裂变堆中子转换成 14 M eV 中子的研究进展

杨裕生

(防化研究院,北京,100083)

评述了裂变反应堆中子转换为 14 M eV 中子的研究进展, 讨论了核反应及转换器的结构。 关键词 裂变堆中子 14 M eV 中子 慢-快中子转换

14 M eV 中子可由氘-氚反应产生。为实现此核反应,通常必须建造加速器,将氘核加速到 一定的能量去轰击氚靶。裂变反应堆中产生的是裂变谱中子及其慢化后以热中子为主要成份 的低能中子。为充分发挥反应堆的作用,让它也提供 14 M eV 中子,不仅具有科学技术的意义, 而且具有一定的经济价值,因此,从 1944 年以来的半个世纪中,这个课题不断地引起美,加 德,奥,日诸国科学家的关注,技术上在不断发展。现在可以看出,将裂变反应堆中子转换成 14 M eV 中子与另建高压倍加器比较而言,具有如下优点: (1)设备简单,费用低廉; (2)中子产额 的稳定性好,稳定时间长; (3)中子通量可高于一般带有旋转靶的中子发生器,反应堆如能作脉 冲运行,则可提供 14 M eV 中子的强脉冲。用此技术提供 14 M eV 中子也有其局限性,其一是 要有反应堆;其二是伴有反应堆中不可避免的强 Y 辐射场,但这对于大多数利用 14 M eV 中子 进行核反应的工作(如快中子活化、同位素制备等)并不成为障碍;其三是当要求高通量的 14 M eV 中子时,热-快中子转换必须在堆芯或其近旁进行,14 M eV 中子必然夹杂无法充分屏蔽 掉的低能中子,这个问题对于只要求通量较低的 14 M eV 中子,是完全可以解决的。

我国的研究用反应堆不断发展。本文系统地回顾裂变反应堆中子转换成 14 M eV 中子的 进展,分析有关的技术问题,望能有助于推动该技术在我国的发展和应用。

1 裂变堆中子转换为 14 M eV 中子的核反应

14 M eV 中子可由氘-氚核聚合成氦的核反应发生。裂变堆中子 n_{rea}转换为 14 M eV 中子 n₁₄, 实际上就是用堆中子引发产生有足够能量的氚核(或氘核)与其周围的氘核(或氚核)进行 聚变反应。

⁶L i 对低能中子有较大的吸收截面, σ_{th} (⁶L i)达 937 × 10⁻²⁸m², 其核反应为:

⁶L i+ n
$$---$$
⁴H e+ t+ 4. 785 M eV

(1)

其中: 反冲氚核的能量为 2.73 M eV , 与在其慢化行程中相遇的氘核均有一定的机率发生聚变

7

反应, 氚核能量约为 0. 18 M eV 时, 反应截面有将近 $5 \times 10^{-28} \text{m}^2$ 的峰值^[1]。因此, 同时含有氘 与锂的物质均可用作转换靶的材料。据Hughes^[2]介绍, 早在 1944—1945 年间, 美国A nderson (A rgonne)和Novey (O ak R idge)先后用L NO $_3$ D $_4$ O 溶液在堆中以氚核与氘反应发生快中子。 Novey 用的D $_4$ O 溶液中锂原子与氘原子之比为 1 20, 体积为 250 mL, 在堆的最高热中子通 量密度 $10^{12} \text{ cm}^{-2} \cdot \text{s}^{-1}$ 处得到 14 M eV 中子通量密度为 $10^6 \text{ cm}^{-2} \cdot \text{s}^{-1}$, 热-快中子 (n_{th} - n_f)转换 效率为 10^{-6} , 此值低于 A nderson 所得的 10^{-5} 。最早公开报道此项技术的是加拿大的 A m qvist^[3], 他在NRX 堆中实现了由 t+D 及 t+Li 2 种核反应获得快中子。由氘氧化锂的重 水糊为转换靶获得 14 M eV 中子的热-快转换效率为 1×10^{-4} ; 由氟化锂作转换靶的转换效率 约比氘氧化锂大 1 倍, 但此Li(t, n) Be 反应所得中子的能量较低, 约为 9.5 M eV, 而非 14 M eV。

1961 年W eiss 等 (B rookhaven) 首先使用 L D 做转换靶, 用铝箔包着 95% 浓缩锂的 L D 片封焊于石英中。计算了 L D 的合理厚度、热-快中子的转换效率和热量的发生, 测量了快中子通量密度^[4]。后来因监测快中子反应的截面值改变, 经订正, 转换因子值为 0.9×10^{-4[5]}。 直至 90 年代, L D 仍是使用和研究得最多的转换材料(表 1), 转换效率几经计算和测量, 大多 处在(1—2)×10⁻⁴范围。

年份	转换靶材	转换效率	机构(国家)	文献	
1944	L NO 3 D 20	10- 5	A rgonne(美)	[2]	
1945	L NO 3 D 20	10- 6	Oak Ridge(美)	[2]	
1950	L DD D 20	$1 \times 10^{-4} (n_{th} - n_{14})$	Chalk R iver (加)	[3]	
	L iF	约 2 × 10 ⁻⁴ (n _{th} -n _f)			
1953	L D	< 1.9×10 ⁻⁴ (计算值)	Brookhaven (美)	[2]	
1963	L D	$(0 57-1) \times 10^{-4}$	Tech Hochschule,Munich(德)	[14]	
1963	L D	$0.9 \times 10^{-4} (n_{rea} - n_{14})$	Brookhaven (美)	[4,5]	
1971	LOD-D2O	$0\ 21 \times 10^{-4}$	A rgonne(美)	[19]	
	LĐ	1. 1 × 10 ⁻⁴			
	L D	1. 7 × 10 ⁻⁴			
1976	L DD D 20	$< 1.93 \times 10^{-4}$	Kansas 大学(美)	[8]	
1978	L D	9. $6 \times 10^{-4} (n_{rea} - n_{14})$	Georgia 技术学院(美)	[17]	
1980	L D	1. 56 × 10 ⁻⁴	Chalk R iver (加)	[6]	
1981-8	L D	$0\ 7 \times 10^{-4} (n_{< 0.55eV} - n_{> 11.6})$	Oesterreichischen 大学(奥)	[15, 16]	
1983	⁶ L D	$2 1 \times 10^{-4}$	M issouri大学(美)	[12]	
	LDD-D2O	1. 7 × 10 ⁻⁴			
	³ He- D ₂	1. 0 × 10 ⁻⁴			
1990	L D	1. $7 \times 10^{-4} (n_{th}-n_f)$	京都大学(日)	[13]	
1992	L D (L i13 2%)	1.03×10^{-4}	TexasA &M 大学(美)	[20]	

表 1 热中子-14 M eV 中子(nth-n14) 的转换

Table 1	Conversion	of	thermal	to	14 M eV	neutron s

在[°]L D 中, 除D-T 反应产生了 14 M eV 中子外, 还有氚与[°]L i 4 个反应道中的 2 个也产生 14 M eV 中子:

$$t + {}^{6}L i - {}^{6}B e + \mathcal{Y} + 17.7 M eV$$
 (2)

$$t + L_1 = Be + n + 16 02 M eV$$
 (3)

 \geq

t+
$${}^{6}Li^{----2} {}^{4}He+ n+ 16 115 M eV$$
 (4)

$$t + {}^{6}Li^{---5}He + {}^{4}He + 15.15MeV$$
 (5)

Lone 等^[6]算得¹LD 产生的快中子有 40% 是由 T-¹Li 反应提供, 而由 T-D 反应提供的只占 60%。

Perry 等^[7]详细地计算了 T-¹L i 及 T-D 两反应的中子产额随氚核能量的变化和两反应产 生的中子能谱。结果指出: T-D 反应的中子大部分产生自低能氚核, 而对于 T-¹L i 反应, 则大多 数中子产生于高能氚核。当 $E_{12} = 2$ 73 M eV 时, 每 10⁶ 个氚核由 T-D 反应产生中子 180 个, 由 T-⁶L i 反应产生中子 107 个。这些数值与Lone 等^[6]的相符, 但高于表 1 中大多数实测值近 1 倍。原因既可能有实验上的问题也可能有计算所用参数的问题。该文还给出两反应产生的中 子能谱图以及它们的权重合成谱图。T-⁶L i 反应的中子能量在 13—18.7 M eV 之间, 平均能量 略高于D-T 中子。

N ap ier等计算出每生成1个氚核可得136×10⁻⁶个快中子; 实验得产额值(n_{14} 与 n_{15} 数目比) 为 193×10^{-6[8]}。时隔不久,W ysocki等指出他们的实验结果偏高^[9],他们也表示承认^[10]。

综观上述几个理论计算的结果,每个热中子在LD中最多能产生约 2×10^{-4} 个 14 M eV中子。由于表层产生的氚有部分向外发射而损失等原因,实际的 14 M eV中子产额应低于此数。

除[°]L D 作转换靶之外, Green span^[11]认为还可考虑用DTO 兼作慢化剂和转换靶, 反应堆 裂变中子对氘(或氚)的弹性散射碰撞使之带有足够的动能与氚(或氘)发生聚变反应而产生 14 M eV 中子。他预计, 这2种转换靶在裂变堆中产生的14M eV 中子源强分别可达10¹²及10¹³s⁻¹ ·MW⁻¹, 14 M eV 中子的通量密度可达 10¹¹ cm⁻² · s⁻¹, 认为此值对于辐射损伤研究而言是太 低了。但如真能获得这样的快中子通量密度, 还是有许多用途的。遗憾的是, 至今未见有人完 成此项实验工程。估计除因氚的价格昂贵外, 操作如此大量的氚水多有不便也是重要的因素。

M iller 等^[12]曾用³He·D₂ 混合气体作为转换靶材。³He 对热中子有很大的吸收截面, 产生的氚具有 191 keV 的能量, 虽然其与氘的反应机率仅约为 1 M eV 能量氚的 20%, 但由于此转换材料的原子序数只有 1 和 2, 电子密度低, 氚能量的电离损耗小, 从而可获得较大的转换效率。此外, 两气体可按任意比例混合, 以求获得 14 M eV 中子的最大产生效率。实验结果指出:转换效率随D₂ 的比例增加而增大, D₂ 和³He 之比为 3 1 时可达 1 × 10⁻⁴。无论怎么说, 用气体做转换靶的实用价值仍有疑问, 主要难点是高压气体的密封及其散热。

综合比较各种反冲氚核的产生方法,可以认为: ¹L i(n, α) T 反应为最好,转换材料以¹L D 最为理想。

2 转换器的结构

将堆中子 nrea转换为 14 M eV 中子 n14的转换器必须满足如下基本要求:

1) 根据辐照实验的需要,可在反应堆的某一特定部位(堆芯,水平或垂直孔道、堆芯外的 辐照室等)提供 14 M eV 中子,且便于安放和移出;

2) 有尽可能高的 14 M eV 中子通量密度和尽可能少的其它能量的中子;

3) 能散发所生成的热量,使之不致损坏转换器本身及周围部件。

因此,转换器的结构设计和使用,必须与反应堆的结构和可能从事的物理工作统一考虑, 文献中报道过的转换器分别针对快中子活化,同位素制备、快中子反应截面研究,材料损伤(系数)研究等需要而设计,结构上可以分为平板型,夹层管型和盒型。

2.1 平板型

Perry 等^[7]为 Texas A & M 大学的 TR IGA 研究堆研制了1块60 cm×60 cm、 LD 层质量厚 度为 0.09 g/cm² 的平板型转换器,放在辐照室与 "游泳池"(图1)之间的窗口。将堆芯移到游泳池 的紧靠窗口处,以便利用堆芯整个一侧的热中子。 当堆功率为1MW时,辐照室窗口的中子通量密 度为 2×10^{12} cm⁻² · s⁻¹, 转换器上 n_{14} 的产生率为 1.5×10¹² · s⁻¹。这相当于1台大型旋转靶中子发 生器的中子产额。这个转换器的特点是能提供大 面积的平面均匀中子辐照场,且连同堆芯发射的 低能中子,模拟出相当于 400 keV 等离子体的中 子谱。

日本京都大学的 Kinura 等^[13]报道了该校 图1 TexasA &M 大学的辐照室和堆游泳池 KUP 堆上使用的转换器。用 75 g ¹L D (95.5%) ℃ i) 粉末充填于 10 cm × 10 cm × 1 cm 空间的铝

盒中形成一LD板,铝片厚0.5mm,铝盒用环氧树脂密封。转换器放在重水热中子装置后的 混凝土屏蔽室中,将约1.5×10⁹ cm⁻²·s⁻¹的热中子转换为快中子。以²⁷A1(n, α)²⁴N a 反应测得 2 块⁶L D 板中间的快中子通量密度为 2.5 × 10⁵ cm⁻² · s⁻¹, 得转换效率为 1.7 × 10⁻⁴ (图 2)。

2.2 夹层管型

在这类转换器的夹层中放置转换靶材,内管中心为14M eV 中子辐射场。Baum gartner(德 国慕尼黑技术高等学校)¹⁴¹首先报道了这种用不锈钢制作的⁶D 管(筒),内径 10 mm,长 5.6 cm: ⁶LD(⁶Li95.3%)层厚1mm,以熔融态充填,可将热中子定量地转变为氚。管子的一端塞 以 L D 片,在中子照射时,开口端盖以镉片。⁵⁰Cr(n, 2n)⁴⁹Cr 及⁴⁶Ti(n, 2n)⁴⁵Ti用于测量中子转 换效率, 实测值为 5.7 × 10⁻⁵—1.0 × 10⁻⁴, 与计算值约 1 × 10⁻⁴很好相符。

N ap ier 等^[8] (美国 Kan sas 大学) 设计了 1 个联在长 4.88 m 铝管底端的夹层转换器, 外径 3.73 cm, 与反应堆元件的直径相同。该转换器(图3)由3个部件组成: 内筒用以经长铝管接收 样品瓶并使样品与LDD-D2O 溶液分隔开来,外筒用以盛放转换溶液并与长铝管相联接:内外 筒均用软钢制成,为防止溶液的腐蚀作用,外筒的内外层及内筒的外层均镀上约 0.25 mm 厚 的镍; 第 3 个部件是底端的铝脚, 用以使整个装置在堆芯的M idp lane 上定位。长铝管与外筒、 外筒与内筒的接合处均用 Pb-Sn 密封,确保不漏。盛放溶液的间隙厚 8 mm,算得此溶液层对 热中子为 60% 的黑体, 加衬 1.52 mm 厚镉片共可吸收 99.99% 的热中子。

奥地利Oesterreichischen 大学的1个研究组计算并试验了1个放在 TR IGA - II 反应堆中 心孔道中的LD 转换器^[15], 认为LD 层厚应为 1 mm 或更厚些。两端敞口的管状LD 的长度 愈大,管中心的快中子场愈均匀,但乳D.管过长将使反应堆严重损失反应性而不能为提升控 制棒所补偿。对该堆而言,最大允许长度为 15 cm。后来他们^[16]按照该尺寸并参考 Baumgartner^[14]的¹LD 制备与熔融充填技术,制备了1根套在" 跑兔管 "外可移动的转换器,组成1 套用于 TR IGA - II 型堆芯中的 14 M eV 中子辐照系统。

图 2 日本京都大学 KUR 堆用 L D 转换器的测量实验装置

Fig 2 Experimental arrangement for measuments using ⁶L D converters of Kyoto U niversity reactor, Japan

图 3 Kansas 州立大学的转换装置剖面图

23 盒型

Papanico lopulos 等^[17] (美国 Georgia 技术学院)研制了 1 个盒型转换器。中心为空积仅 1.36 cm³ 的聚乙烯小盒, 内置照射 14 M eV 中子的样品, 其外围以 4 mm 厚的镉片, 镉片外是 锆片夹层密封的⁶L D (厚 1.2 mm)。整个转换器的外形尺寸为 Φ 4 cm × 8 cm (图 4), 可放入水 平或垂直孔道内。堆功率为1 MW 时,转换器在一充水的水 平孔道的端底接受4 63×10¹³ cm⁻²·s⁻¹的堆中子,测得小 盒内(14±2)M eV 中子的通量密度为4 48×10¹⁰ cm⁻²· s⁻¹,算得"有效转换效率"为9.6×10⁻⁴。按该处的堆谱换算 到 n_{th} - n_{14} 的转换效率为2 46×10⁻³。此值高得出奇,值得关 注和推敲。

3 转换器热量的产生

转换靶材中反冲氚核、氦核的动能最终均损耗于转换 器中并转变为热能,从而使之温度上升。热量正比于热中子 通量密度和照射时间。以热稳定性最好的企 D 而论,大约 在热中子通量密度< 10¹⁰ cm⁻² · s⁻¹时,产生的热量尚可来 得及由转换器表面散发而不致使 D 的温度超过熔点 (668)或分解点(700)。热中子通量密度更高或用其它 转换材料,则必须注意转换器的散热问题。为对此问题有些 cd 直观的认识,下面列举几个转换器的温度测量和冷却情况。

N ap ier 等^[8]的转换器使用时是插在 TR IGA - II 堆芯靠 近石墨反射层的外环孔上,利用池水直接对转换器外表面 进行冷却。当反应堆达 100% 满功率(250 kW)时,转换器表 面温度仅比池水高 20 。他们认为,转换器夹层内的 ℃ DD-D-O 溶液尚不致达到沸点。Salahi等^[16]的移动式管 型转换器也用于 TR IGA - II 型反应堆的堆芯,满功率时,在 堆芯通量最高处转换器产生的热功率可达 325 W,必须向 装有该管型转换器的辐照系统内通以冷却水。如果在 25 kW 的堆功率下运行,靠自然对流即足以散发生成的热量。

图 4 Georgia 技术学院的 L D 辐照盒

Fig 4 ⁶L **D** irradiation cap sule of Georgia Institute of Technology

Papanico lopulos 等^[17]的小空间盒型转换器,当用于水平孔道紧靠堆芯的顶端时,由于该水平孔道中装有冷水的水力跑兔系统,故可不再另行通水冷却。在堆功率 1 MW 下照射过 15—60 m in 均无问题。但若将该转换器放在相应位置的无水冷的垂直孔道内,在反应堆功率为 250 kW 下照射十几分钟,转换器的镉片外表面即可达平衡温度 287 ;在 300 kW 堆功率下不到4 m in就升到 354 而不得不停止试验。这个试验充分说明了水冷却的必要性。

L iboff^[18]曾经粗略地计算过, 能量约为 10⁻³ eV、通量密度达 10¹⁷ cm⁻² · s⁻¹的入射中子照 射L D, 约在 7 m s 内可将L D 解离成等离子体态。脉冲研究性反应堆在作脉冲运行时, 堆芯 的中子脉冲宽度和通量密度均可能达到或接近上述数值。如用以辐照L D 转换成 14 M eV 中 子, 则L D 中瞬时产生的大量热能来不及通过转换器表面散发到冷却水中去, L D 就可能在 此瞬间升到很高的温度, 使转换材料内形成很高的气压。因此, 在设计高通量脉冲 14 M eV 中 子转换器时, 必须解决强热冲击所引起的一系列技术问题。这个课题在文献中尚未见诸报道。

4 几点看法

1) 将反应堆中子转换成 14 M eV 中子, 已经多方实验确证是可行的, 首选的转换材料是 L D, 实际可达的 n_{14} 带换效率约为 1. 5 × 10⁻⁴。

2) 在堆芯进行热-快中子转换, 可得通量较高的快中子; 在堆芯外, 则易得辐照面积大, 能 谱分布窄的快中子。转换器工作位置的选择及随之进行的结构设计, 因工作不同而异。

3) 热中子在 L D 中产生的氚的发射方向是各向同性的, 因而 T -D 或 T - L i 反应生成的 14 M eV 中子也是各向同性的。设计转换器时应考虑此特点。

4) 反应堆如有脉冲运行的功能,则应充分加以利用,以发生强的 14 MeV 中子脉冲。

- L iskien H, Paulson A. Neutron Production Cross Section and Energies for the Reactions: T (p, n)³He, D (d, n)³He and T (d, n)⁴He N uclear Data Tables, 1973, 11: 569.
- 2 Hughes DJ. Pile Neutron Research Cambridge, Massachusetts: Addison Wesley Publishing Corporation, 1953 119.
- 3 A Imprist E. Fast Neutron From T+D and T+LiReactions Can J Res, 1950, 28A: 433
- 4 Weiss AJ, Tucker WD, Stang LG Jr U se of ⁶L D as a Source of 14 MeV Neutrons in a Nuclear Reactor: Report BNL -5366 R. 1961.
- 5 Stang L G J r A Review of the Production of "Special Radioisotopes Proceeding of Symposium on Production and U se of Short-lived Radioisotopes From Reactors, Vol 1. Vienna: IAEA, 1993 3—29.
- 6 Lone MA, Santry DC, Inglis WM. M eV N eutron Production From Thermal N eutron Capture in L i and B Compounds N ucl Instrum M ethods 1980, 174: 521.
- 7 Perry RT, Parish TA, Wilson WB. A 14M eV Neutron Source Fusion Technology, 1985, 8: 1454
- 8 Napier BA, Holland JP, Howe SD, et al Design of an In-core Fast Neutron Generator. Nucl Instrum M ethods, 1976, 138: 463.
- 9 W ysocki CM, Griffin HC. On the U tility of an In-core Fast Neutron Generator Nucl Instrum M ethods, 1978, 156: 605
- 10 Eckhoff ND, Merklin JF. On the U tility of an In-core Fast Neutron Generator—A Response Nucl Instrum M ethods 1978, 156: 607.
- 11 Greenspan E. Fusion Neutron Sources Induced by Neutron Interaction: Report MATT-923 1972
- 12 M iller, W H, L aw W S, Brugger RM. Them al Neutron Driven, 14 1 M eV Neutron Generators Nucl Instrum M ethods, 1983, 216: 219.
- 13 Kimura I, Kobayashi K. Calibrated Fission and Fusion Neutron Fields at the Kyoto University Reactor Nucl Sci Eng 1990, 106: 332
- 14 Baumgartner F. Conversion of Them alN eutron to 14M eV NeutronsW ith ⁶L D and the Preparation of a ⁶L D Irradiation Tube Radiochim A cta, 1963, 1(4): 222
- 15 Zillner K, Bensch F. Neutron-physical A spects of an Incore Generator for 14 M eV Neutrons J Radioanal Chem, 1981, 61 (1-2): 191.
- 16 Salahi A, Grass F, Bensch F, et al A Helium-driven Fast Transfer System W ith a Removable ⁶L Dconverter J Trace M icroprobe Tech, 1988, 6(2): 229.
- Papanico lopulos C, Fink RW. Production of (14 ± 2) M eV N eutron in a Reactor W ith an Enriched ⁶L D Irradiation Cap sule N ucl Instum M ethods 1978, 151: 53

- 18 L iboff RL. Prelin inary Study of High N eutron Flux Fusion Heating Nucl Eng Des, 1978, 49: 213
- 19 Frigerio NA. Conversion of Reactor Neutrons to 15 MeV W ith L ithium Deuteride A rgonne National L aboratory Report, ANL -7870 1971.
- 20 Na SH, Parish TA. Neutron Production M easurements From an L D Fusion Plate U sing an NE-213 Detector Nucl Instrum M ethods 1992, A 321: 322

PROGRESS OF RESEARCHES ON CONVERTING FISSION REACTOR NEUTRONS TO 14 M eV NEUTRONS

Yang Yusheng

(Research Institute of Chem ical Defense. Beijing. 100083)

ABSTRACT

The researches on converting of fission reactor neutrons to 14 MeV neutrons are reviewed The nuclear reactions and construction of convertors are discussed

Key words Fission reactor neutron 14 M eV neutron Slow-fast neutron conversion

中国核化学与放射化学学会第五届理事会组成

理事长: 王方定 副理事长: 王祥云 刘伯里 严叔衡 杨裕生 柴之芳 徐景明 傅依备 顾忠茂 常务理事: 王方定 王祥云 刘伯里 李大明 李文新 严叔衡 张利兴 罗上庚 陈 式 杨裕生 傅依备 祝霖 顾忠茂 徐景明 柴之芳 理 事: 王方定 王玉琦 王功鹏 王祥云 王榕树 毛家骏 戈晓海 叶玉星 叶明吕 孙兆祥 孙培铨 包伯荣 刘元方 刘伯里 朱永璿 朱建华 齐占顺 朱 霖 伏永杭 陈 式 李大明 李大康 李文新 李茂良 严叔衡 汪小琳 张天梅 张丕禄 张利兴 沙连茂 何阿弟 何建玉 宋崇立 杨维凡 杨裕生 范 我 范显华 罗上庚 罗顺忠 林灿生 林潼基 金建南郑成法 祝霖 钟广涛 侯小琳 贺佑丰 郭景儒 柴之芳 高宏成 唐志刚 顾忠茂 顾鼎祥 徐景明 黄奕普 梁俊福 陶祖贻 贾瑞和 崔海平 强亦忠 彭子城 傅依备 王旭辉 田伍训 秘书长:李大明 副秘书长:齐占顺 唐志刚 崔海平 毛家骏