Orders of the Renner Monoids of Adjoint Type

LEI Jie, LI Zhou, CAO You-an
(Department of Mathematics, Xiangtan University, Hunan 411105, China)
(E-mail: epsilonmaths@yahoo.com.cn)

Abstract

$\underline{\text { Abstract }}$ In this paper, we find the orders of the Renner monoids for \mathcal{J}-irreducible monoids $\overline{K^{*} \rho(G)}$, where G is a simple algebraic group over an algebraically closed field K, and $\rho: G \rightarrow$ $\mathrm{GL}(V)$ is the irreducible representation associated with the highest root.

Keywords Renner monoid; Weyl group; type map; \mathcal{J}-irreducible monoid; order.
Document code A
MR(2000) Subject Classification 20G20; 20M07
Chinese Library Classification O152.7

1. Introduction

A linear algebraic monoid is an affine variety defined over an algebraically closed field K together with an associative morphism and an identity. An algebraic monoid is irreducible if it is irreducible as a variety. The unit group of an algebraic monoid is an algebraic group. An irreducible monoid is reductive if its unit group is a reductive group.

Let M be a reductive monoid with unit group G, and let $B \subset G$ be a Borel subgroup, $T \subset B$ be the maximal torus, and $W=N_{G}(T) / T$ be the Weyl group. Let $\overline{N_{G}(T)}$ be the Zariski closure of $N_{G}(T)$ in M. Then $R=\overline{N_{G}(T)} / T$, called the Renner monoid of M, is an inverse monoid with unit group W. Let \bar{T} be the Zariski closure of T in M and $E(\bar{T})=\left\{e \in \bar{T} \mid e^{2}=e\right\}$ be the set of idempotents in \bar{T}. Then we have $R=\langle W, \Lambda\rangle$, where $\Lambda=\{e \in E(\bar{T}) \mid B e=e B e\}$ is the cross-section lattice of M.

Definition 1.1 ${ }^{[7]}$ Let $M, G, B, T \subset B, W$ be as above. Let Δ be the fundamental root system relative to T and B, and $S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$ be the set of simple reflections that generate the Weyl group. The Putcha's type map $\lambda: \Lambda \rightarrow 2^{\Delta}$ is defined by $\lambda(e)=\left\{\alpha \in \Delta \mid s_{\alpha} e=e s_{\alpha}, s_{\alpha} \in S\right\}$.

Definition 1.2 ${ }^{[7]}$ Let M be a reductive monoid with zero. The monoid M is called \mathcal{J}-irreducible if $\Lambda \backslash\{0\}$ has a unique minimal idempotent.

Let G be a simple algebraic group, and let $\rho: G \rightarrow \mathrm{GL}(V)$ be an irreducible representation. Then $M=\overline{K^{*} \rho(G)}$ is a \mathcal{J}-irreducible monoid ${ }^{[8, ~ C o r o l l a r y ~ 8.3 .3] . ~ L e t ~} \lambda_{*}(e)=\cap_{f \leq e} \lambda(f), \lambda^{*}(e)=$ $\cap_{f \geq e} \lambda(f)$, and $W(e)=W_{\lambda(e)}$, the associated parabolic subgroup of W as in Section 7.5 of Ref. [9]. Then we have the following theorem ${ }^{[1]}$, which offers a general formula for the order of a

Received date: 2006-06-06; Accepted date: 2007-03-23
Foundation item: the National Natural Science Foundation of China (No. 10471116).

Renner monoid of a reductive monoid with zero.
Theorem 1.1 (Theorem 3.2 of Ref. [1]) Let M be a reductive monoid with zero and type map λ. Let λ^{*} and λ_{*} be defined as above. Then the order of the Renner monoid R of M is:

$$
|R|=1+\sum_{e \in \Lambda \backslash\{0\}}|W e W|=1+\sum_{e \in \Lambda \backslash\{0\}} \frac{|W|^{2}}{\left|W_{\lambda^{*}(e)}\right| \times\left|W_{\lambda_{*}(e)}\right|^{2}}
$$

Note that $\lambda^{*}(e)$ and $\lambda_{*}(e)$ are subsets of the set S given in Definition 1.1. Let $W_{\lambda^{*}(e)}$ and $W_{\lambda_{*}(e)}$ be the parabolic subgroups associated with $\lambda^{*}(e)$ and $\lambda_{*}(e)$ of W respectively. We put a brief and alternate proof of the above theorem in the next section, and after that we give a complete list of the orders of the Renner monoids of all \mathcal{J}-irreducible monoids for adjoint type in Section 3.

2. An alternate proof of Theorem 1.1

Let $W \times W$ act on R by: $\left(w_{1}, w_{2}\right) \cdot r=w_{1} r w_{2}^{-1}$. Then the set of $(W \times W)$-orbits of R is isomorphic to Λ as a lattice and $R=\bigsqcup_{e \in \Lambda} W e W$. Clearly, $|R|=\sum_{e \in \Lambda}|W e W|$. This tells us that as long as a formula for the number of elements in each $W e W$ is obtained, where $e \in \Lambda$, then the order of R is done. We give a basic proof here. First of all, we need the following results, which are due to Putcha and Renner ${ }^{[9, \text { Section 7.5.1] }}$.
(i) $\lambda^{*}(e)=\left\{a \in \Delta \mid s_{\alpha} e=e s_{\alpha} \neq e\right\}$.
(ii) $\lambda_{*}(e)=\left\{a \in \Delta \mid s_{\alpha} e=e s_{\alpha}=e\right\}$.
(iii) For $e \in \Lambda, \lambda(e)=\lambda^{*}(e) \sqcup \lambda_{*}(e)$.
(iv) For $e \in \Lambda, W(e) \cong W_{\lambda^{*}(e)} \times W_{\lambda_{*}(e)}$ and $w^{*} w_{*}=w_{*} w^{*}$ for $w^{*} \in W_{\lambda^{*}(e)}$ and $w_{*} \in W_{\lambda_{*}(e)}$.

Then let e and f be two arbitrary idempotents in $E(R)(=E(\bar{T}))$ and let w be an arbitrary element in the Weyl group W. Firstly, if $w e=f$, then $f=w e=w e e=f e$. Since $w e=f$, we get $e=w^{-1} f=w^{-1} f f=e f$. Therefore, $e=f$. Similarly, if $e w=f$ then $e=f$. Secondly, if $w e=e$, then $w e w^{-1} w=e$, which means $w e w^{-1}=e$. Hence, $e w=w e=e$. Similarly, if $e w=e$, then $w e=e$. Finally, we come to the conclusion that $\{w \in W \mid w e=e w=e\}=\{w \in W \mid w e=$ $e\}=\{w \in W \mid e w=e\}$. Hence, it follows from Definition 1.1, Definition 1.2 and (ii) that if $e \in \Lambda$, then $W_{\lambda(e)}=\{w \in W \mid w e=e w\}$, and $W_{\lambda_{*}(e)}=\{w \in W \mid w e=e\}=\{w \in W \mid e w=e\}$.

For $e \in \Lambda$, let $(W \times W)_{e}=\left\{\left(w_{1}, w_{2}\right) \in W \times W \mid w_{1}, w_{2} \in W, w_{1} e w_{2}^{-1}=e\right\}$ be the isotropic group of e. Now we prove that $(W \times W)_{e}=\left\{\left(w, w w_{*}\right) \in W \mid w \in W_{\lambda(e)}\right.$ and $\left.w_{*} \in W_{\lambda_{*}(e)}\right\}$. Actually, it is straightforward to check that the set on the right-hand side is contained in the one of the left-hand side. On the other hand, for any $\left(w_{1}, w_{2}\right) \in(W \times W)_{e}, w_{1} e w_{2}^{-1}=e$ and then $w_{1} e w_{1}^{-1}\left(w_{1} w_{2}^{-1}\right)=e$. According to the former argument, we know it means that $w_{1} e w_{1}^{-1}=e$. Hence $w_{1} \in W_{\lambda(e)}$. Similarly, $w_{2} \in W_{\lambda(e)}$. It follows from $w_{1} e w_{1}^{-1}=e$ and $w_{1} e w_{1}^{-1} w_{1} w_{2}^{-1}=e$ that $e w_{1} w_{2}^{-1}=e$. Thus, $w_{1} w_{2}^{-1} \in W_{\lambda_{*}(e)}$, and $\left(w_{1}, w_{2}\right)=\left(w_{1}, w_{1}\left(w_{1}^{-1} w_{2}\right)\right)$ belongs to the set on the right-hand side. As a natural result, we finally get
(i) $\left|(W \times W)_{e}\right|=\left|W_{\lambda(e)}\right| \times\left|W_{\lambda_{*}(e)}\right|=\left|W_{\lambda^{*}(e)}\right| \times\left|W_{\lambda_{*}(e)}\right|^{2}$,
(ii) $|W e W|=\frac{|W|^{2}}{\left|(W \times W)_{e}\right|}=\frac{|W|^{2}}{\left|W_{\lambda^{*}(e)}\right| \times\left|W_{\lambda_{*}(e)}\right|^{2}}$.

Then Theorem 1.1 follows from (ii).

3. Application to \mathcal{J}-irreducible monoids

For completeness, we list all Dynkin diagrams and orders of the Weyl groups of simple groups here for the reference of the next subsections.
$\mathrm{A}_{l}: \quad \stackrel{1}{\bigcirc} \stackrel{2}{\bigcirc} \ldots \ldots \cdot \stackrel{l-1 \quad l}{\bigcirc}$

$$
\alpha_{0}=\lambda_{1}+\lambda_{l}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{l} ; \quad|W|=(l+1)!, \quad l \geq 1
$$

B_{l} :

$$
\alpha_{0}=\lambda_{2}=\alpha_{1}+2 \alpha_{2}+\cdots+2 \alpha_{l} ; \quad|W|=(l!) 2^{l}, \quad l \geq 2
$$

C_{l} :

$$
\alpha_{0}=2 \lambda_{1}=2 \alpha_{1}+\cdots+2 \alpha_{l-1}+\alpha_{l} ; \quad|W|=(l!) 2^{l}, \quad l \geq 3
$$

D_{l} :

$$
\alpha_{0}=\lambda_{2}=\alpha_{1}+2 \alpha_{2}+\cdots+2 \alpha_{l-2}+\alpha_{l-1}+\alpha_{l} ; \quad|W|=(l!) 2^{l-1}, \quad l \geq 4
$$

E_{6} :

$\alpha_{0}=\lambda_{6}=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+2 \alpha_{6} ; \quad|W|=2^{7} 3^{4} 5$.
E_{7} :

$$
\alpha_{0}=\lambda_{1}=2 \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7} ; \quad|W|=2^{10} 3^{4} 5 \times 7
$$

Note that the number above or beside each node is the index of the associated fundamental root, α_{0} is the highest root and λ_{i} is the i-th fundamental dominant weight relative to the fundamental root system Δ.

3.1. Type map of \mathcal{J}-irreducible monoids

Putcha and Renner found the type maps of the \mathcal{J}-irreducible monoids in Ref. [7].
Theorem 3.1 (Theorem 4.16 of Ref. [7]) Let M be a \mathcal{J}-irreducible monoid associated with a dominant weight μ and $J_{0}=\{\alpha \in \Delta \mid\langle\mu, \alpha\rangle=0\}$ (see [9, p.16] for the bracket \langle,$\rangle). Let e_{0}$ be the unique minimal idempotent in $\Lambda \backslash\{0\}$. Then
(i) $\lambda^{*}(\Lambda \backslash\{0\})=\left\{X \subset \Delta \mid X\right.$ has no connected component that lies entirely in $\left.J_{0}\right\}$.
(ii) $\lambda^{*}(e) \in \lambda^{*}(\Lambda \backslash\{0\})$ and $\lambda_{*}(e)=\left\{a \in J_{0} \backslash \lambda^{*}(e) \mid s_{a} s_{\beta}=s_{\beta} s_{\alpha}\right.$ for all $\left.\beta \in \lambda^{*}(e)\right\}$ for $e \in \Lambda \backslash\{0\}$. Specially, $\lambda\left(e_{0}\right)=\lambda_{*}\left(e_{0}\right)=J_{0}$.

For the remainder of this paper, we assume that $M=\overline{K^{*} \rho(G)}$ where G is a simple algebraic group over K, and $\rho: G \rightarrow \mathrm{GL}(V)$ is an irreducible representation associated with the highest root α_{0}.

3.2. Orders of Renner monoids for adjoint type

The orders of Renner monoids of \mathcal{J}-irreducible monoids associated with the first fundamental dominant weight λ_{1} were found by Li, Li and $\mathrm{CaO}^{[1]}$. Since the highest root is just the first fundamental dominant weight in the cases of type $E_{7}, E_{8}, F_{4}, G_{2}$, and two times in the case of C_{l}. For these cases the orders of the Renner monoids are completely the same as those in Ref. [1]. Therefore, we list the orders for all the cases but omit the proof for types $C_{l}, E_{7}, E_{8}, F_{4}$ and G_{2}.

Theorem 3.2 Let R be the Renner monoids of \mathcal{J}-irreducible monoids M associated with the highest root. Then

$$
\left(A_{l}\right)|R|=2(l+1)^{2} \sum_{r=0}^{l}\binom{l}{r}^{2} r!+\sum_{i=1}^{l-2} \sum_{j=1}^{l-1-i}\binom{l+1}{i+1}^{2}(i+1)!\binom{l-i}{j+1}^{2}(j+1)!-l^{4}-2 l^{3}-3 l^{2}-
$$

$4 l-1+(l+1)$!.
$\left(B_{l}\right) \quad|R|=\sum_{r=0}^{l} 4^{r}\binom{l}{r}^{2}(r+1)!-20 l^{4}+40 l^{3}-28 l^{2}+2^{l+1} l \cdot l!+2^{l} l!$.
$\left(C_{l}\right)|R|=\sum_{r=0}^{l} 4^{r}\binom{l}{r}^{2} r!+2^{l} l!$.
$\left(D_{l}\right) \quad|R|=\sum_{r=0}^{l} 4^{r}\binom{l}{r}(r+1)!-20 l^{4}+40 l^{3}-28 l^{2}-2^{2 l-1}(l+1)!+2^{l} l \cdot l!+2^{l-1} l!$.
(E_{6}) $|R|=113068225=5^{2} \times 4522729$.
$\left(E_{7}\right) \quad|R|=44520456709=281 \times 158435789$.
$\left(E_{8}\right) \quad|R|=332011601568001=4969 \times 7187 \times 9296867$.
$\left(F_{4}\right)|R|=103105=5 \times 17 \times 1213$.
$\left(G_{2}\right)|R|=121=11^{2}$.
Proof The main procedure of the proof for each case is to calculate the orders of two-sided W orbits $W e W$ for $e \in \Lambda \backslash\{0\}$ by using Theorem 1.1.
(a) Type $\mathrm{A}_{l}: J_{0}=\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{l-1}\right\}$. It follows from Theorem 3.1 that

$$
\begin{aligned}
\lambda^{*}(\Lambda \backslash\{0\})= & \left\{\phi,\left\{\alpha_{1}\right\},\left\{\alpha_{1}, \alpha_{2}\right\}, \ldots,\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l-1}\right\}\right. \\
& \left\{\alpha_{l}\right\},\left\{\alpha_{l-1}, \alpha_{l}\right\}, \ldots,\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{l}\right\} \\
& \left.\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\},\left\{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}, \alpha_{l-j+1}, \ldots, \alpha_{l}\right\}: 1 \leq i \leq l-j-1 \leq l-2\right\} .
\end{aligned}
$$

If $e=e_{0}$ is the minimal idempotent in $\Lambda \backslash\{0\}$, we get $\lambda^{*}\left(e_{0}\right)=\phi, \lambda_{*}\left(e_{0}\right)=J_{0}$. Hence

$$
\begin{equation*}
\left|W e_{0} W\right|=\frac{|W|^{2}}{\left|W_{J_{0}}\right|^{2}}=\frac{\left|W\left(A_{l}\right)\right|^{2}}{\left|W\left(A_{l-2}\right)\right|^{2}}=\frac{((l+1)!)^{2}}{((l-1)!)^{2}}=l^{2}(l+1)^{2} \tag{1}
\end{equation*}
$$

If e is any idempotent other than e_{0} in $\Lambda \backslash\{0\}$, and when $\lambda^{*}(e)=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ with $1 \leq$ $r \leq l-1$, then by Theorem 3.1, $\lambda_{*}(e)=\left\{\alpha_{r+2}, \ldots, \alpha_{l-1}\right\}$ for $1 \leq r \leq l-3$ and $\lambda_{*}(e)=\phi$ for $r=l-2$ and $l-1$. Hence, for $1 \leq r \leq l-3, W_{\lambda^{*}(e)} \cong W\left(A_{r}\right), W_{\lambda_{*}(e)} \cong W\left(A_{l-r-2}\right)$.

For $r=l-2$ and $l-1, W_{\lambda^{*}(e)} \cong W\left(A_{r}\right), W_{\lambda_{*}(e)} \cong 1$.
So, $\left|W_{\lambda^{*}(e)}\right|=(r+1)$! and $\left|W_{\lambda_{*}(e)}\right|=(l-r-1)$! for $1 \leq r \leq l-1$. It follows from Theorem 1.1 that,

$$
\begin{equation*}
|W e W|=\frac{((l+1)!)^{2}}{(r+1)!((l-r-1)!)^{2}} \tag{2}
\end{equation*}
$$

Obviously, when $\lambda_{*}(e)=\left\{\alpha_{l-r+1}, \alpha_{l-r}, \ldots, \alpha_{l}\right\}$ with $1 \leq r \leq l-1$, this case is complete the same as the above case.

When $\lambda^{*}(e)=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}, e$ is the identity element in $\Lambda \backslash\{0\}$. Hence,

$$
\begin{equation*}
|W e W|=|W|=(l+1)!. \tag{3}
\end{equation*}
$$

When $\lambda^{*}(e)=\left\{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}, \alpha_{l-j+1}, \ldots, \alpha_{l}\right\}, 1 \leq i \leq l-j-1 \leq l-2$, we have $\lambda_{*}(e)=$ $\left\{\alpha_{i+2}, \alpha_{i+3}, \ldots, \alpha_{l-j-2}, \alpha_{l-j-1}\right\}$ for $l-j-i \geq 3$ and $\lambda_{*}(e)=\phi$ for $l-j-i=2$ and 1 . Hence, for $l-j-i \geq 3, W_{\lambda^{*}(e)} \cong W\left(A_{i}\right) \times W\left(A_{j}\right), W_{\lambda_{*}(e)} \cong W\left(A_{l-j-i-2}\right)$ and for $l-j-i=2$ and $1, W_{\lambda^{*}(e)} \cong W\left(A_{i}\right) \times W\left(A_{j}\right), W_{\lambda_{*}(e)} \cong 1$. Thus, $\left|W_{\lambda^{*}(e)}\right|=(i+1)!(j+1)!$ and $\left|W_{\lambda_{*}(e)}\right|=$ $(l-j-i-1)$!, for $1 \leq i \leq l-j-1 \leq l-2$. Hence,

$$
\begin{equation*}
|W e W|=\frac{((l+1)!)^{2}}{(i+1)!(j+1)!((l-j-i-1)!)^{2}} \tag{4}
\end{equation*}
$$

Therefore, from (1)-(4) and Theorem 1.1, we have

$$
\begin{aligned}
|R|= & 1+l^{2}(l+1)^{2}+2 \sum_{r=1}^{l-1} \frac{((l+1)!)^{2}}{(r+1)!((l-r-1)!)^{2}}+(l+1)!+ \\
& \sum_{1 \leq i \leq l-j-1 \leq l-2} \frac{((l+1)!)^{2}}{(i+1)!(j+1)!((l-j-i-1)!)^{2}} \\
= & 2(l+1)^{2} \sum_{r=0}^{l}\binom{l}{r}^{2} r!+\sum_{i=1}^{l-2} \sum_{j=1}^{l-1-i}\binom{l+1}{i+1}^{2}(i+1)!\binom{l-i}{j+1}^{2}(j+1)!- \\
& l^{4}-2 l^{3}-3 l^{2}-4 l-1+(l+1)!.
\end{aligned}
$$

(b) Type $\mathrm{B}_{l}: \quad J_{0}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{l}\right\}$. It follows from Theorem 3.1 that

$$
\begin{aligned}
\lambda^{*}(\Lambda \backslash\{0\})= & \left\{\phi,\left\{\alpha_{2}\right\},\left\{\alpha_{2}, \alpha_{3}\right\}, \ldots,\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{l}\right\}\right. \\
& \left.\left\{\alpha_{1}, \alpha_{2}\right\},\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}, \ldots,\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}\right\}
\end{aligned}
$$

If $e=e_{0}$ is the minimal idempotent in $\Lambda \backslash\{0\}$, we get

$$
\begin{equation*}
\left|W e_{0} W\right|=\frac{|W|^{2}}{\left|W_{J_{0}}\right|^{2}}=\frac{\left|W\left(B_{l}\right)\right|^{2}}{\left|W\left(A_{1}\right) \times W\left(B_{l-2}\right)\right|^{2}}=\frac{\left(2^{l} l!\right)^{2}}{\left(2!(l-2)!2^{l-2}\right)^{2}}=4(l-1)^{2} l^{2} \tag{5}
\end{equation*}
$$

If e is any idempotent other than e_{0} in $\Lambda \backslash\{0\}$, and when $\lambda^{*}(e)=\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{r+1}\right\}$ with $1 \leq r \leq l-1$, by Theorem 3.1, $\lambda_{*}(e)=\left\{\alpha_{r+3}, \ldots, \alpha_{l}\right\}$ for $1 \leq r \leq l-3$ and $\lambda_{*}(e)=\phi$ for $r=l-2$ and $l-1$. Therefore, for $1 \leq r \leq l-3, W_{\lambda^{*}(e)} \cong W\left(A_{r}\right), W_{\lambda_{*}(e)} \cong W\left(B_{l-r-2}\right)$, where $B_{1} \cong A_{1}$ when $r=l-3$, for $r=l-2, W_{\lambda^{*}(e)} \cong W\left(A_{l-2}\right), W_{\lambda_{*}(e)} \cong 1$, and for $r=l-1, W_{\lambda^{*}(e)} \cong$ $W\left(B_{l-1}\right), W_{\lambda_{*}(e)} \cong 1$.

So, $\left|W_{\lambda^{*}(e)}\right|=(r+1)$! and $\left|W_{\lambda_{*}(e)}\right|=2^{l-r-2}(l-r-2)$! for $1 \leq r \leq l-2,\left|W_{\lambda^{*}(e)}\right|=2^{l-1}(l-1)$! and $\left|W_{\lambda_{*}(e)}\right|=1$ for $r=l-1$. It follows from Theorem 1.1 that for $1 \leq r \leq l-2$,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l} l!\right)^{2}}{(r+1)!\left(2^{l-r-2}(l-r-2)!\right)^{2}}=4^{r+2}(r+2)\binom{l}{r+1}^{2}(r+2)! \tag{6}
\end{equation*}
$$

and for $r=l-1$,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l} l!\right)^{2}}{2^{l-1}(l-1)!}=2^{l+1} l l! \tag{7}
\end{equation*}
$$

It is similar to calculate the remaining cases:
For $\lambda^{*}(e)=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r+1}\right\}$ with $1 \leq r \leq l-1$, we have $\lambda_{*}(e)=\left\{\alpha_{r+3}, \ldots, \alpha_{l}\right\}$ for $1 \leq r \leq l-3$ and $\lambda_{*}(e)=\phi$ for $r=l-2$ and $l-1$. It is easy to get that for $1 \leq r \leq l-2$,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l} l!\right)^{2}}{(r+2)!\left(2^{l-r-2}(l-r-2)!\right)^{2}}=4^{r+2}\binom{l}{r+2}^{2}(r+2)! \tag{8}
\end{equation*}
$$

and for $r=l-1, \lambda^{*}(e)=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}, e$ is the identity element and so

$$
\begin{equation*}
|W e W|=|W|=2^{l} l! \tag{9}
\end{equation*}
$$

Therefore, from (5)-(9) and Theorem 1.1, we have

$$
|R|=1+4(l-1)^{2} l^{2}+\sum_{r=1}^{l-2} 4^{r+2}(r+2)\binom{l}{r+2}^{2}(r+2)!+2^{l+1} l \cdot l!+
$$

$$
\begin{aligned}
& \sum_{r=1}^{l-2} 4^{r+2}\binom{l}{r+2}^{2}(r+2)!+2^{l} l! \\
= & \sum_{r=0}^{l} 4^{r}\binom{l}{r}^{2}(r+1)!-20 l^{4}+40 l^{3}-28 l^{2}+2^{l+1} l \cdot l!+2^{l} l!
\end{aligned}
$$

(d) Type $\mathrm{D}_{l}: J_{0}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{l}\right\}$. It follows from Theorem 3.1 that

$$
\begin{aligned}
\lambda^{*}(\Lambda \backslash\{0\})= & \left\{\phi,\left\{\alpha_{2}\right\},\left\{\alpha_{2}, \alpha_{3}\right\}, \ldots,\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{l-2}\right\}\right. \\
& \left\{\alpha_{2}, \ldots, \alpha_{l-2}, \alpha_{l-1}\right\},\left\{\alpha_{2}, \ldots, \alpha_{l-2}, \alpha_{l}\right\},\left\{\alpha_{2}, \ldots, \alpha_{l-2}, \alpha_{l-1}, \alpha_{l}\right\} \\
& \left\{\alpha_{1}, \alpha_{2}\right\},\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}, \ldots,\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{l-2}\right\} \\
& \left.\left\{\alpha_{1}, \ldots, \alpha_{l-2}, \alpha_{l-1}\right\},\left\{\alpha_{1}, \ldots, \alpha_{l-2}, \alpha_{l}\right\},\left\{\alpha_{1}, \ldots, \alpha_{l-2}, \alpha_{l-1}, \alpha_{l}\right\}\right\} .
\end{aligned}
$$

If $e=e_{0}$ is the minimal idempotent in $\Lambda \backslash\{0\}$, we get

$$
\begin{equation*}
\left|W e_{0} W\right|=\frac{|W|^{2}}{\left|W_{J_{0}}\right|^{2}}=\frac{\left|W\left(D_{l}\right)\right|^{2}}{\left|W\left(A_{1}\right) \times W\left(D_{l-2}\right)\right|^{2}}=\frac{\left(2^{l-1} l!\right)^{2}}{\left(2!2^{l-3}(l-2)!\right)^{2}}=4(l-1)^{2} l^{2} . \tag{10}
\end{equation*}
$$

For $1 \leq r \leq l-5$ and $\lambda^{*}(e)=\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{r+1}\right\}$, by Theorem 3.1, we have $\lambda_{*}(e)=$ $\left\{\alpha_{r+3}, \ldots, \alpha_{l}\right\}$. So, $W_{\lambda^{*}(e)} \cong W\left(A_{r}\right)$ and $W_{\lambda_{*}(e)} \cong W\left(D_{l-r-2}\right)$, where $D_{3} \cong A_{3}$ when $r=l-5$. Thus, $\left|W_{\lambda^{*}(e)}\right|=(r+1)$! and $\left|W_{\lambda_{*}(e)}\right|=2^{l-r-3}(l-r-2)$!. Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{(r+1)!\left(2^{l-r-3}(l-r-2)!\right)^{2}}=4^{r+2}(r+2)\binom{l}{r+2}^{2}(r+2)!. \tag{11}
\end{equation*}
$$

For $r=l-4$ and $\lambda^{*}(e)=\left\{\alpha_{2}, \ldots, \alpha_{l-3}\right\}$, we have $\lambda_{*}(e)=\left\{\alpha_{l-1}, \alpha_{l}\right\}$. So, $W_{\lambda^{*}(e)} \cong W\left(A_{l-4}\right)$ and $W_{\lambda_{*}(e)} \cong W\left(A_{1}\right) \times W\left(A_{1}\right)$. It follows that $\left|W_{\lambda^{*}(e)}\right|=(l-3)$! and $\left|W_{\lambda_{*}(e)}\right|=4$. Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{(l-3)!4^{2}}=2^{2 l-6}(l-2)(l-1) l \cdot l! \tag{12}
\end{equation*}
$$

For $r=l-3$ and $\lambda^{*}(e)=\left\{\alpha_{2}, \ldots, \alpha_{l-2}\right\}$, we have $\lambda_{*}(e)=\phi$. So, $W_{\lambda^{*}(e)} \cong W\left(A_{l-3}\right)$ and $W_{\lambda_{*}(e)} \cong 1$. We have $\left|W_{\lambda^{*}(e)}\right|=(l-2)$! and $\left|W_{\lambda_{*}(e)}\right|=1$. Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{(l-2)!}=2^{2 l-2}(l-1) l \cdot l! \tag{13}
\end{equation*}
$$

For $r=l-2$, it follows that $\lambda^{*}(e)=\left\{\alpha_{2}, \ldots, \alpha_{l-2}, \alpha_{l-1}\right\}$ or $\lambda^{*}(e)=\left\{\alpha_{2}, \ldots, \alpha_{l-2}, \alpha_{l}\right\}$, we have both $\lambda_{*}(e)=\phi, W_{\lambda^{*}(e)} \cong W\left(A_{l-2}\right)$ and $W_{\lambda_{*}(e)} \cong 1$. Thus, $\left|W_{\lambda^{*}(e)}\right|=(l-1)$! and $\left|W_{\lambda_{*}(e)}\right|=1$. Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{(l-1)!}=2^{2 l-2} l \cdot l! \tag{14}
\end{equation*}
$$

For $r=l-1, \lambda^{*}(e)=\left\{\alpha_{2}, \ldots, \alpha_{l}\right\}$, we have $\lambda_{*}(e)=\phi . \quad$ So, $W_{\lambda^{*}(e)} \cong W\left(D_{l-1}\right)$ and $W_{\lambda_{*}(e)} \cong 1$. Thus, $\left|W_{\lambda^{*}(e)}\right|=2^{l-2}(l-1)$! and $\left|W_{\lambda_{*}(e)}\right|=1$. Hence,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{2^{l-2}(l-1)!}=2^{l} l \cdot l!. \tag{15}
\end{equation*}
$$

The argument is similar for the remaining cases. It is easy to find that:

For $1 \leq r \leq l-5$ and $\lambda^{*}(e)=\left\{\alpha_{1}, \ldots, \alpha_{r+1}\right\}$, by Theorem 3.1, we have $\lambda_{*}(e)=\left\{\alpha_{r+3}, \ldots, \alpha_{l}\right\}$, and

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{(r+2)!\left(2^{l-r-3}(l-r-2)!\right)^{2}}=4^{r+2}\binom{l}{r+2}^{2}(r+2)!. \tag{16}
\end{equation*}
$$

For $r=l-4$ and $\lambda^{*}(e)=\left\{\alpha_{1}, \ldots, \alpha_{l-3}\right\}$, we have $\lambda_{*}(e)=\left\{\alpha_{l-1}, \alpha_{l}\right\}$, and

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{(l-2)!4^{2}}=2^{2 l-6}(l-1) l \cdot l! \tag{17}
\end{equation*}
$$

For $r=l-3$ and $\lambda^{*}(e)=\left\{\alpha_{1}, \ldots, \alpha_{l-2}\right\}$, we have $\lambda_{*}(e)=\phi$, and

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{(l-1)!}=2^{2 l-2} l \cdot l! \tag{18}
\end{equation*}
$$

For $r=l-2$, it follows that $\lambda^{*}(e)=\left\{\alpha_{1}, \ldots, \alpha_{l-2}, \alpha_{l-1}\right\}$ or $\lambda^{*}(e)=\left\{\alpha_{1}, \ldots, \alpha_{l-2}, \alpha_{l}\right\}$, and for both of the cases, $\lambda_{*}(e)=\phi$,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{l-1} l!\right)^{2}}{l!}=2^{2 l-2} l! \tag{19}
\end{equation*}
$$

For $r=l-1, \lambda^{*}(e)=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$. Then e is the identity element in $\Lambda \backslash\{0\}$, and hence

$$
\begin{equation*}
|W e W|=|W|=2^{l-1} l! \tag{20}
\end{equation*}
$$

Therefore, by (10)-(20), and Theorem 1.1, we have

$$
\begin{aligned}
|R|= & 1+4(l-1)^{2} l^{2}+\sum_{r=1}^{l-5} 4^{r+2}(r+2)\binom{l}{r+2}^{2}(r+2)!+2^{2 l-6}(l-2)(l-1) l \cdot l!+ \\
& 2^{2 l-2}(l-1) l \cdot l!+2 \times 2^{2 l-2} l \cdot l!+2^{l} l \cdot l!+\sum_{r=1}^{l-5} 4^{r+2}\binom{l}{r+2}^{2}(r+2)!+ \\
& 2^{2 l-6}(l-1) l \cdot l!+2^{2 l-2} l \cdot l!+2 \times 2^{2 l-2} l!+2^{l-1} l! \\
= & \sum_{r=0}^{l} 4^{r}\binom{l}{r}^{2}(r+1)!-20 l^{4}+40 l^{3}-28 l^{2}-2^{2 l-1}(l+1)!+2^{l} l \cdot l!+2^{l-1} l!.
\end{aligned}
$$

(e_{6}) Type $\mathrm{E}_{6}: J_{0}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$. It follows from Theorem 3.1 that

$$
\begin{aligned}
\lambda^{*}(\Lambda \backslash\{0\})= & \left\{\phi,\left\{\alpha_{6}\right\},\left\{\alpha_{6}, \alpha_{3}\right\},\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}\right\},\left\{\alpha_{6}, \alpha_{3}, \alpha_{4}\right\}\right. \\
& \left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{1}\right\},\left\{\alpha_{6}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\},\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{4}\right\} \\
& \left.\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{4}, \alpha_{1}\right\},\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{4}, \alpha_{5}\right\},\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{4}, \alpha_{1}, \alpha_{5}\right\}\right\}
\end{aligned}
$$

If $e=e_{0}$ is the minimal idempotent in $\Lambda \backslash\{0\}$, we have

$$
\begin{equation*}
\left|W e_{0} W\right|=\frac{|W|^{2}}{\left|W_{J_{0}}\right|^{2}}=\frac{\left|W\left(E_{6}\right)\right|^{2}}{\left|W\left(A_{5}\right)\right|^{2}}=\frac{\left(2^{7} 3^{4} 5\right)^{2}}{(6!)^{2}}=2^{6} 3^{4} \tag{21}
\end{equation*}
$$

For $\lambda^{*}(e)=\left\{\alpha_{6}\right\}$, by Theorem 3.1 we have $\lambda_{*}(e)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}\right\}$. So, $W_{\lambda^{*}(e)} \cong W\left(A_{1}\right)$ and $W_{\lambda_{*}(e)} \cong W\left(A_{2}\right) \times W\left(A_{2}\right)$. Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{7} 3^{4} 5\right)^{2}}{2!(3!)^{4}}=2^{9} 3^{4} 5^{2} \tag{22}
\end{equation*}
$$

For $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}\right\}$, we have $\lambda_{*}(e)=\left\{\alpha_{1}, \alpha_{5}\right\}$. So, $W_{\lambda^{*}(e)} \cong W\left(A_{2}\right)$ and $W_{\lambda_{*}(e)} \cong$ $W\left(A_{1}\right) \times W\left(A_{1}\right)$, Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{7} 3^{4} 5\right)^{2}}{3!4^{2}}=2^{9} 3^{7} 5^{2} \tag{23}
\end{equation*}
$$

For $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}\right\}$, this case is the same as $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}, \alpha_{4}\right\}$. By Theorem 3.1, we have $\lambda_{*}(e)=\left\{\alpha_{5}\right\}$. So, $W_{\lambda^{*}(e)} \cong W\left(A_{3}\right)$ and $W_{\lambda_{*}(e)} \cong W\left(A_{1}\right)$, Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{7} 3^{4} 5\right)^{2}}{4!(2!)^{2}}=2^{9} 3^{7} 5^{2} \tag{24}
\end{equation*}
$$

For $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{1}\right\}$, this case is the same as $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$. By Theorem 3.1, we have $\lambda_{*}(e)=\left\{a_{5}\right\}$. So, $W_{\lambda^{*}(e)} \cong W\left(A_{4}\right)$ and $W_{\lambda_{*}(e)} \cong W\left(A_{1}\right)$. Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{7} 3^{4} 5\right)^{2}}{5!2^{2}}=2^{9} 3^{7} 5 \tag{25}
\end{equation*}
$$

For $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{4}\right\}$, by Theorem 3.1, we have $\lambda_{*}(e)=\phi$. So, $W_{\lambda^{*}(e)} \cong W\left(D_{4}\right)$ and $W_{\lambda_{*}(e)} \cong 1$. Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{7} 3^{4} 5\right)^{2}}{2^{3} 4!}=2^{8} 3^{7} 5^{2} \tag{26}
\end{equation*}
$$

For $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{4}, \alpha_{1}\right\}$, this case is the same as $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{4}, \alpha_{5}\right\}$. By Theorem 3.1, we have $\lambda_{*}(e)=\phi$. So, $W_{\lambda^{*}(e)} \cong W\left(D_{5}\right)$ and $W_{\lambda_{*}(e)} \cong 1$. Therefore,

$$
\begin{equation*}
|W e W|=\frac{\left(2^{7} 3^{4} 5\right)^{2}}{2^{4} 5!}=2^{7} 3^{7} 5 \tag{27}
\end{equation*}
$$

For $\lambda^{*}(e)=\left\{\alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{4}, \alpha_{1}, \alpha_{5}\right\}, e$ is the identity element, and hence

$$
\begin{equation*}
|W e W|=\left|W\left(E_{6}\right)\right|=2^{7} 3^{4} 5 \tag{28}
\end{equation*}
$$

It follows from (21)-(28), and Theorem 1.1 that

$$
|R|=113068225=5^{2} \times 4522729
$$

The proof for the case E_{6} is completed.

References

[1] LI Zhuo, LI Zhen-heng, CAO You-an. Orders of the Renner monoids [J]. J. Algebra, 2006, 301(1): 344-359.
[2] LI Zhuo, PUTCHA M S. Types of reductive monoids [J]. J. Algebra, 1999, 221(1): 102-116.
[3] LI Zhuo, RENNER L E. The lattice of \mathcal{J}-classes of (\mathcal{J}, σ)-irreducible monoids [J]. J. Algebra, 1997, 190(1): 172-194.
[4] LI Zhen-heng. Idempotent lattices, Renner monoids and cross section lattices of the special orthogonal algebraic monoids [J]. J. Algebra, 2003, 270(2): 445-458.
[5] LI Zheng-heng. The cross section lattices and Renner monoids of the odd special orthogonal algebraic monoids [J]. Semigroup Forum, 2003, 66(2): 273-287.
[6] LI Zheng-heng, RENNER L. The Renner monoids and cell decompositions of the symplectic algebraic monoids [J]. International Journal of Algebra and Computation, 2003, 13: 111-132.
[7] PUTCHA M S, RENNER L. The system of idempotents and the lattice of \mathcal{J}-classes of reductive algebraic monoids [J]. J. Algebra, 1988, 116(2): 385-399.
[8] RENNER L. Classification of semisimple algebraic monoids [J]. Trans. Amer. Math. Soc., 1985, 292(1): 193-223.
[9] RENNER L. Linear Algebraic Monoids [M]. Springer-Verlag, Berlin, 2005.
[10] SOLOMON L. An introduction to reductive monoids [J]. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 466, Kluwer Acad. Publ., Dordrecht, 1995.

