HPGe γ 谱仪峰总比不变性的实验研究

樊元庆,王 军,王世联

(禁核试北京国家数据中心和北京放射性核素实验室,北京 100085)

摘要:测定了点源、面源和盘状源在距 HPGe 探测器表面不同距离上的峰总比,研究了探测器的峰总比 随样品形状和测量几何条件的变化规律,验证了同一探测器不同测量条件下峰总比基本不变的特性,给 出了所使用 HPGe γ 谱仪的峰总比曲线。 关键词:HPGe γ 谱仪;峰总比;峰效率;总效率

中图分类号:TL816.4 文献标识码:A 文章编号:1000-6931(2006)S0-0122-04

Experiment Research on Invariability of Peak-to-Total Ratio in γ-ray Spectrometry

FAN Yuan-qing, WANG Jun, WANG Shi-lian

(CTBT Beijing National Data Centre and Radionuclide Laboratory, Beijing 100085, China)

Abstract: The source, such as point, plane and disc were measured in several sourcedetector distances for the research on invariability of the peak-to-total ratio, and the curve of peak-to-total ratio was presented.

Key words: HPGe detector; peak-to-total ratio; peak efficiency; total efficiency

在利用 HPGeγ 谱仪进行环境水平放射性 样品分析时,使用单能γ标准源标定探测器在 特定测量条件下的峰效率和总效率的工作费时 费力,且通常能够同时获得足够数量的单能γ 标准源非常困难,这就使得实验标定工作往往 不能取得满意的结果,通常采用效率转移法标 定探测器的峰效率和总效率。

峰总比定义为峰效率与总效率的比值,峰 总比不变性是效率转移法的重要理论基础。 1981年,Moens等人^[1]就提出峰总比不变性的 假设,认为全能峰效率与总效率的比值与源的 位置、尺寸和材料组成无关而是探测器的本征 性质,但直到近年才由 Vidmar 等人^[2] 通过 Monte-Carlo 模拟计算对峰总比不变性进行了 比较系统的研究。本文使用一系列单能 γ 射线 源制成点源、面源(ϕ 20 mm)和盘状源 (ϕ 35 mm×4 mm、 ϕ 70 mm×4 mm和 ϕ 73 mm× 12 mm)在不同位置对探测器的峰总比值进行 测量,实验研究峰总比的不变性。

1 原理

 γ 谱仪系统的峰总比可以定义为:

$$R = \frac{\varepsilon_{\rm p}}{\varepsilon_{\rm t}} \tag{1}$$

作者简介:樊元庆(1980—),男,陕西耀县人,研究实习员,硕士,核技术及应用专业

式中: ϵ_p 和 ϵ_t 分别是能量为 E的 γ 射线峰效率 和总效率,它们与样品几何形状 V,距探测器距 离 L密切相关。对于某一测量条件下的单能 γ 射线谱,峰总比 R 也可以表示为:

$$R = \frac{n_{\rm p}}{n_{\rm t} - n_{\rm b} - n_{\rm q} + n_{\rm o}}$$
(2)

式中: n_p 为全能峰计数率; n_t 为总谱积分计数 率; n_b 为本底总谱积分计数率; n_q 为核素的其它 γ 射线峰计数率; n_0 为外推至零点的计数率。

2 实验

2.1 实验装置

探测系统由相对效率为 66.4%的 P 型同 轴高纯锗探测器和 γ 谱仪组成,高纯锗探测器 的能量分辨率为 1.78 keV/1 332.5 keV,晶体 尺寸为 ϕ 69.8 mm × 69.8 mm,高压为 +2 300 V。探测器置于内部尺寸为 100 cm× 100 cm×180 cm 的铅室内进行屏蔽(铅室的壁 厚为 10 cm,内衬各 1 mm 厚的镉、铜、铝板), 环境本底计数率为 4.72 s⁻¹。

实验中设定 ADC 的道数为 8 192,为减小 外推至零道计数的校正,调节下阈和零点,使脉 冲信号尽可能不被卡掉而又不使躁声出现,调 节后的下阈为 9 道,对应的能量为 5.9 keV。

2.2 源的制备

使用单能 γ 射线核素²⁴¹ Am、¹⁰⁹ Cd、⁵⁷ Co、 ¹⁴¹ Ce、¹³⁹ Ce、⁵¹ Cr、¹¹³ Sn、⁸⁵ Sr、¹³⁷ Cs、⁵⁴ Mn 和⁶⁵ Zn 的放射性溶液,制备了点状源、面状源(ϕ 20 mm 滤纸源)和3种尺寸的盘状源(ϕ 35 mm× 4 mm、\$70 mm×4 mm 和 \$73 mm×12 mm 的 聚丙稀滤材)样品。其中,在盘状源制备时,为 保证样品中放射性的均匀性,要将正方形聚丙 烯滤材用铅笔划分成 22×22 个方格,将一定量 的放射性溶液均匀滴在方格内,并尽量保持液 滴大小均匀。将阴干后的滤材叠成直径与所制 样品直径大小相当的厚源,装入相应内径尺寸 的模具中压制成滤材源。

2.3 实验和结果

实验中使用放射源²⁴¹ Am、¹⁵² Eu 和⁵⁶ Co 对 γ能谱进行了能量和峰形刻度,能量范围为 60~3 000 keV。拟合的能量刻度和峰形刻度 方程见式(3)和(4):

 $E_{\gamma} = 2.689\ 7 + 0.358\ 868ch - 4.244\ 3 \times 10^{-9}ch^2 \qquad (3)$ FWHM = 0.807 3 + 8.520 1 × 10⁻⁴ $E_{\gamma} - 1.028\ 3 \times 10^{-7}E_{\gamma}^2 \qquad (4)$

式中:ch为多道道数。

将所制备的样品源依次置于探测器外壳表 面以及距探测器表面 8、32、72 和 140 mm 位置 处进行测量,获取 γ 能谱,用式(2)计算得到不 同测量条件下的峰总比。

点源、 ϕ 20 mm 面源、 ϕ 35 mm×4 mm 盘状 源、 ϕ 70 mm×4 mm 盘状源、 ϕ 73 mm×12 mm 盘状源在探测器表面时测量的峰总比列于表 1;点源在探测器表面及距探测器表面 8 mm 和 32 mm 位置测量的峰总比的测量结果列于表 2;面源样品在探测器表面及距探测器表面 8、32、72和 140 mm 位置测量的峰总比,以及在

表 1 各种形状样品源在探测器表面测量的峰总比 Table 1 Peak-to-total ratios of different shape sources on surface of detector

				-			
核素	能量/ keV ·						
		点源	\$ 20 mm	ϕ 35 mm $ imes$ 4 mm	ϕ 70 mm \times 4 mm	¢73 mm×12 mm	
$^{241}\mathrm{Am}$	59.54	0.364 2	0.338 8	0.367 5	0.361 5	0.362 8	
$^{109}\mathrm{Cd}$	88.03	0.588 1	0.543 3	0.537 0	0.5547	0.569 3	
⁵⁷ Co	122.47	0.650 1	0.610 9	0.615 6	0.608 2	0.581 5	
¹⁴¹ Ce	145.45	0.649 5	0.611 8	0.602 9		0.571 9	
¹³⁹ Ce	165.86	0.604 1	0.577 1	0.553 1	0.538 2	0.5497	
$^{51}\mathrm{Cr}$	320.01	0.491 7	0.466 5	0.465 5		0.4437	
113 Sn	391.70	0.420 5	0.398 5	0.356 5	0.389 6	0.372 1	
⁸⁵ Sr	514.01	0.369 9	0.358 8	0.348 6		0.341 8	
$^{137}\mathrm{Cs}$	661.66	0.317 8	0.304 7	0.300 3	0.299 2	0.298 2	
$^{54}\mathrm{Mn}$	834.85	0.283 5	0.275 1	0.264 3	0.268 2	0.268 9	
⁶⁵ Zn	1 115.55	0.237 8	0.226 0	0.224 1	0.228 3	0.2211	

140	ie 2 i can to total latio.	of point sources in un	terent distance from det	
	出 早 /1 17			
权系	能重 /keV →	表面	8 mm	32 mm
²⁴¹ Am	59.54	0.364 2	0.389 2	0.452 0
¹⁰⁹ Cd	88.03	0.588 1	0.609 6	0.626 3
⁵⁷ Co	122.47	0.650 1	0.663 0	0.679 2
¹⁴¹ Ce	145.45	0.649 5	0.652 5	0.643 2
¹³⁹ Ce	165.86	0.604 1	0.6127	0.585 1
$^{51}\mathrm{Cr}$	320.01	0.4917	0.499 8	0.502 4
¹¹³ Sn	391.70	0.420 5	0.421 0	0.423 5
⁸⁵ Sr	514.01	0.369 9	0.372 5	0.373 5
¹³⁷ Cs	661.66	0.317 8	0.317 3	0.316 2
54 Mn	834.85	0.283 5	0.284 0	0.282 6
⁶⁵ Zn	1 115.55	0.237 8	0.236 9	0.241 4

表 2 点源样品在距探测器表面不同距离测量的峰总比

Table 2 Peak-to-total ratios of point sources in different distance from detector

表 3 φ20 mm 面源在距探测器表面不同距离测量的峰总比

Table 3 Peak-to-total ratios of plane sources in different distance from detector

核素	能量/keV -	距探测器表面距离					吸收层		
		表面	8 mm	32 mm	72 mm	140 mm	败收层		
241 A	E0 E1	0 220 0	0.352 4	0.406 1	0.418 4	0.397 0			
- Am	59.54	0.330 0	0.388 1	0.436 2	0.448 2	0.426 5	0.5 mmCu		
109 C 1	¹⁰⁹ Cd 88.03	0 542 2	0.547 2	0.558 0	0.555 9	0.534 2			
¹⁰⁹ Cd		0.543 3	0.562 4	0.593 5	0.597 4	0.577 6	0.5 mmCu		
57.0	100 47	0 610 0	0.613 1	0.630 1	0.612 9	0.599 2			
0, C0	³⁷ Co 122. 47	Co 122. 47	122.47 0.61	0.610 9	0.592 5	0.613 5	0.607 5	0.590 0	0.5 mmCu
¹⁴¹ Ce	145.45	0.611 8	0.605 2	0.606 0	0.586 7	0.561 4			
120 C	105 00	0 577 1	0.567 1	0.557 9	0.5536	0.532 0			
¹³³ Ce	165.86	0.5771	0.597 2	0.610 5	0.599 1	0.570 8	0.5 mmCu		
$^{51}\mathrm{Cr}$	320.01	0.466 5	0.462 3	0.473 0	0.458 9	0.444 0			
$^{113}\mathrm{Sn}$	391.70	0.398 5	0.390 5	0.393 6	0.380 4	0.380 6			
⁸⁵ Sr	514.01	0.358 8	0.353 4	0.354 7	0.354 1	0.344 8			
$^{137}\mathrm{Cs}$	661.66	0.304 7	0.300 7	0.307 1	0.300 5	0.293 2			
$^{54}\mathrm{Mn}$	834.85	0.275 1	0.272 0	0.274 0	0.272 5	0.266 1			
⁶⁵ Zn	1 115.55	0.226 0	0.218 5	0.227 3	0.228 6	0.226 8			

有 0.5 mm Cu 吸收层的情况下²⁴¹ Am、¹⁰⁹ Cd、 ⁵⁷ Co和¹³⁹ Ce 的峰总比测量结果列于表 3。表 4 中列出了各种测量条件下峰总比的平均值及相 对标准偏差。

取各种测量条件下的峰总比平均值标定探 测器峰总比曲线,结果示于图 1 中,并拟合成式 (5)的方程,此即为所测量 HPGe 探测器的峰 总比值。

$$\ln R = 58.837\ 05 + 38.509\ 05 \ln E -$$
9.389 34ln² E + 1.007\ 07 ln³ E -
0.040\ 63 ln⁴ E (5)

表 4 各种测量条件下峰总比的 相对标准偏差

 Table 4
 Relative standard deviation

of peak-to-total ratios in all measuring geometri

核素	能量/keV	峰总比平均值	相对标准偏差/%
^{241}Am	59.54	0.394 1	3.05
$^{109}\mathrm{Cd}$	88.03	0.567 2	1.57
⁵⁷ Co	122.47	0.624 0	1.40
$^{141}\mathrm{Ce}$	145.45	0.609 1	1.56
¹³⁹ Ce	165.86	0.566 4	1.38
$^{51}\mathrm{Cr}$	320.01	0.470 8	1.35
$^{113}\mathrm{Sn}$	391.70	0.393 3	1.64
$^{85}\mathrm{Sr}$	514.01	0.357 2	0.96
$^{137}\mathrm{Cs}$	661.66	0.305 0	0.84
$^{54}\mathrm{Mn}$	834.85	0.273 7	0.77
65 Zn	1 115.55	0.228 8	0.94

3 结论

对 γ 射线能量大于 100 keV 的能区,不同 测量条件下峰总比的平均值相对标准偏差小于 2%,不同测量条件下的峰总比一致性较好,峰 总比随能量的变化与测量几何条件无关,完全 可以作为效率转移法的基础。

对γ射线能量小于100 keV的能区,不同

测量条件下的峰总比的平均值的相对标准偏差 稍大,说明测量几何条件对峰总比随能量的变 化有一定影响。文献「3,4]认为这是由低能部 $\gamma \chi$ 子与探测器作用的边缘效应,使得 $\gamma \chi$ 子的吸收不完全造成的。从结果中发现,距探 测器表面越近峰总比越小,这也可能是所使用 的核素中低能 X 和 γ 光子(μ^{241} Am 的 17 和 26 keV X 射线,⁵⁷ Co 的 14 keV γ 射线) 对总 谱积分计数的贡献以及加和效应的综合作用。 为此,用面源测定了²⁴¹ Am、¹⁰⁹ Cd、⁵⁷ Co 和¹³⁹ Ce 几个低能核素在有 0.5 mm Cu 吸收情况下的 峰总比(表 3),与无吸收情况相比,测量条件对 峰总比的影响有所减小。对 γ射线能量小于 100 keV的能区,峰总比经相关因素校正后在 一定相对偏差范围内可认为是与测量条件无关 的,能够作为效率传递的理论基础。

参考文献:

- [1] MOENS L, DE DONDER J, LIN X, et al. Calculation of the absolute peak efficiency of gammaray detectors for different counting geometries
 [J]. Nucl Instrum Methods, 1981, 187: 451-472.
- [2] TIM V, ANDREJ L. On the invariability of the total-to-peak ratio in gamma-ray spectrometry
 [J]. Applied Radiation and Isotopes, 2004,60: 191-195.
- [3] GOSTELY D M. Coincidence-summing corrections for extended sources in gamma-ray spectrometry using Monte-Carlo simulation[J]. Nucl Instrum Methods, 1992, A312:152-155.
- [4] SIMA O, ARNOLD D. Self-attenuation and coincidence-summing corrections calculated by Monte-Carlo simulations for gamma-spectrometric measurements with well-type germanium detectors[J]. Appl Radiat Isot, 1996, 47: 889-893.