Journal of Mathematical Research & Exposition May, 2008, Vol. 28, No. 2, pp. 435–438 DOI:10.3770/j.issn:1000-341X.2008.02.026 Http://jmre.dlut.edu.cn

Sufficient Conditions for Heegaard Splittings with Disjoint Curve Property

YIN Xun Bo¹, LEI Feng Chun²

(1. Department of Mathematics, Harbin Institute of Technology, Heilongjiang 150001, China;

2. Depatment of Applied Mathematics, Dalian University of Technology, Liaoning 116024, China)

(E-mail: jlxbyin@hit.edu.cn; ffcclei@yahoo.com.cn)

Abstract In the paper, we give two conditions that the Heegaard splitting admits the disjoint curve property. The main result is that for a genus g ($g \ge 2$) strongly irreducible Heegaard splitting $(C_1, C_2; F)$, let D_i be an essential disk in C_i , i = 1, 2, satisfying (1) at least one of ∂D_1 and ∂D_2 is separating in F and $|\partial D_1 \cap \partial D_2| \le 2g - 1$; or (2) both ∂D_1 and ∂D_2 are non-separating in F and $|\partial D_1 \cap \partial D_2| \le 2g - 2$, then $(C_1, C_2; F)$ has the disjoint curve property.

Keywords Heegaard splitting; disjoint curve property.

Document code A MR(2000) Subject Classification 57M25 Chinese Library Classification 0189.21

1. Introduction

Let M denote a compact orientable 3-manifold and $(C_1, C_2; F)$ a Heegaard splitting of M. We say that $(C_1, C_2; F)$ is reducible (weakly reducible, resp.) if there are essential disks $D_1 \subset C_1$ and $D_2 \subset C_2$ with $\partial D_1 = \partial D_2 \ (\partial D_1 \cap \partial D_2 = \emptyset$, resp.). $(C_1, C_2; F)$ is irreducible (strongly irreducible, resp.) if it is not reducible (weakly reducible, resp.). Heegaard splitting was first introduced in [1,4]. We say that $(C_1, C_2; F)$ has the disjoint curve property, or simply, DCP, if there exist essential simple closed curves c, a, b on F such that c is disjoint from a and b, abounds a disk in C_1 , and b bounds a disk in C_2 .

Clearly, a reducible Heegaard splitting is weakly reducible, and a weakly reducible Heegaard splitting has DCP. The inversions are not true in general. Many related results are given in [1,2,5,8].

Thompson^[5] gave a sufficient condition for a Heegaard splitting of genus 2 to have DCP as follows:

Theorem 1.1 Let $(C_1, C_2; F)$ be a genus two Heegaard splitting of a 3-manifold M. If there are essential disks D_1 in C_1 and D_2 in C_2 such that $|\partial D_1 \cap \partial D_2| \leq 3$, then $(C_1, C_2; F)$ has the disjoint curve property.

Received date: 2006-11-28; **Accepted date**: 2007-09-14

Foundation item: the National Natural Science Foundation of China (No. 10571034).

In the present paper, we give a sufficient condition for a Heegaard splitting of genus ≥ 3 to have DCP. The statement and proof of the theorem are included in Section 2. As a corollary, we also describe an alternative proof of Theorem 1.1.

All surfaces and 3-manifolds are assumed to be orientable throughout the paper. Notations and terminology not defined in the paper are standard, see for $example^{[2,3]}$. More results about disjoint curve property can be found in [6]–[8].

2. A sufficient condition for DCP Heegaard splittings

A 3-manifold M is a compression body if there is a compact connected surface F such that M is obtained from $F \times [0, 1]$ by attaching 2-handles along mutually disjoint simple loops in $F \times 1$ and capping off the resulting 2-sphere boundary components by 3-handles. Then $\partial_+ C$ denotes the component of ∂C corresponding to $F \times 0$, and $\partial_- C$ denotes $\partial C \setminus \partial_+ C$. If $\partial_- C = \emptyset$, then C is called a handlebody. The genus of the surface F is called the genus of the Heegaard splitting.

Let $(C_1, C_2; F)$ be an Heegaard splitting of a 3-manifold M. The splitting is *stabilized* if there exist essential disks D_i in $C_i(i = 1, 2)$ respectively such that $|\partial D_1 \cap \partial D_2| = 1$. It is well known that a stabilized splitting of genus at least 2 is reducible.

For a finite set A, we use |A| to denote the number of the elements in A.

First, we show two lemmas.

Lemma 2.1 Let F be a once-punctured orientable surface of genus g. Let \mathcal{A} be a union of pairwise disjoint simple arcs properly embedded in F. If \mathcal{A} cuts F into a union of disks, then \mathcal{A} contains at least 2g arcs.

Proof We induct on g to finish the proof. Clearly, the conclusion holds for g = 0. Suppose it holds for all once-punctured surfaces with genus less than g > 0. Let F be a once-punctured surface of genus g = n and \mathcal{A} a union of pairwise disjoint simple arcs properly embedded in F which cuts F into a union of disks. Then there exists an arc α in \mathcal{A} which is essential in F. There are two possibilities:

(1) α is non-separating in F. Then the surface F' obtained by cutting F along α is a twicepunctured surface with genus n-1. Since \mathcal{A} cuts F into a union of disks, there exists arc $\beta \in \mathcal{A}$ such that $\beta \neq \alpha$ and β connects the distinct boundary components of F'. Let F'' be the surface obtained by cutting F' open along β . Then F'' is a once-punctured surface of genus n-1, and $\mathcal{A} - \{\alpha, \beta\}$ cuts F'' into a union of disks. By induction, $|\mathcal{A}| - 2 \ge 2(n-1)$, therefore $|\mathcal{A}| \ge 2n$.

(2) α is separating in F. Then α cuts F into two once-punctured surfaces F_1 and F_2 with $g_1 = g(F_1) > 0, g_2 = g(F_2) > 0$, and $g_1 + g_2 = n$. Let $\mathcal{A}_1 = \mathcal{A} \cap F_1 - \{\alpha\}$ and $\mathcal{A}_2 = \mathcal{A} \cap F_2 - \{\alpha\}$. Then \mathcal{A}_i cuts F_i into a union of disks, therefore, by induction, $|\mathcal{A}_i| \geq 2g_i, i = 1, 2$. Thus $|\mathcal{A}| = |\mathcal{A}_1| + |\mathcal{A}_2| + 1 \geq 2(g_1 + g_2) + 1 > 2n$.

A direct consequence of Lemma 2.1 is

Lemma 2.2 Let F be a twice-punctured surface genus g, and A a union of pairwise disjoint arcs properly embedded in F such that A cuts F into a union of disks. Then $|\mathcal{A}| \ge 2g + 1$.

We now come to

Theorem 2.3 Let $(C_1, C_2; F)$ be a strongly irreducible Heegaard splitting of a genus g $(g \ge 2)$ for 3-manifold M. Let D_i be an essential disk in C_i , i = 1, 2. Suppose one of following conditions is satisfied:

(1) At least one of ∂D_1 and ∂D_2 is separating in F and $|\partial D_1 \cap \partial D_2| \leq 2g - 1$; or

(2) Both ∂D_1 and ∂D_2 are non-separating in F and $|\partial D_1 \cap \partial D_2| \leq 2g-2$.

Then $(C_1, C_2; F)$ has the disjoint curve property.

Proof Denote $n = |\partial D_1 \cap \partial D_2|$. If n = 1, the Heegaard splitting is stabilized, therefore is reducible. Next we assume $n \ge 2$.

Assume that ∂D_1 is separating in F. ∂D_1 cuts F into two once-punctured surfaces F_1 and F_2 . Then $g_1 = g(F_1) > 0$, $g_2 = g(F_2) > 0$, and $g_1 + g_2 = g$. In this case, n is even. Let $\mathcal{A}_i = F_i \cap \partial D_2$, i = 1, 2. Then both \mathcal{A}_1 and \mathcal{A}_2 contain $\frac{n}{2}$ arcs. If for i = 1, 2, the surface F'_i obtained by cutting F_i open along \mathcal{A}_i totally consists of disks, then by Lemma 2.2, $\frac{n}{2} \ge 2g_i$. So $n \ge (g_1 + g_2) = 2g$, contradicting the assumption $n \le 2g - 1$. Thus some F'_i has a component which is not a disk. Let α be an essential simple closed curve in F'_i . Then α is essential in F and is disjoint from $\partial D_1 \cup \partial D_2$. Therefore, $(C_1, C_2; F)$ has the disjoint curve property.

Now assume that ∂D_1 is non-separating in F. Let F' be the surface obtained by cutting F open along ∂D_1 . Then F' is a twice-punctured surface of genus g - 1, and $\mathcal{A} = \partial D_2 \cap F'$ is a union of n arcs properly embedded in F'. By assumption, $n = |\partial D_1 \cap \partial D_2| \leq 2g - 2$, thus Lemma 2.1 implies that at least one of the component F'' of the surface obtained by cutting F' open along \mathcal{A} is not a disk. As above, this shows that $(C_1, C_2; F)$ has the disjoint curve property.

As a corollary, we describe an alternative proof of Theorem 1.1:

Proof of Theorem 1.1 Let $(C_1, C_2; F)$ be a genus 2 Heegaard splitting for 3-manifold M. Suppose there are essential disks D_1 in C_1 and D_2 in C_2 such that $|\partial D_1 \cap \partial D_2| \leq 3$. Clearly, if $|\partial D_1 \cap \partial D_2| \leq 2$, the conclusion holds. Next we consider the case $|\partial D_1 \cap \partial D_2| = 3$.

If one of ∂D_1 and ∂D_2 is separating in F, the conclusion follows from Theorem 2.3(1). Now we assume that both ∂D_1 and ∂D_2 are non-separating in F. Let F' be the surface obtained by cutting F open along ∂D_1 . Then F' is a twice-punctured torus with two boundary components α and β , and $\mathcal{A} = \partial D_2 \cap F'$ is a union of 3 arcs properly embedded in F'. Either each of the 3 arcs connects α and β , or only one of them connects α and β . In the first case it is easy to check that at least two arcs in \mathcal{A} are parallel on F', which implies that the surface obtained by cutting F' open along \mathcal{A} has a non-disk component. In the second case the two components of the surface obtained by cutting F' open along \mathcal{A} also contain one non-disk component. The conclusion follows.

References

- [1] HAKEN W. Studies in Modern Topology [M]. Prentice Hall, 1968.
- [2] HEMPEL J. 3-Manifolds [M]. Annals of Math. Studies 86, Princeton Univ. Press, Princeton, 1975.
- [3] JACO W. Lectures on Three-Manifold Topology [M]. American Mathematical Society, Providence, R.I., 1980.

- [4] CASSON A J, GORDON C M. Reducing Heegaard splittings [J]. Topology Appl., 1987, 27(3): 275–283.
- [5] THOMPSON A. The disjoint curve property and genus 2 manifolds [J]. Topology Appl., 1999, 97(3): 273–279.
- [6] HEMPEL J. 3-manifolds as viewed from the curve complex [J]. Topology, 2001, 40(3): 631–657.
- [7] SCHLEIMER S. The disjoint curve property [J]. Geom. Topol., 2004, 8: 77–113.
- [8] SAITO T. Disjoint pairs of annuli and disks for Heegaard splittings [J]. J. Korean Math. Soc., 2005, 42(4): 773–793.