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Robust designs for approximate regression
models with correlated errors

ZHOU Xiao-dong, YUE Rong-xian

(Mathematics and Sciences College, Shanghai Normal University, Shanghai 200234, China)

Abstract: This paper studies the model — robust design problem by applying the reproducing kernel space approach.
We assume that the model has an unknown bias or contamination from some class # with a probability measure P |, and
the correlated errors are considered. We develop a design criterion in terms of the average expected quadrstic loss for
generalized least squares estimation. Numerical results indicate the designs obtained through this csiienion sre more ro-
bust.
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1 Introduction

In this paper we study the design problem for the linear regression given by

P
Y = Zlojgj(xi) te, t=1,,n (1)
when there is a deviation (misspeciﬁcationjor bias ) from the assumed model. Here the specified functions g,are
linearly independent, and X; are n points drawn from a compact subset in the ¢ — dimensional Euclidean space.
Differing from the classical assumption, we suppose errors g; , with mean zero, are not independent, and the co-
variance matrix is g3 . We represent the true model by
Yi =fT(xi)9 +7h(X;) +&, i =1,",n (2)
where f(+) = (&, (), &(*) )" and # is an unknown function from some class % which will be specified
later. The parameter 7 , which only depends on n , reflects the relationship of the bias # and the error ¢ , as
taken by Wiens and Zhou (1999). Since the bias # is unknown and may vary freely in H, the designs must be
chosen such that the fitted model provides an adequate approximation to a range of possible true models, i.e. ,
is robust to the exact form of the true model in some sense.

The model] - robust designs problem has been studied by many authors whose investigations differ in specifi-
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cation of the class H , the design region, the regressor, the loss functions and the covariance matrix. Kiefer
(1973) and some others restrict their attentions to finite dimensional .# and the least square estimators or linear
estimators. Pesotchinsky(1982), Li and Notz(1982) and Yue and Hickernell(1999) deal with infinite dimen-
sional H . Under the assumption of homoscedasticity, some of them take H = {h:| h(Xx) | < ¢(X) ,X e X} with

various assumptions being made about ¢(x) . The designs constructed appear to be quite sensitive to the assured
form of ¢ , The others take H = {h:J;[h(x)]zdx < n,J;g,.(x)h(x)dx =0,/ =1,--,p} , and use the least

squares estimators. Here 5 is assumed to be known, and the second condition ensures the identifiability of the
6, . But this specification is criticized for only designs which are absolutely continuous on X have a finite loss. To
avoid this limitation, Yue and Hickemnell (1999) allow for # coming from a reproducing kernel Hilbert space
admitting a reproducing kemel K(x, w) and an inner product (-, *) .

The aforementioned medels are all supposed to be with homoscedasticity, but this rarely happens in prac-
tice. In this paper,we consider the model with correlated errors and H ,the bias class, is a probability space with
measure P . We confine ourselves to using the generalized least squares and the average expected quadratic loss.
The next section gives the formulation of the problem along with the required notation. In Section 3, we give sev-
eral examples to illusirate the design problem and also investigate the effect caused by the correlation of the er-

rors. In Section 4 a summary is given.

2 Formulation of the design problem

Assume that the true response is given by (2). Using matrix »otaiion, we can write the model (2) as

Y=X0+7H+e (3)

where
Y= (y1,m0)7,60 = (61,.6,)7,
H = (h(x),,k(x,)) "6 = (&1, ,8,)".

and X is an n X p matrix of full column rank whose ith row contains the elements of f"(x,) (i =1,+--,n). From
the assumption on the random errors in (2) we have E[¢] = 0, Cov[e] = ¢°3, where 3 > Ois ann x n ma-
trix.

We use the best linear unbiased estimator to estimate the parameters’ vector @ when the contamination is not
present. That is , § = CY where C = (X"37'X) "' X"3™". The vector for predicted response, y(X) , can be ex-
pressed by y(x) = f7(x)8. Let 7(x) be defined as corresponding true mean values at the point X . When the
contamination h(X) is present, we have

E[5(x)] = (%) +1f"(x)CH - h(x),
Var[3(x)] = ¢’f"(x)(X"37'X) "f(x).

We consider the expected quadratic loss over the region X when the design £, and estimator § are used
R(&,.h) = [EG(x) - n(x))"dx (4)
Introduce the matrices M = X'37'X, I' = Lf(x)fr(x)dx . Then (4) becomes

R(¢,,h) = o [M'T] + 7 [ C'TCHH"] —ZLHTCTf(x)h(x)dx +Lh2(x)dx}. (5)

Note that the bias h(X) is unknown, and we must make an assumption before it can make sense to minimize
(5). Let us suppose that the class # is a probability space with measure P . Equivalently, the bias # is regar-
ded as a random function and P represents the probability that # presents. We additionally assume that
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ELh(x)] = [ k(%) dP(h) =0, E[A()R( )] = K(x, t),

where K is a specified covariance kemel. The assumption E[ h(x) ] = O reflects the notion that the model in (2)
is correct on the average, but any particular realization may induce the bias. Our objective will be to find £, to

minimize the average expected quadratic loss

R(£) = [ R(&,,h)dP(R). (6)
Let K(x) be the n x 1 vector defined by K(x) = (K(x,x,),*,K(x,x,))" , let Kbe the n x n matrix whose i
th row is K'(x;) ,fori = 1,--,n. Define the matrix L and the constant d by L = Lf(x)KT(x)dx and d =

LK(X,X) dx. Then R(£,) in (6) can be expressed as
R(£) = *tr[M'T) + 2 {r[C'TCK] -2tr[ CTL] + d}. (7

2
Let A = < which can be chosen by the experimenter to reflect his view of the relative importance of vari-

2 2
g +T

ance versus bias. Then (7) becomes
R(¢) = (o8 +72){ar[M'T] + (1 = A)[e[ CICK] - 26r[ CTL] + 41}
= (o’ + ) [AV(£,) + (1 -2)B(&,) ] (8)
Since (¢” + 7°) is a constant, a design is R -optimal if it minimizes AV + (1 — A)B . A design is all-variance
design if it minimizes V alone, and a design is all-bias design if it inimizes B alone. Let ¢, , denote the R -opti-
mal design associated with A , Then £, ; is the all-bias design, ard ¢, , is the all-variance design.

To compare different designs for model in (2, we define the efficiency of a design by

e(£.0) = ,——{%’% 9)

where R* (A ) is the vainimum of R(£,,A) over all n - point designs for a given A .

3 Ilustrative Example

In this section we present some numerical results on the all-bias, all-variance and compound optimal de-
signs for several models and also investigate the influence of the heteroscedasticity. Throughout, the design re-
gion is the unit cube in R’ , i.e. ,x e [0,1]°, a generic point in [0,1]? is denoted by x = (x,,-:,%,) r,
and the point X; is written as X; = (x;,***,x;) "the response functions are all from the so called Sobolev-Hilbert
space ( Wahba, 1990, chapter 10) , The Sobolev-Hilbert space, S , is a reproducing kernel Hilbert space whose

reproducing kernel is
9 2 +t2
Q(x, t) = H[% +3—6—l—2—l— —max(x,,t,)], x,t e [0,1]% (10)
11

The inner product in S is

i of o'y 1
(f.g) = uc';. ,q[J'[o,l]u ox, ox, (11)

where the sum over u is taken over all the subsets of the coordinates of y , X, denotes the coordinate projection of
xonto[0,1]" and dx, = H: udx, . We also assume that each of the components of the vector fin the model
(2) lies in the space S such that the matrix A = ({f,.f;)),., is non-singular. We define

K(x, ) = Q(x, t) - f(X)ATA( ). (12)
It is known (Wahba,1973) that Kin (12) is a reproducing kernel for the subspace of § which is orthogonal com-
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plement to the subspace spanned by f. We take this K as the covariance kernel for the bias space H. We assume

that the covariance matrix of the errors is that of an AR(1) process:
2

covle] = 1—0_;;77P,, P (i) =p"",0=lpl <1, (13)
where ¢ is known and the parameter p may be estimated from the data through, e. g, the Cochran - Orcuct pro-
cedure (Montgomery Peck , 1982, p355), when p is unknown. In this paper we also allow for the covariance ma-
trix P, , that is

cov[e] = &’P,, P,(i,i) =1, Py(i,j) =p, 0<lpl <L (14)
We also suppose the parameters o ,p are known. The reason why we consider the covariance matrix P, is that in
the view of the robust estimation, the estimatord = (X"X) 'X"Y , as the estimator§ = (X'3'X) 'X"37'Y , is
still a best linear estimator in the model (2) with the covariance matrix g°P, . Numerical results indicate that
under this situation the designs gettin through the R -optimal criterion are more robust against the departures from
the assumption of homoscedasticity.

Example In this example we consider the case in which the assumed model is
1
f(x) = (lyBl(x1)9""Bl(xq))T ’ Bl(x) =% = _2—'
Then the kemnel defined in (12) is given by
K(x,t) = Q(x, t) - fT(x)/T t). (15)
This means that the response is fitted by a first — degree ociyncrmal and the bias is random with zero mean and

covariance kemmel K(x, t) . For the case with ¢ =1 we assume ihat the regression function is f;(x) = (1,

B,(x))" . Then the kemel defined in (15) can be expressed as

6
Figure 1 shows some optimal designs £, , in [0,1] ,and the efficiencies of the all-bias and all-variance designs
which are calculated according to the definition in (9) forA = 0.1,0.2,---,0.9 whilep = 0,0.5, - 0.5 ,re-
spectively. In this case, we take P, as the variance-covariance matrix. Figure 2 (a) shows some optimal designs
£,,in [0,1] whenA =0,0,4,0,8,1 butp =0.1,0.2,-+,0.9 . The covariance matrix that we assume is P, >

Ki(wt) = 2B,(1x=11) , By(x) =" 5 -4 (16)

0. Similarly, in Figure 2 (b) we give the designs assuming the covariance matrix is P, > 0. From figure 1 we
observe that the n points of the all-bias design are scattered uniformly in the design domain, and the R -optimal
design £, tends to the all-bias design as the value of A tends to zero. However, when the value of A is getting large
in (0,1),the R -optimal design tends to the all-variance design. The similar phenomenon (not shown in this pa-
per) could be observed when the covariance matrix was P, . From figure 2 (a) we find that the n points run to
the extreme as A becomes large. Two special cases are: For A = 0 (all-bias design) , the n — points are scattered
uniformly and is little sensitive to the correlative coefficient p ; However, in the situation A = 1 (all-variance de-
sign) , the design points are located on the boundaries. For the compound design, the design becomes more sen-
sitive top . But when we choose another covariance matrix P, , as is shown in (b), the design points will be
less sensitive. So we conclude that the R -optimal criterion strongly depends on the covariance matrix. Similar
computations were done for some other values of n and the negative coefficient p , and similar results were also
obtained. For the case with ¢ =2 we let
fi(x) = (1,31(x1)sBl(x2))T~ (17)
The kemel defined in (15) is
K(x,t) = Q(x, t) - (x)f,( t). (18)
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Figure 2 some optimal designs £, , in [0,1] whenA =0,0,4,0,8,1 butp =0.1,0.2,-+-,0.9.

(byp, >0.

where Q(x, t) is defined by (10) withq =2. In Figure 1, we show some designs that minimizes Rgiven in (8),
wherep =0,0.5, -0.5and A = 0(-),0.5( % ),1(e) in Figure 3. The efficiencies of the all-bias and all-vari-
ance designs which are calculated according to the definition in (9) are shown in the same figure. As we find in
the case ¢ =1, the all-bias design is a uniform design, and the all-variance design points are all the extreme
points. Figure 4 (a) shows the optimal designs obtained according to the criterion we give in (8) under the as-
sumption that the model with variance - covariance P, when A = 0,0.4,0.8,1 , butp = 0(-),0.5( ),
0.9(e ), respectively. Figure 4 (b) shows the designs withA =0,0.4,0.8,1andp =0(+),0.5( *),0.9(o),
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respectively. The variance — covariance matrix that we take is P, . From (a) and (b) we get the conclusion sim-
ilar to the case withg =1. That is, when A = 0, uniform designs are shown; At the same time, whenA =1,
design points appeared in the extreme points. The designs under the two situations are both robust against from
p . For compound designs, designs got from the model (2) with the covariance matrix P, , are less robust than

those with the covariance matrix, P, .
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4  Summary

We have considered the design problem for the response surface model with bias and correlated errors by
applying reproducing kernel Hilbert space approach. The criterion for choosing designs is the average loss
which can be decomposed into two terms; variance term and bias term. From the numerical examples, we find
that when the covariance matrix is known, the average expected loss depends on the quantity A . For small val-
ues of A in (0,1), the all-bias design is better than the all-variance design, and for the large values of A the
all-variance design is better. For the special structure of the covariance matrix, the designs attained through R

are much more robust against the departures of assumption of homoscedasticity.
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