
Vol. 32, No. 6 ACTA AUTOMATICA SINICA November, 2006

Simsync: A Time Synchronization Simulator for Sensor Networks1)

XU Chao-Nong1,2,3 ZHAO Lei1,3 XU Yong-Jun1,3 LI Xiao-Wei1,3

1(Advanced Test Technology Lab, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing 100080)
2(Department of Computer Science, Hefei University of Technology, Hefei 230009)

3(Graduate School of Chinese Academy of Sciences, Beijing 100080)
(E-mail: xu chaonong@ict.ac.cn, xyj@ict.ac.cn, lxw@ict.ac.cn)

Abstract Time synchronization is a critical middleware service of wireless sensor networks. Re-
searchers have already proposed some time synchronization algorithms. However, due to the de-
mands for various synchronization precision, existing time synchronization algorithms often need to
be adapted. So it is necessary to evaluate these adapted algorithms before use. Software simulation is
a valid and quick way to do it. In this paper, we present a time synchronization simulator, Simsync,
for wireless sensor networks. We decompose the packet delay into 6 delay components and model
them separately. The frequency of crystal oscillator is modeled as Gaussian. To testify its effec-
tiveness, we simulate the reference broadcast synchronization algorithm (RBS) and the timing-sync
synchronization algorithm (TPSN) on Simsync. Simulated results are also presented and analyzed.

Key words Time synchronization, sensor networks, simulator

1 Introduction

Recently, research attention has been drawn towards wireless sensor networks (WSN). Thousands
or even millions of small, low-power nodes are deployed in target environment, interacting with the

environment and communicating with each other frequently. Consumers and researchers believe that
WSN is expected to affect many aspects of our lives.

Time synchronization is one of the basic middleware services of WSN[1]. The aim of it is to keep the
time of all nodes in network synchronized. It can be used in time-stamping sensor event, data fusion,
time-division multiplexing access to the shared wireless media (TDMA), localization, energy-saving
sleep mode, distributed logging, etc[2].

Most nodes in sensor network use crystal oscillator to do timekeeping. However, the frequency of
crystal oscillator is influenced by factors such as temperature, pressure, manufacture technics, voltage,
etc[3]. It is impossible to keep the time of all nodes synchronized without time synchronization algorithm.

Some time synchronization algorithms for WSN have been proposed over the past few years[2,4∼7].
However, sensor network is highly application oriented. As for time synchronization, it is even more
sensitive to application if time is stamped on application layer. So it is necessary to evaluate the
performance of time synchronization algorithm quickly so as to verify if it is fit for specific application.

Simsync is a time synchronization simulator for wireless sensor network. Based on the time char-
acter of Mica2[8,9] which is a popular testbed in WSN, it simulates the execution of time synchronization
algorithm and enables fine-grained simulation on network time. We can easily develop, test and debug
time synchronization algorithm with it.

Most existing simulators for WSN do not support simulation on time synchronization because it
is hard to model packet delay and clock drift. Many researchers model them randomly to simulate
their algorithms, so their simulated results are incomparable. Based on the time character of Mica2,

we decompose packet delay into 6 delay components and model them separately. We also model the
frequency of crystal oscillator as Gaussian so that clock drift can be setup. We also have setup a set of
simulation parameters for Simsync and found them effective in simulation.

The organization of the paper is as follows. Section 2 introduces related works. Section 3 introduces
the model of the packet delay and the crystal oscillator′s frequency. Section 4 introduces the structure
of Simsync. We focus on state diagram of node and the time synchronization table which is the

fundamental data structure in Simsync. Section 5 presents and analyzes the simulation result of RBS
and TPSN. The last section is future work and the conclusion of this paper.

1) Supported in part by National Basic Research Program of P.R. China(2005CB321604), and in part by National
Natural Science Foundation of P.R. China (90207002)
Received December 21, 2005; in revised form March 19, 2006



No. 6 XU Chao-Nong et al.: Simsync: A Time Synchronization Simulator for Sensor Networks 1009

2 Related works

Emstar[10] provides a flexible environment for transitioning between simulation and deployment
for iPAQ-class sensor nodes running Linux. To deal with the difficulty of modeling RF propagation for

short-range, low-power radios in complex environment, Emstar provides the ceiling array where each
virtual node is bridged to a real-world one for networking. As far as time synchronization is concerned,
the packet delay modeled in Emstar is the sum of two parts: one is the packet sending time which is
the result of the bit number of the packet divided by transmission baud rate, the other is a random
time varying between −1/2Tb and +1/2Tb where Tb is the time for sending a single binary bit.

TOSSIM[11,12] is a discrete event simulator for TinyOS based sensor networks. User can compile
TinyOS application into TOSSIM framework and run it on PC. Regretfully, TOSSIM focuses on simu-

lating TinyOS and its execution rather than simulating the real world. It does not model packet delay,
nor does it model clock drift. So TOSSIM can not be used to evaluate time synchronization algorithm.

Omnet++[13] is a discrete event simulator developed by Andras Varga. It supports modeling
wireless channels and packet delay by user with c++. In [14], the writer uses it to simulate his
algorithm by modeling the sender delay and receiver delay as a Gaussian variable with a mean of 100µs
and a standard deviation of 11µs. Reference [15] also uses it to do simulation but the writer has not
introduced its simulation model in detail.

Avrora[16] is a speed-up version of ATEMU[17]. Both of them can simulate in instruction level.

ATEMU is a simulator not for sensor network but for AVR microcontroller. Avrora uses two strategies
to speed up simulation and is for as much as 20 times faster than ATEMU in a network of up to 10,000
nodes. Both Avrora and ATEMU have not modeled clock drift.

3 Time model

To simulate time synchronization algorithms for WSN, it is necessary to setup the simulation
model for node′s time. At present, many time synchronization algorithms running on Mica2 are based
on packet exchanging[2,4∼7]. So modeling the packet delay is essential.

As mentioned before, time asynchrony among nodes is due to the difference of crystal oscillators′

frequencies. The time of node is directly influenced by the frequency of its crystal oscillator. So

modeling the frequency of crystal oscillator is also essential.

3.1 Model of packet delay

The biggest enemy of precise time synchronization of sensor network is non-determinism. Reference
[5] decomposes the packet delay into the following 6 components.

Send time: the delay which is spent in assembling a packet and delivering the packet to MAC layer
in sender. It depends on the system call overhead of the operation system and the load of processor.
It is nondeterministic.

Access time: the delay incurred by waiting for access to the wireless channel. It is the least

deterministic part of packet delay.

Transmission time: the delay it takes for a sender to transmit the packet bit by bit at physical
layer. It depends on the length of the packet and the transmission baud rate.

Propagation time: the delay it takes for one binary bit in packet to travel the wireless link from
the sender to the receiver. It is deterministic and depends on the distance between the sender and the
receiver.

Reception time: the delay it takes for the receiver to receive the packet. Same as transmission
time, it depends on the length of packet and the transmission baud rate. It may partly overlay with

transmission time.

Receive time: the delay of processing the incoming packet and delivering it to the application
layer in the receiver. Its character is similar to that of sending time.

Fig. 1 is the outline of the packet delay. We now look into the components of the packet delay in
Mica2 in detail. We focus on how the first bit in a packet is delivered. At first, the application layer in
the sender assembles the packet and stamps the time, after Tsend (send time), the packet is delivered to
MAC layer. After Taccess (access time), the sender gains access to wireless channel, then the first bit is
transmitted to radio chip through its IO pin (the next bit will be transmitted after Tperbit which is the

reciprocal of the transmission baud rate). After Tencoding , which is called the encoding time, the radio
chip encodes and transforms the first bit into electromagnetic waves. When the electromagnetic waves
propagate to the receiver after Tpropagation (propagation time), the radio chip of the receiver receives



1010 ACTA AUTOMATICA SINICA Vol. 32

the electromagnetic waves. After Tdecoding which is called the decoding time, it transforms and decodes
the electromagnetic waves into a binary bit and transmits the bit to microcontroller through IO pin.
Both Tencoding and Tdecoding are deterministic and depend on the character of radio chip. When the

first byte is received by hardware of receiver, it interrupts the microcontroller to request for processing.
After Tinterrupt (interrupt time of microcontroller), the interrupt server program is executed and the
first byte is saved into memory. When all bytes in the packet are received, they will be delivered from
MAC layer to application layer in the receiver after Treceive (receive time). The application layer on
the receiver stamps the time to indicate that it has received a packet.

Fig. 1 Components of packet delay

So the delay of the first byte is

Tfirst = Tsend + Taccess + Tencoding + Tdecoding + Tpropagation + Tint errupt + Treceive

If all bytes in the packet are received correctly, the following equation comes into existence.

Tperbit = MAX(Tperbit, Tencoding , Tdecoding, Tint errupt, Tpropagation)

If L stands for the bit number of the packet when it is in MAC layer, based on the pipeline
theory[18], the delay of a packet is

T = Tfirst + (L − 1)Tperbit (1)

Those equations seem to be perfect, however, it is hard to know the values of those delay com-
ponents because some of them are greatly influenced by factors such as the burden of microprocessor,
the chance of wireless collision and the transmission baud rate. We find that in many experiments of

time synchronization algorithms, researchers often test their time synchronization algorithms based on
TinyOS and Mica2. So the values of those delay components must be consistent with the time character
of TinyOS and Mica2 for compatibility.

After many experiments, we find a set of reasonable values for these delay components: Tsend and
Treceive are modeled as a Gaussian random variable from 45µs to 55µs. Tperbit is 52µs because the
default baud rate of Mica2 is 19.2kbps. Both Tencoding and Tdecoding are 100µs. Tpropagation can be
computed according to the distance between sender and receiver. Taccess is the interval between the

time when the MAC layer receives the packet from its upper layer and the time when the sender gains
access to the wireless channel. In Simsync, Taccess is the sum of the packet transmission time and the
interval from now to the time when wireless channel is idle. Tinterrupt is modeled as a Gaussian random
variable from 48µs to 75µs.

We need to point out that the values of these delay components have already taken wireless
collision and the overhead of TinyOS into account. Simsync also provides interface for user to configure

them himself.
3.2 Model of crystal oscillator frequency

Any crystal oscillator ticks at a slightly different rate even if it is claimed to be of the same fre-
quency, because factors such as temperature, pressure, manufacture technics, voltage, etc can influence
it. The synchronization precision will decay more seriously as more time between the latest synchro-
nization operation and the event of interest elapses. The frequency of crystal oscillator is accurate on
the order of from 1ppm to 100ppm, that is, time between two nodes may drift 0∼100 microseconds

per second if the nominal frequency of crystal oscillator is 1MHZ. In our model of crystal oscillator
frequency, we model the instantaneous frequency of a crystal oscillator as a Gaussian variable (the
mean is its nominal frequency, while the deviation is from frequency/10−6 to frequency/10−4 according



No. 6 XU Chao-Nong et al.: Simsync: A Time Synchronization Simulator for Sensor Networks 1011

to the type of crystal oscillator). We assume that the instantaneous frequency is stable during a short
period which is the interval of the basic simulation step in Simsync. It is set as 1µs in Simsync.

The model of crystal oscillator frequency is used to transform between the local interval and the
global interval. Their difference is due to the different timescale. For a given time interval of a node,
the global interval is based on the nominal frequency of its crystal oscillator while the local interval
is based on its real frequency. The local interval is equal to the global interval only if the nominal
frequency is equal to the real frequency of the node′s crystal oscillator. Their relationship is as follows.

local interval

global interval
=

real frequency

nominal frequency
(2)

According to (2), based on the global interval, the local intervals of different nodes can be trans-
formed into each other.

4 Structure of Simsync

In this section, we first setup the state diagram of sensor node. Its state will transform during
the transmission of packet. Then we introduce the time synchronization table, which is the most
fundamental data structure in Simsync for state transformation. At last, we introduce the program
structure of Simsync.

4.1 The states of node

Fig. 2 is the status diagram of both sender and receiver.

Fig. 2 Status diagram of sender and receiver

To serially simulate the transmission of a packet, we divide the state set of a sender into the
following 4 states:

idle: the node has no transmission task or has already finished transmitting a packet.

alg send: when the node has prepared a packet to be sent, the node will enter into alg send state.
As we know, the state will persist for Tsend.

mac send: when the packet has been delivered to MAC layer, it will enter into mac send state;
the state will persist for Taccess +(L− 1)Tperbit, where L is the bit number of the packet in MAC layer.

phy send: when the last bit in the message is delivered to physical layer, it will enter into phy send
state, the state will persist for Tencoding.

We also divide the state set of a receiver into the following 4 states:

idle: the node has no receiving event or has already finished receiving and stamping time on the

packet.

phy receive: when the last bit of the packet propagates in the air, every neighbor node of the
sender will enter phy recieve state; the state will persist for Tpropagation + Tdecoding.

mac receive: when the last bit of the message is received by hardware and the last byte will be
delivered to MAC layer, the node will enter into mac receive state; the state will persist for Tinterrupt.



1012 ACTA AUTOMATICA SINICA Vol. 32

alg receive: when a packet is received by MAC layer and delivered to application layer, the node
will enter into alg receive state; the state will persist for Treceive.

It can be easily seen that the sum of the all states′ persisted time in both sender and receiver is

the delay of the packet.
The reason why the packet delay is decomposed into so many delay components is that the

architecture can support many techniques in time synchronization. For example, MAC layer time-
stamping can be easily implemented by setting Taccess, Tsend and Treceive as 0.
4.2 Time synchronization table

Time synchronization table is derived from the event queue in TinyOS. From the view of its data
structure, it is actually an ordered queue. Each cell in the time synchronization table represents an event

which will synchronize all nodes in the network. All events in the time synchronization table are ordered
based on their occurring time. Fig. 3 illustrates the structure of a cell in the time synchronization table.
We have to point out that the Advanced time in the cell is a global interval. When a cell is taken
out from the table, on the one hand, the state of Influenced node will be changed into Next state, on
the other hand, since the Advanced time is a global interval, it has to be transformed into the local
interval for every node according to (2), then every node in the network will advance its time for its

corresponding local interval.

Fig. 3 Structure of a cell in the time synchronization table

When a node needs to insert one cell into the table, first, it transforms its local interval into global
interval which is notated as Advanced time. Then, it needs to find a position in the time synchronization
table based on the value of Advanced time. At last, it modifies the value of Advanced time and inserts
the cell into the table. If we notate the cell as CellA, and the i′th cell in the table is notated as table[i].
The procedure is as follows.

i = 0; Tpersist = &(cellA.Advanced time);

while((table[i].Advanced time < Tpersist)&&(i <= number of cell in queue))

{ Tpersist = Tpersist− cell[i].Advanced time;

i + +; }

Insert CellA into queue[i]; }

4.3 Main program structure of Simsync

The main program structure of Simsync is table-driven. It is as follows:

while(!empty(time synchronization table))

{ cell = outtable();

process(cell);

Advancetime(cell.advanced time); }

5 Experiment

Since there are so many time synchronization algorithms at present, we have to decide which one
is suitable for verifying the effectiveness of Simsync. From the view of the synchronization scheme,
there are two categories of the time synchronization algorithms which run on Mica2. They are the
sender-receiver synchronization algorithms and the receiver-receiver synchronization algorithms. The
representative of the receiver-receiver synchronization algorithms is RBS algorithm, and the represen-
tative of the sender-receiver synchronization algorithms is TPSN algorithm. Many other algorithms are
derived from them. So we decide to simulate RBS algorithm and TPSN algorithm, then compare the

simulated results with those reported by other researchers.
We first realize RBS algorithm. Three nodes are deployed in a single-hop network. The frequency

of every node′s crystal oscillator is a random number from 7.37353728MHZ to 7.37206272MHZ, that is,



No. 6 XU Chao-Nong et al.: Simsync: A Time Synchronization Simulator for Sensor Networks 1013

the stability of the crystal oscillator is from -100ppm to 100ppm. One node is appointed as the reference
node and the other two nodes are the receiver of the reference broadcast messages. We simulate it for
50 minutes. The synchronization cycle is 10 seconds.

At the beginning of every synchronization cycle, we inquire and record the time of every node in
sequence. At the end of simulation, all these time is exported as a file which is used for further analysis.
So there are 300 time items for each node.

Based on the exported file, we work out the difference between the two receivers for every time
item. The difference is the synchronization error between them. If we think of the synchronization
error as a random variable, there are 300 samples for it since there are 300 time items for every node.

Table 1 lists the statistics of RBS algorithm from 4 different sources, where µ is the mean of

the synchronization error and σ is standard deviation of the synchronization error. Their units are
microsecond(µs). ∆ is the percentage of time error which is less than or equal to the average error.

According to Table 1, we can see that the result reported in [5] has great a gap with result
reported in [4]. We think that it is mainly due to the different test platforms. In [4], the test platform is
strongARM-based Compaq IPAQs with Lucent technologies 11Mbit 802.11 wireless Ethernet adapters
while test platform of [5] and [19] and the simulated object of Simsync are all Berkley mote.

The result reported in [5] has some difference with the result reported in [19]. We think it is
normal considering the delicacy of time. Even the slight different realization of the same algorithm may
influence the experiment results in some degree.

Table 1 Statistics of RBS algorithm

Paper Interval µ(µs) σ(µs) Max error(µs) Min error(µs) ∆

[4] 8s 6.29 6.45 Not available Not available Not available

[5] 10s 29.13 Not available 93 0 53%

[19] 10s 20.3765 22.4728 Not available Not available Not available

SimSync 10s 26.9167 20.8943 103.4312 0.1346 59.9%

We can also see the simulated result on Simsync is between the results reported in [5] and [19].

Their standard deviations are also very alike.
We also realize TPSN algorithm. There are only two nodes deployed in a single-hop network.

All other parameters are same with that of RBS simulation. At first, we do not employ the technique
of MAC-layer time stamping. Its result is shown in the first line of Table 2. Then, we employ the
technique of MAC-layer time stamping. Its result is shown in the second line of Table 2. The third
line of Table 2 is from [5]. It also employs the technique of MAC-layer time stamping. It can be easily

seen that the technique of MAC-layer time stamping indeed improves the synchronization precision of
TPSN algorithm.

[7] states that the byte alignment time[7] is compensated in [5] although the writer has not men-
tioned it explicitly. So the synchronization error in [5] must be smaller than our simulated results. The
result advocates the effectiveness of Simsync.

Table 2 Statistics of TPSN algorithm

Paper Interval µ(µs) σ(µs) Max error(µs) Min error(µs) ∆

SimSync 10s 42.3319 34.0716 176.9592 0.0075 63.7%

SimSync 10s 30.6976 23.3511 120.3689 0.0087 59.3%

[5] 10s 16.9 Not available 44 0 64%

6 Conclusion and future work

We have implemented a time synchronization simulator for wireless sensor networks. The packet
delay from sender to receiver is decomposed into 6 delay components. All those delay components are
modeled separately. Furthermore, the frequency of crystal oscillator is modeled as Gaussian. With
the data structure named time synchronization table, it enables fine-grained sequential simulation on

network time. Users can use it to develop, debug and evaluate the time synchronization algorithm of
their own. To verify its effectiveness, we realize RBS algorithm and TPSN algorithm based on it and
get very close experiment result with the result reported in other three papers. All results advocate the
effectiveness of Simsync.

In our future work, we will measure the packet delay and the frequency of crystal oscillator on
Mica2, and set up a more accurate model to make simulations more realistic.



1014 ACTA AUTOMATICA SINICA Vol. 32

References

1 Elson J, Römer K. Wireless sensor networks: A new regime for time synchronization. In: Proceedings of the
First Workshop on Hot Topics in Networks (HotNets-I). Princeton, New Jersey: 2002

2 Sichitiu M L, Veerarittiphan C. Simple, accurate time synchronization for wireless sensor networks. In:
Proceedings of IEEE Wireless Communication and Networking Conference (WCNC 2003). New Orleans, LA:
IEEE Press, 2003. 16∼20

3 John R Vig. Introduction to quartz frequency standards. Technical Report SLCET-TR-92-1, Army Re-
search Laboratory, Electronics and Power Sources Directorate, 1992. [Online], available: http://www.ieee-
uffc.org/freqcontrol/quartz/vig/vigtoc.htm. March 19, 2006

4 Elson J, Girod L, Estrin D. Fine-grained network time synchronization using reference broadcasts. In: Pro-
ceedings of the 5th Symposium on Operatiation System Design and Implementation (OSDI2002). Boston,
MA, 2002. 147∼163

5 Ganeriwal S, Kumar R, Srivastava M. Timing-sync protocol for sensor networks. In: Proceedings of the 1st
ACM Conference on Embedded Networked Sensor Systems (SENSYS 2003). Los Angeles, CA: ACM Press,
2003. 138∼149

6 Römer K. Time synchronization in ad hoc networks. In: Proceedings of the 2nd ACM International Sym-
posium on Mobile ad hoc Networking & Computing (MobiHoc 01). Long Beach, CA: ACM Press, 2001.
173∼182

7 Maroti M, Kusy B, Simon G, Ledeczi A. The flooding time synchronization protocol. In: Proceedings of the
2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD: ACM Press, 2004.
39∼49

8 Mica2 and Mica2Dot[Online], available: http://www.xbow.com/Products/Wireless Sensor Networks.htm.
March 19, 2006

9 Hill J, Culler D. Mica: A wireless platform for deeply embedded networks. IEEE Micro Archive, 2002, 22(6):
12∼24

10 Elson J, Bien S, Busek N, Bychkovskiy V, Cerpa A, Ganesan D, Girod L, Greenstein B, Schoellhammer
T, Stathopoulos T, Estrin D. EmStar: An environment for developing wireless embedded systems software.
Center for Embedded Networked Sensing (CENS) Technical Report, CENS-TR-9, 2003

11 Levis P, Lee N, Welsh M, Culler D. TOSSIM: Accurate and scalable simulation of entire TinyOS applications.
In: Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems (SenSys′03). Los
Angeles: ACM Press, 2003. 126∼137

12 TOSSIM: A Simulator for TinyOS Networks. User′s Manual, in TinyOS documentation
13 Varga A. The OMNeT++ discrete event simulation system. In: Proceedings of the European Multiconference

(ESM′2001). Prague, Czech Republic, 2001. 319∼324
14 Ye Q, Zhang Y C, Cheng L. A Study on the optimal time synchronization accuracy in wireless sensor networks.

Computer Networks, 2005, 48(4): 549∼566
15 Greunen J V, Rabaey J. Lightweight time synchronization for sensor networks. In: Proceedings of 2nd ACM

International Workshop on Wireless Sensor Networks and Applications (WSNA). San Diego: ACM Press,
2003. 11∼19

16 Titzer B, Lee D, Palsberg J. Avrora: Scalable sensor network simulation with precise timing. In: Proceedings
of the 4th International Conference on Information Processing in Sensor Networks (IPSN′05). Los Angeles,
2005. 477∼482

17 Polley J, Blazakis D, McGee J, Rusk D, Baras J S, Karir M. ATEMU: A fine-grained sensor network simulator.
In: Proceedings of the 1st IEEE Communications Society Conference on Sensor and Ad Hoc Communications
and Networks (SECON′04). Santa Clara, CA: IEEE Press, 2004. 145∼152

18 Hennessy J L, Patterson D A. Computer Architecture: A Quantitative Approach. 2nd edition, San Mateo,
CA: Morgan Kaufmann Pub, 1995

19 Dai H, Han R. TSync: A lightweight bidirectional time synchronization service for wireless sensor networks.
Mobile Computing and Communications Review, 2004, 8(1): 125∼139

Xu Chao-Nong Ph. D. candidate at Institute of Computing Technology, Chinese Academy of Sciences.
His research interests include wireless sensor networks and embedded system.

ZHAO Lei Ph. D. candidate at Institute of Computing Technology, Chinese Academy of Sciences. His
research interests include wireless sensor network and VLSI design.

XU Yong-Jun Ph. D. candidate at Institute of Computing Technology, Chinese Academy of Sciences. His
research interests include wireless sensor networks and low power system.

LI Xiao-Wei Professor at Institute of Computing Technology, Chinese Academy of Sciences. His research
interests include VLSI/SOC testing and embedded system. ����


