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1. Introduction

The integrals of Hopf algebras were introduced by Larson and Sweedler in [1]. Their con-

nection with the maximal rational H∗-module H∗rat of H∗ was given by Sweedler in [2], i.e.

H∗rat ∼=

∫ l

H∗

⊗H as H -Hopf modules. (1)

The uniqueness of the integrals was proved by Sullivan in [4]. The existence of the non-zero

integrals was given in [5, Theorem 5.3.2]. The integrals have proved to be essential instruments in

constructing invariants of surgically presented 3-manifolds or 3-dimensional topological quantum

field theories [6–8].

In 1986, braided tensor categories were introduced by Joyal and Street[9]. Algebraic struc-

tures within them, especially, braided Hopf algebras or “braided groups” as well as cross prod-

ucts and diagrammatic techniques for such algebraic constructions were studied by Majid in

[10,11]. See [12,13] for introductions. Many braided groups are known, including ones obtained

by transmutation[10] from the (co)quasitriangular Hopf algebras, and the universal enveloping

algebra of a Lie color algebra, the Nichols algebras[14] and the Lusztig’s quantum algebras[15].

Therefore, it is interesting to extend the Hopf algebra constructions to the braided cases. For

finite braided Hopf algebras (braided groups) H , i.e. braided Hopf algebra H with a left dual

in braided tensor categories, Bespalov, Kerler and Lyubashenko[16], and Takeuchi[17] introduced

an integral and proved that the integral is an invertible object. Moreover, Takeuchi proved that

the antipode is an isomorphism and formula (1) holds.
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In this paper we study integrals of infinte braided Hopf algebras in braided tensor categories.

A braided Hopf algebra is called an infinite braided Hopf algebra if it has no left duals[17].

An important example of infinite braided Hopf algebras is the universal enveloping algebra of

a Lie superalgebra. So the integrals of infinite braided Hopf algebras should have important

applications in both mathematics and mathematical physics. We introduce the faithful quasi-

dual Hd and strict quasi-dual Hd of a braided Hopf algebra H . We prove that every strict quasi-

dual Hd′

is an H-Hopf module. By imitating Larson and Sweedler’s Hopf module construction,

we obtain the connection between the integrals and the maximal rational Hd-submodule Hdrat of

Hd. That is, we prove Hdrat ∼=
∫ l

Hd ⊗H . We give the existence and uniqueness of the integrals

for some infinite braided Hopf algebras living in the Yetter-Drinfeld category (B
BYD, C).

This paper was organized as follows. In Section 2, since it is possible that Hom(H, I) is not

an object in C for braidrd Hopf algebra H , we introduce strict (or faithful) quasi-dual Hd′

, and

prove that every strict quasi-dual Hd′

is an H-Hopf module. In Section 3, we concentrate on

braided tensor categories consisting of some braided vector spaces. We prove Hdrat ∼=
∫ l

Hd ⊗H

for an infinite braided Hopf algebra H and the maximal rational Hd-submodule Hdrat of Hd.

That is, we obtain the connection between integrals and the maximal rational Hd-module Hdrat

of Hd. In Section 4, we give the existence and uniqueness of the integrals for infinite braided Hopf

algebras living in the Yetter-Drinfeld category (B
BYD, C). In Section 5, we show the Maschke’s

theorem for infinite braided Hopf algebras.

2. Strict quasi-duals and Hopf modules of braided Hopf algebras

In this section we introduce a faithful quasi-dual Hd and strict quasi-dual Hd′

of braided

Hopf algebra H and show that Hd′

is an H-Hopf module. Using the fundamental theorem of

Hopf modules, we show the formula similar to (1)

Hd′ ∼= (Hd′

)coH ⊗ H as H-Hopf modules in C.

We first recall some notations. Let (C,⊗, I, C) be a braided tensor category, where I is

the identity object and C is the braiding. We also write W ⊗ f for idW ⊗ f and f ⊗ W for

f ⊗ idW . Since every braided tensor category is equivalent to a strict braided tensor category by

[19, Theorem 0.1], we may view every braided tensor category as a strict braided tensor category.

Definition 2.1 Let H be a braided Hopf algebra in C. If there is an algebra N in C and a

morphism 〈, 〉 from N ⊗ H to I such that

〈, 〉(m ⊗ H) = (〈, 〉 ⊗ 〈, 〉)(N ⊗ CN,H ⊗ H)(N ⊗ N ⊗ ∆), 〈η, H〉 = ε

then N is called a left quasi-dual of H . Moreover, if for any objects U, V and four morphisms

f : U → V ⊗ N , f ′ : U → V ⊗ N , g : U → H ⊗ V , g′ : U → H ⊗ V in C, (V ⊗ 〈, 〉)(f ⊗ H) =

(V ⊗ 〈, 〉)(f ′ ⊗ H) implies f = f ′ and (〈, 〉 ⊗ V )(N ⊗ g) = (〈, 〉 ⊗ V )(N ⊗ g′) implies g = g′, then

N is called a faithful quasi-dual of H under 〈, 〉, written as Hd. In addition, if there are a left
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ideal, written as Hd′

, of Hd and two morphisms: ⇀: H ⊗Hd → Hd and ρ : Hd′

→ Hd′

⊗H ∈ C

such that

〈, 〉(⇀ ⊗H) = 〈, 〉(Hd ⊗ m)(Hd ⊗ CH,H)(CH,Hd ⊗ H)

(Hd ⊗ 〈, 〉)(CHd ,Hd′ ⊗ H)(Hd ⊗ ρ) = m

and the constraint ⇀ on H ⊗Hd′

is a morphism to Hd′

, then Hd′

is called a strict quasi-dual of

H .

Let ↽=⇀ (S ⊗Hd′

)CHd ,H . In fact, if H has a left dual H∗ in C, then H∗ is a strict quasi-

dual and faithful quasi-dual of H under evaluation 〈, 〉.

Lemma 2.2 Let Hd be a faithful quasi-dual of H under 〈, 〉 and CH,H = C−1
H,H . Then CU,V =

(CV,U )−1, for U, V = H or Hd.

Proof Observe that (H ⊗〈, 〉)(CHd ,H ⊗H) = (〈, 〉⊗H)(Hd ⊗C−1
H,H) = (〈, 〉⊗H)(Hd ⊗CH,H) =

(H ⊗ 〈, 〉)(C−1
Hd ,H

⊗ H). Thus CHd,H = C−1
Hd,H

. Note that CH,Hd = C−1
Hd,H

CHd,HCH,Hd =

C−1
Hd,H

C−1
Hd,H

CH,Hd = C−1
Hd,H

and

(Hd ⊗ 〈, 〉)(CHd ,Hd ⊗ H) = (〈, 〉 ⊗ Hd)(Hd ⊗ C−1
Hd,H

) = (〈, 〉 ⊗ Hd)(Hd ⊗ CHd,H)

= (Hd ⊗ 〈, 〉)(C−1
Hd ,Hd ⊗ H).

Thus CHd,Hd = C−1
Hd,Hd . 2

If CH,H = C−1
H,H , then we say that the braiding is symmetric on H . Throughout this section

we always assume that the braiding is symmetric on H . For convenience, for U, V = H or Hd

we denote the braiding CU,V by C.

Lemma 2.3 m(Hd⊗ ↽) =↽ (m⊗H)(⇀ ⊗Hd′

⊗H)(C ⊗Hd′

⊗H)(Hd ⊗C ⊗H)(Hd ⊗Hd′

⊗

C)(Hd ⊗ Hd′

⊗ ∆).

Proof

〈, 〉(m ⊗ H)(Hd⊗ ↽ ⊗H) = (〈, 〉 ⊗ 〈, 〉)(Hd ⊗ C ⊗ H)(Hd⊗ ↽ ⊗∆)

= 〈, 〉(〈, 〉 ⊗ Hd′

⊗ m)(Hd ⊗ C ⊗ C)(Hd ⊗ Hd′

⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ S ⊗ ∆)

and

〈, 〉(↽ ⊗H)(m ⊗ H ⊗ H)(⇀ ⊗Hd′

⊗ H ⊗ H)(C ⊗ Hd′

⊗ H ⊗ H)

(Hd ⊗ C ⊗ H ⊗ H)(Hd ⊗ Hd′

⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ ∆ ⊗ H)

= 〈, 〉(m ⊗ H)(⇀ ⊗Hd′

⊗ C)(Hd ⊗ C ⊗ S ⊗ H)

(Hd ⊗ Hd′

⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ ∆ ⊗ H)

= 〈, 〉(C ⊗ H)(⇀ ⊗Hd′

⊗ m)(C ⊗ Hd′

⊗ C)

(Hd ⊗ C ⊗ S ⊗ H)(Hd ⊗ Hd′

⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ ∆ ⊗ H)

= 〈, 〉(Hd ⊗ m)(Hd ⊗ C)(Hd ⊗ H ⊗ H ⊗ 〈, 〉)(Hd ⊗ H ⊗ C ⊗ H)(Hd ⊗ H ⊗ Hd′

⊗ ∆)

(Hd ⊗ H ⊗ Hd ⊗ m)(Hd ⊗ C ⊗ C)(Hd ⊗ Hd′

⊗ C ⊗ H)
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(Hd ⊗ Hd′

⊗ S ⊗ H ⊗ H)(Hd ⊗ Hd′

⊗ ∆ ⊗ H)

= (〈, 〉 ⊗ 〈, 〉)(Hd ⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ m ⊗ H)(Hd ⊗ Hd′

⊗ C ⊗ H)

(Hd ⊗ Hd′

⊗ H ⊗ m ⊗ m)(Hd ⊗ Hd′

⊗ H ⊗ H ⊗ C ⊗ H)

(Hd ⊗ Hd′

⊗ H ⊗ ∆ ⊗ ∆)(Hd ⊗ Hd′

⊗ H ⊗ C)

(Hd ⊗ Hd′

⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ S ⊗ H ⊗ H)(Hd ⊗ Hd′

⊗ ∆ ⊗ H)

= 〈, 〉(Hd′

⊗ m)(Hd ⊗ C ⊗ 〈, 〉)(Hd ⊗ H ⊗ C ⊗ H)(Hd ⊗ H ⊗ Hd′

⊗ m ⊗ m)

(Hd ⊗ H ⊗ Hd′

⊗ H ⊗ C ⊗ H)(Hd ⊗ H ⊗ Hd′

⊗ ∆ ⊗ S ⊗ S)

(Hd ⊗ H ⊗ Hd′

⊗ H ⊗ C)(Hd ⊗ H ⊗ Hd′

⊗ H ⊗ ∆)(Hd ⊗ C ⊗ C)

(Hd ⊗ Hd′

⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ ∆ ⊗ H)

= (〈, 〉 ⊗ 〈, 〉)(Hd ⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ m ⊗ m)(Hd ⊗ Hd′

⊗ m ⊗ H ⊗ C)

(Hd ⊗ Hd′

⊗ C ⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ H ⊗ C ⊗ H ⊗ H)(Hd ⊗ Hd′

⊗ S ⊗ S ⊗ H ⊗ H ⊗ H)

(Hd ⊗ Hd′

⊗ C ⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ ∆ ⊗ H ⊗ ∆)(Hd ⊗ Hd′

⊗ ∆ ⊗ H)

= (〈, 〉 ⊗ 〈, 〉)(Hd ⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ m ⊗ m)(Hd ⊗ Hd′

⊗ H ⊗ m ⊗ C)

(Hd ⊗ Hd
′

⊗ C ⊗ C ⊗ H)(Hd ⊗ Hd
′

⊗ H ⊗ C ⊗ H ⊗ H)(Hd ⊗ Hd
′

⊗ C ⊗ H ⊗ H ⊗ H)

(Hd ⊗ Hd′

⊗ H ⊗ S ⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ S ⊗ ∆ ⊗ ∆)(Hd ⊗ Hd′

⊗ ∆ ⊗ H)

= 〈, 〉(〈, 〉 ⊗ Hd′

m)(Hd′

⊗ C ⊗ C)(Hd ⊗ Hd′

⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ S ⊗ ∆).

Thus we complete the proof. 2

Theorem 2.4 Hd′

is an H-Hopf module.

Proof (1) (Hd′

, ↽) is a right H-module.

〈, 〉(↽ ⊗H)(↽ ⊗H ⊗ H) = 〈, 〉(Hd′

⊗ m)(Hd′

⊗ C)(↽ ⊗S ⊗ H)

= 〈, 〉(Hd′

⊗ m)(Hd′

⊗ C)(Hd′

⊗ H ⊗ m)(Hd′

⊗ H ⊗ C)(Hd′

⊗ S ⊗ S ⊗ H)

and

〈, 〉(↽ ⊗H)(Hd′

⊗ m ⊗ H) = 〈, 〉(Hd′

⊗ C)(Hd′

⊗ S ⊗ H)(Hd′

⊗ m ⊗ H)

= 〈, 〉(Hd′

⊗ m)(Hd′

⊗ C)(Hd′

⊗ m ⊗ H)(Hd′

⊗ C ⊗ H)(Hd′

⊗ S ⊗ S ⊗ H).

Thus ↽ (↽ ⊗H) =↽ (Hd′

⊗ m). Obviously, ↽ (Hd′

⊗ η) = idHd′ . Therefore, (Hd′

, ↽) is a

right H-module.

(2) (Hd′

, ρ) is a right H-comodule.

Note that (Hd′

⊗〈, 〉⊗〈, 〉)(C⊗C⊗H)(Hd⊗C⊗H⊗H)(Hd⊗Hd⊗ρ⊗H)(Hd⊗Hd⊗ρ) =

m(Hd ⊗ m) = m(m ⊗ Hd) = (Hd′

⊗ 〈, 〉 ⊗ 〈, 〉)(C ⊗ C ⊗ H)(Hd ⊗ C ⊗ ∆)(Hd ⊗ Hd ⊗ ρ). Thus

(ρ⊗H)ρ = (Hd′

⊗∆)ρ. We also have that (id⊗ε)ρ = (Hd′

⊗〈, 〉)(C⊗H)(η⊗ρ) = m(η⊗Hd′

) = id.

Therefore (Hd
′

, ρ) is a right H-comodule.

(3) Note that (Hd′

⊗ 〈, 〉)(C ⊗ H)(Hd ⊗ ρ)(Hd⊗ ↽) = m(Hd⊗ ↽) =↽ (m ⊗ H)(⇀

⊗Hd′

⊗ H)(C ⊗ Hd′

⊗ H)(Hd ⊗ C ⊗ H)(Hd ⊗ Hd′

⊗ C)(Hd ⊗ Hd′

⊗ ∆) = (〈, 〉 ⊗ Hd′

)(⇀
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⊗H⊗ ↽)(C ⊗C⊗H)(Hd′

⊗C⊗H ⊗H)(Hd ⊗Hd′

⊗C ⊗H)(Hd ⊗Hd′

⊗H ⊗C)(Hd ⊗ρ⊗∆) =

(〈, 〉⊗Hd
′

)(Hd⊗m⊗ ↽)(Hd⊗H⊗C⊗H)(Hd⊗C⊗C)(Hd⊗ρ⊗∆) = (〈, 〉⊗Hd
′

)(Hd⊗C)(Hd⊗ ↽

⊗m)(Hd ⊗Hd′

⊗C ⊗H)(Hd ⊗ ρ⊗∆). Thus ρ◦ ↽= (↽ ⊗m)(Hd′

⊗C ⊗H)(ρ⊗∆). By (1),(2)

and (3), we complete the proof. 2

If C has equalizers, then the coinvariant (Hd
′

)coH of H in Hd
′

is an object in C. Here

(Hd′

)coH denotes the equalizer of the diagram

Hd′

ρ

−→
−→

id ⊗ η

Hd′

⊗ H .

Combining Theorem 2.4 and the braided Hopf module fundamental theorem [17, Theorem

3.4], we have

Theorem 2.5 If C has equalizers or (Hd′

)coH is an object in C, then

Hd′ ∼= (Hd′

)coH ⊗ H as H-Hopf modules in C).

3. Connection between integrals and the maximal rational H
d-submodule

H
drat of H

d

In this section, we concentrate on braided tensor categories consisting of some braided vector

spaces. We obtain Hdrat ∼=
∫ l

Hd ⊗H for an infinite braided Hopf algebra H and the maximal

rational Hd-submodule Hdrat of Hd.

Throughout this section we assume the following unless otherwise stated: H is a braided

Hopf algebra in C with CH,H = C−1
H,H and 〈, 〉 is the evaluation of H , and there is a faithful

quasi-dual Hd ⊆ H∗. We also assume that k is a field and there exists a forgetful functor

F : C → kM, which is the category of vector spaces over k such that F (U ⊗V ) = F (U)⊗F (V )

and F (I) = k.

Now we give the concept of rational Hd-modules. For Hd-module (M, α), if there is a

morphism ρ from M to M ⊗ H in C such that the condition of module-comodule compatibility

(MCOM) : (H ⊗ 〈, 〉)(C ⊗ M)(Hd ⊗ ρ) = α

holds, then (M, α) is called rational Hd-module.

MH = {x ∈ M | h · x = ε(h)x for every h ∈ H}

is called the invariant of H on M . In particular, if M is a regular H-module (i.e. the module

operation is m ), then MH is written as
∫ l

H
. We also denote

{f ∈ H∗ | g ∗ f = g(1)f for every g ∈ H∗}
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by
∫ l

H∗
. Moreover, for some subset N of H∗, we also denote

{f ∈ N | g ∗ f = g(1)f for any g ∈ N}

by
∫ l

N
. Every element in

∫ l

H∗
is called an integral on H.

Dually, if (M, φ) is a left H-comodule, then the set

M coH = {x ∈ M | φ(x) = 1 ⊗ x}

is called the coinvariant of H in M .

Corollary 3.1 Assume C has equalizers and there exists the maximal rational Hd-submodule

Hdrat of regular module Hd. If ⇀ is a morphism from H ⊗ Hd to Hd and the constraint on

H ⊗ Hdrat is a morphism to Hdrat in C, then

Hdrat ∼=

∫ l

Hd

⊗H (as H-Hopf modules in C) .

Proof For convenience, let H2 denote Hdrat. Obviously, H2 is a strict quasi-dual of H . By

Theorem 2.5, it suffices to show
∫ l

H2 = (H2)coH . Obviously,
∫ l

Hd ⊆ (H2)coH .

Conversely, we see m = ((H2)coH ⊗ 〈, 〉)(C ⊗ H)(Hd ⊗ ρ) = ((H2)coH ⊗ 〈, 〉)(C ⊗ η) =

ε ⊗ id(H2)coH . Thus (H2)coH ⊆
∫ l

Hd .

Consequently,
∫ l

Hd = (H2)CoH . 2

The above corollary is a generalization of Sweedler’s relation (1). In fact, we have

Corollary 3.2 If H is an ordinary Hopf algebra, then
∫ l

H∗rat
=

∫ l

H∗
.

Proof Obviously, H∗ is a faithful quasi-dual of H and H∗rat is a strict quasi-dual of H . By

Corollary 3.1, we complete the proof. 2

4. Existence and uniqueness of integrals for Yetter-Drinfeld module

categories

In this section we give the existence and uniqueness of integrals for braided Hopf algebras

in the Yetter-Drinfeld module category (B
BYD, C). Throughout this section, H is a braided Hopf

algebra in (B
BYD, C) with finite-dimensional Hopf algebra B. Let bB denote the coevaluation of

B and τ : U ⊗ V → V ⊗U denote the flip τ(x⊗ y) = y ⊗ x. If (M, α) is a left B-module, we can

define a left B-module structure αM∗ on M∗ = Homk(M, k) such that (b·x∗)(x) = x∗(S(b)·x) for

any b ∈ B, x ∈ M, x∗ ∈ M∗. If (M, φ) is a left B-comodule, we can also define a left B-comodule

structure φM∗ on M∗ such that (B ⊗ 〈, 〉)(φM∗ ⊗ M) = (S−1 ⊗ 〈, 〉)(τ ⊗ M)(M∗ ⊗ φ). In fact,

φM∗ = (S−1 ⊗ α̂)(bB ⊗ M∗), where 〈, 〉(α̂ ⊗ M) = (〈, 〉 ⊗ 〈, 〉)(B∗ ⊗ τ ⊗ M)(B∗ ⊗ M∗ ⊗ φ).

Lemma 4.1 (i) If (M, α, φ) ∈ (B
BYD, C), then (M∗, αM∗ , φM∗) ∈ (B

BYD, C) and the evaluation

〈, 〉 is a morphism in (B
BYD, C).
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(ii) If (H, α, φ) is a braided Hopf algebra in (B
BYD, C) and the antipode S of B satisfies

S = S−1, then ⇀ is a morphism from H ⊗ H∗ to H∗ in (B
BYD, C).

(iii) Let f be a k-linear map from U to V and g k-linear from V to W with U, V, W in
B
BYD. If f and gf are two morphisms in B

BYD with Im(f) = V , then g is a morphism B
BYD.

(iv) Let M be an H∗-module in B
BYD, then M has the maximal H∗-submodule M rat in

B
BYD.

Proof (i) It is clear that M∗ is a B-module and B-comodule. For any b ∈ B, h∗ ∈ M∗, h ∈

M ,
∑

(b · h∗)(−1)〈(b · h
∗)(0), h〉 =

∑
S−1(h(−1))〈h

∗, S(b) · h(0)〉. On the other hand,

∑
b1h

∗

(−1)S(b3)〈b2 · h
∗

(0), h〉 =
∑

b1h
∗

(−1)S(b3)〈h
∗

(0), S(b2) · h〉

=
∑

b1S
−1((S(b2) · h)(−1))S(b3)〈h

∗, (S(b2) · h)(0)〉

=
∑

S−1(h(−1))b2S(b3)〈h
∗, S(b1) · h(0)〉

=
∑

S−1(h(−1))〈h
∗, S(b) · h(0)〉.

Thus M∗ is a Yetter-Drinfeld B-module.

Obviously, 〈, 〉 is a B-module homomorphism. In order to show that 〈, 〉 is a B-comodule

homomorphism, it is enough to prove that
∑

h∗

(−1)h(−1)〈h
∗

(0), h(0)〉 = 1B〈h
∗, h〉 for any h∗ ∈

M∗, h ∈ M. Indeed, the left side =
∑

S−1(h(−1)2)h(−1)1〈h
∗, h(0)〉 = 1B〈h∗, h〉. This completes

the proof.

(ii) For any b ∈ B, h, x ∈ H, h∗ ∈ H∗, we see that

〈b · (h ⇀ h∗), x〉 = 〈(h ⇀ h∗), S(b) · x〉 = 〈h∗, (S(b) · x)h〉 and

∑
b

〈(b1 · h) ⇀ (b2 · h
∗), x〉 = 〈h∗, S(b2) · (x(b1 · h))〉

= 〈h∗, (S(b2)1 · x)(S(b2)2 · (b1 · h))〉

= 〈h∗, (S(b3) · x)((S(b2)b1) · h)〉

= 〈h∗, (S(b) · x)h〉.

This show that ⇀ is a B-module homomorphism. Similarly, we can show that it is a B-comodule

homomorphism.

(iii) For any b ∈ B, u ∈ U , since g(b · f(u)) = gf(b · u) = b · (gf(u)), we have that g is a

B-module homomorphism. Similarly, g is a B-comodule homomorphism.

(iv) It can be shown by usual proof (see [5, Theorem 2.2.6 and Corollary 2.1.19]) that every

H∗-submodule and quotient H∗-module of rational H∗-module are rational. The direct sum of

rational H∗-modules is a rational. Consequently, The maximal rational H∗-module M rat is the

sum of all rational H∗-modules of M . 2

Every B-module category (BM, CR) determined by quasitriangulr Hopf algebra (B, R) is

a full subcategory of Yetter-Drinfeld module category (B
BYD, C). Indeed, for any B-module

(V, α), define φ(v) =
∑

R
(2)
i ⊗ R

(1)
i · v for any v ∈ V , where R =

∑
i R

(1)
i ⊗ R

(2)
i . It is easy

to check that (V, α, φ) is a Yetter-Drinfeld B-module. Similarly, every B-comodule category
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(BM, Cr) determined by coquasitriangulr Hopf algebra (B, r) is a full subcategory of Yetter-

Drinfeld module category (B
BYD, C).

Example 4.2 (Existence of integrals) Let H be a braided Hopf algebra in (B
BYD, C) and the

antipode S of B satisfy S = S−1. Then

H∗rat ∼=

∫ l

H∗

⊗H (as H-Hopf modules in (B
BYD, C).)

Example 4.3 (Existence of integrals) Let H be a braided Hopf algebra in (B
BYD, C). If λ is a

non-zero integral of H#B with λ(a ⊗ b) 6= 0 for some a ∈ H, b ∈ B, then λ(id ⊗ b) is a non-zero

integral of H , where λ(id ⊗ b) denotes the k-linear map from H to k by sending h to λ(h ⊗ b)

for any h ∈ H.

Proof It follows from [13, Theorem 9.4.12] and [14, p11] that the bosonization H#B of braided

Hopf H is a Hopf algebra. For any f ∈ H∗ and any x ∈ H , we see

(f ∗ λ(id ⊗ b))(x) =
∑

f(x1)λ(x2 ⊗ b) = ((f ⊗ εB) ∗ λ)(x ⊗ b)

= f(1)λ(x ⊗ b).

Thus λ(id ⊗ b) is a non-zero integral of H . 2

Remark In Example 4.3 it is possible that B is infinite-dimensional.

Example 4.4 (Existence and uniqueness of integrals)[13] If H is an ordinary coquasitriangular

Hopf algebra with a non-zero integral λ, then the braided group analogue H of H has a non-zero

integral λ in braided tensor category (HM, Cr). Conversely, if H has a non-zero integral, then

so does H . Indeed, since the comultiplication operations of H and H are the same, we have that

the multiplications of H∗ and H∗ are the same, so the integrals of H and H are the same. 2

Example 4.5 (The uniqueness of integrals) Let (H, α, φ) be a braided Hopf algebra in (B
BYD, C)

and B is a finite-dimensional Hopf algebra. If φ is trivial, then dim
∫ l

H∗
= 0 or 1.

Proof Assume that H has two linearly independent non-zero integrals u∗ and w∗. Let v∗ is a

non-zero integral of B. By [5, Lemma 1.3.2], (H ⊗ B)∗ = H∗ ⊗ B∗ as vector spaces. Since the

B-comodule operation of H is trivial, we have that u∗⊗v∗ and w∗⊗v∗ are two linear independent

integrals of H#B. This contradicts to the fact dim
∫ l

(H#B)∗
= 0 or 1 (see, [5, Theorem 5.4.2]).2

5. Maschke’s theorem for braided Hopf algebras

In this section we give the relation between the integrals and semisimplicity of braided Hopf

algebras. Although authors in [18] gave the Maschke’s theorem for rigid braided Hopf algebras ,

it is not known if every semisimple braided Hopf algebra is rigid or finite. Thus our research of

the Maschke’s theorem for infinite braided Hopf algebras is useful.

Throughout this section we assume that there exists a forgetful functor F : C → kM, such

that F (U ⊗ V ) = F (U) ⊗ F (V ) and F (I) = k, where k is a field.
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Theorem 5.1 (The Maschke’s theorem) If H is a finite dimensional braided Hopf algebra living

in a braided tensor category C, then H is semisimple as ordinary algebra over field k iff ε(
∫ l

H
) 6= 0.

Proof If H is semisimple then there is a left ideal I such that

H = I ⊕ kerε.

For any y ∈ I, h ∈ H , we see that

hy = ((h − ε(h)1H) + ε(h)1H)y = (h − ε(h)1H)y + ε(h)y

= ε(h)y since (h − ε(h)1H)y ∈ (kerε)I = 0.

Thus y ∈
∫ l

H
, and so I ⊆

∫ l

H
, which implies ε(

∫ l

H
) 6= 0.

Conversely, if ε(
∫ l

H
) 6= 0, let z ∈

∫ l

H
with ε(z) = 1.

Say M is a left H-module and N is an H-submodule of M . Assume that ξ is a k-linear

projection from M to N . We define

µ(m) =
∑

z1 · ξ(S(z2) · m)

for every m ∈ M. It is sufficient to show that µ is an H-module projection from M to N .
Obviously, µ is a k-linear projection. Now we only need to show that it is an H-module map.

We see that

α(H ⊗ µ) = α(H ⊗ α)(H ⊗ id ⊗ ξ)H ⊗ id ⊗ α)(H ⊗ id ⊗ id ⊗ m ⊗ m)

(H ⊗ id ⊗ S ⊗ S ⊗ H ⊗ M)(H ⊗ ∆(z) ⊗ ∆)(∆ ⊗ M)

= α(H ⊗ ξ)(H ⊗ α)(H ⊗ m ⊗ M)(H ⊗ S ⊗ H ⊗ M)

(H ⊗ m ⊗ H ⊗ M)(m ⊗ C ⊗ H ⊗ M)(H ⊗ ∆(z) ⊗ ∆ ⊗ M)(∆ ⊗ M)

= α(H ⊗ ξ)(H ⊗ α)(H ⊗ m ⊗ M)(H ⊗ S ⊗ H ⊗ M)(m ⊗ m ⊗ H ⊗ M)

(H ⊗ C ⊗ id ⊗ H ⊗ M)(∆ ⊗ ∆(z) ⊗ H ⊗ M)(∆ ⊗ M)

= α(H ⊗ ξ)(H ⊗ α)(H ⊗ m ⊗ M)(H ⊗ S ⊗ H ⊗ M)

(∆ ⊗ H ⊗ M)(m ⊗ H ⊗ M)(H ⊗ C ⊗ M)(∆ ⊗ z ⊗ M)

= α(id ⊗ ξ)(id ⊗ α)(id ⊗ m ⊗ M)(id ⊗ S ⊗ H ⊗ M)(∆(z) ⊗ H ⊗ M)

= µ ◦ α.

Thus µ is an H-module morphism. 2

Remark Theorem 5.1 need not CH,H = C−1
H,H .

It is well-known that an ordinary algebra H over a field k is called semisimple if every

H-submodule N of every H-module M is a direct summand, i.e. if there is an H-submodule L

such that M = N ⊕ L . Similarly, we have the following definition. Algebra H in C is called

semisimple with respect to C, if every H-submodule N in C of every H-module M in C is a direct
summand( i.e. there is an H-submodule L in C such that M = N ⊕ L ).

Theorem 5.2 Let H be a braided Hopf algebra in C. If H is semisimple with respect to C and
kerε ∈ C, then ε(

∫ l

H
) 6= 0.

Proof It is similar to the proof of Theorem 5.1. 2

Example 5.3[13,p510] Let H = C[x] denote the braided line algebra. It is just the usual algebra
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C[x] of polynomials in x over complex field C, but we regard it as a q-statistical Hopf algebra

with

∆(x) = x ⊗ 1 + 1 ⊗ x, ε(x) = 0, S(x) = −x, | xn |= n

and

Cr(xn, xm) = qnm(xm ⊗ xn).

In fact, H is a braided Hopf algebra in (CZM, Cr) with coquasitriangular r(m, n) = qmn. Here

| xn | denotes the degree of xn. If y =
∑n

0 aix
i ∈

∫ l

H
, then ai = 0 for i = 0, 1, 2, · · · , n since

xy = ε(x)y = 0. Thus
∫ l

H
= 0. It follows from Theorem 5.1 that H is not semisimple. 2
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