l \cdot l!.$$
(17)

For r = l - 3 and $\lambda^*(e) = \{\alpha_1, \dots, \alpha_{l-2}\}$, we have $\lambda_*(e) = \phi$, and

$$|WeW| = \frac{(2^{l-1}l!)^2}{(l-1)!} = 2^{2l-2}l \cdot l!.$$
(18)

For r = l - 2, it follows that $\lambda^*(e) = \{\alpha_1, \ldots, \alpha_{l-2}, \alpha_{l-1}\}$ or $\lambda^*(e) = \{\alpha_1, \ldots, \alpha_{l-2}, \alpha_l\}$, and for both of the cases, $\lambda_*(e) = \phi$,

$$|WeW| = \frac{(2^{l-1}l!)^2}{l!} = 2^{2l-2}l!.$$
(19)

For r = l - 1, $\lambda^*(e) = \{\alpha_1, \ldots, \alpha_l\}$. Then e is the identity element in $\Lambda \setminus \{0\}$, and hence

$$|WeW| = |W| = 2^{l-1}l!.$$
(20)

Therefore, by (10)-(20), and Theorem 1.1, we have

$$\begin{split} |R| = &1 + 4(l-1)^2 l^2 + \sum_{r=1}^{l-5} 4^{r+2} (r+2) \binom{l}{r+2}^2 (r+2)! + 2^{2l-6} (l-2)(l-1)l \cdot l! + \\ & 2^{2l-2} (l-1)l \cdot l! + 2 \times 2^{2l-2} l \cdot l! + 2^l l \cdot l! + \sum_{r=1}^{l-5} 4^{r+2} \binom{l}{r+2}^2 (r+2)! + \\ & 2^{2l-6} (l-1)l \cdot l! + 2^{2l-2} l \cdot l! + 2 \times 2^{2l-2} l! + 2^{l-1} l! \\ &= \sum_{r=0}^{l} 4^r \binom{l}{r}^2 (r+1)! - 20l^4 + 40l^3 - 28l^2 - 2^{2l-1} (l+1)! + 2^l l \cdot l! + 2^{l-1} l!. \end{split}$$

(e₆) Type E₆: $J_0 = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$. It follows from Theorem 3.1 that

$$\begin{split} \lambda^*(\Lambda \setminus \{0\}) = & \Big\{ \phi, \{\alpha_6\}, \{\alpha_6, \alpha_3\}, \{\alpha_6, \alpha_3, \alpha_2\}, \{\alpha_6, \alpha_3, \alpha_4\}, \\ & \{\alpha_6, \alpha_3, \alpha_2, \alpha_1\}, \{\alpha_6, \alpha_3, \alpha_4, \alpha_5\}, \{\alpha_6, \alpha_3, \alpha_2, \alpha_4\}, \\ & \{\alpha_6, \alpha_3, \alpha_2, \alpha_4, \alpha_1\}, \{\alpha_6, \alpha_3, \alpha_2, \alpha_4, \alpha_5\}, \{\alpha_6, \alpha_3, \alpha_2, \alpha_4, \alpha_1, \alpha_5\} \Big\}. \end{split}$$

If $e = e_0$ is the minimal idempotent in $\Lambda \setminus \{0\}$, we have

$$|We_0W| = \frac{|W|^2}{|W_{J_0}|^2} = \frac{|W(E_6)|^2}{|W(A_5)|^2} = \frac{(2^7 3^4 5)^2}{(6!)^2} = 2^6 3^4.$$
(21)

For $\lambda^*(e) = \{\alpha_6\}$, by Theorem 3.1 we have $\lambda_*(e) = \{\alpha_1, \alpha_2, \alpha_4, \alpha_5\}$. So, $W_{\lambda^*(e)} \cong W(A_1)$ and $W_{\lambda_*(e)} \cong W(A_2) \times W(A_2)$. Therefore,

$$|WeW| = \frac{(2^7 3^4 5)^2}{2!(3!)^4} = 2^9 3^4 5^2.$$
(22)

LEI J, et al

For $\lambda^*(e) = \{\alpha_6, \alpha_3\}$, we have $\lambda_*(e) = \{\alpha_1, \alpha_5\}$. So, $W_{\lambda^*(e)} \cong W(A_2)$ and $W_{\lambda_*(e)} \cong W(A_1) \times W(A_1)$, Therefore,

$$|WeW| = \frac{(2^7 3^4 5)^2}{3! 4^2} = 2^9 3^7 5^2.$$
(23)

For $\lambda^*(e) = \{\alpha_6, \alpha_3, \alpha_2\}$, this case is the same as $\lambda^*(e) = \{\alpha_6, \alpha_3, \alpha_4\}$. By Theorem 3.1, we have $\lambda_*(e) = \{\alpha_5\}$. So, $W_{\lambda^*(e)} \cong W(A_3)$ and $W_{\lambda_*(e)} \cong W(A_1)$, Therefore,

$$|WeW| = \frac{(2^7 3^4 5)^2}{4!(2!)^2} = 2^9 3^7 5^2.$$
(24)

For $\lambda^*(e) = \{\alpha_6, \alpha_3, \alpha_2, \alpha_1\}$, this case is the same as $\lambda^*(e) = \{\alpha_6, \alpha_3, \alpha_4, \alpha_5\}$. By Theorem 3.1, we have $\lambda_*(e) = \{a_5\}$. So, $W_{\lambda^*(e)} \cong W(A_4)$ and $W_{\lambda_*(e)} \cong W(A_1)$. Therefore,

$$|WeW| = \frac{(2^7 3^4 5)^2}{5! \, 2^2} = 2^9 3^7 5. \tag{25}$$

For $\lambda^*(e) = \{\alpha_6, \alpha_3, \alpha_2, \alpha_4\}$, by Theorem 3.1, we have $\lambda_*(e) = \phi$. So, $W_{\lambda^*(e)} \cong W(D_4)$ and $W_{\lambda_*(e)} \cong 1$. Therefore,

$$|WeW| = \frac{(2^7 3^4 5)^2}{2^3 4!} = 2^8 3^7 5^2.$$
(26)

For $\lambda^*(e) = \{\alpha_6, \alpha_3, \alpha_2, \alpha_4, \alpha_1\}$, this case is the same as $\lambda^*(e) = \{\alpha_6, \alpha_3, \alpha_2, \alpha_4, \alpha_5\}$. By Theorem 3.1, we have $\lambda_*(e) = \phi$. So, $W_{\lambda^*(e)} \cong W(D_5)$ and $W_{\lambda_*(e)} \cong 1$. Therefore,

$$|WeW| = \frac{(2^7 3^4 5)^2}{2^4 5!} = 2^7 3^7 5.$$
(27)

For $\lambda^*(e) = \{\alpha_6, \alpha_3, \alpha_2, \alpha_4, \alpha_1, \alpha_5\}, e$ is the identity element, and hence

$$|WeW| = |W(E_6)| = 2^7 3^4 5.$$
(28)

It follows from (21)–(28), and Theorem 1.1 that

$$|R| = 113068225 = 5^2 \times 4522729.$$

The proof for the case E_6 is completed.

References

- [1] LI Zhuo, LI Zhen-heng, CAO You-an. Orders of the Renner monoids [J]. J. Algebra, 2006, 301(1): 344–359.
- [2] LI Zhuo, PUTCHA M S. Types of reductive monoids [J]. J. Algebra, 1999, 221(1): 102–116.
- [3] LI Zhuo, RENNER L E. The lattice of \mathcal{J} -classes of (\mathcal{J}, σ) -irreducible monoids [J]. J. Algebra, 1997, **190**(1): 172–194.
- [4] LI Zhen-heng. Idempotent lattices, Renner monoids and cross section lattices of the special orthogonal algebraic monoids [J]. J. Algebra, 2003, 270(2): 445–458.
- [5] LI Zheng-heng. The cross section lattices and Renner monoids of the odd special orthogonal algebraic monoids
 [J]. Semigroup Forum, 2003, 66(2): 273–287.
- [6] LI Zheng-heng, RENNER L. The Renner monoids and cell decompositions of the symplectic algebraic monoids
 [J]. International Journal of Algebra and Computation, 2003, 13: 111-132.
- [7] PUTCHA M S, RENNER L. The system of idempotents and the lattice of *J*-classes of reductive algebraic monoids [J]. J. Algebra, 1988, 116(2): 385–399.
- [8] RENNER L. Classification of semisimple algebraic monoids [J]. Trans. Amer. Math. Soc., 1985, 292(1): 193–223.
- [9] RENNER L. Linear Algebraic Monoids [M]. Springer-Verlag, Berlin, 2005.
- [10] SOLOMON L. An introduction to reductive monoids [J]. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 466, Kluwer Acad. Publ., Dordrecht, 1995.