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Abstract - We present a nonmonotane line search algorithm for nonsmosth unary optiomzatian problems.
Based on the duality theorem of linear programming, the directional derivatives of the abjective fnnction
can be expressed as a linear programming which is very important in the practieal calculation for nonmono-
tone lime search subproblemns. A theoretical anatysis proves that the proposed algorithm i globally epnver-
geut and has a local superlinear rate under some mild conditions.
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1 Introduction

We consider the nonlinear unconstrained minimization problem
min T}, (1.
where f{x): & *—» B! is a convex function. Following GOLDFARB and WANG in (1] and M-
CORMICK and SOFER in (2] we call problern (1. 1) a unary convex optimization problem if /()
takes the form

L2

Flay = DU alx)), (1

=1

where fori=1.-rsm ,m=n , a(xr) =d r .uisa constant vector of size n X 1 and I/, (=) is a unary
convex function, i.c., U(g); 57 '— F ', not necessarily differentiable {e. g. , piccewise lincar or
quadratic ). Many proposed algorithms for the unary optimization utilized the derivatives of unary
functions involving twice continuously differentiable derivatives. However it is not always suppased 1o
be, ar even given as a finite function on all of &', I such convex unary functions, there arc many
special ways of generalized directions ol descent, and the duality of the lincar programming can play a

very strong role. Just by the duality idea, Zhu gave a special direction of descent {or unary convex

functions using the trust region strategy in [7 ]
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Line search lechnique is an importani and simple class of iterative methods for solving nonlincar
oplimizalion problems 10 assure global convergence. In 1586, L. Grippo. ete. gave a donmonotonc
line search technique in (5], This strategy will also {orce global convergence of the iterates from an
arbuirary slarling point to a swalionary point which satisfies the first-order necessary conditions.

The main purpose of this paper is to propose a nonmonotone lme search method with the gencral-

ized directions of ihe descent by adopiing ihe duality idea.

2 Optimality and Elementary Directions of Descent

Every unary convex programming problem can be described as

(Uab] minfir) = EU,{a,t,r)) \
=1

rel

)

where {2is a convex polyhedron in ¢, and for: = 1.2,++vm .M =0, etr) =u’ r . u is a constani
vector of sizen X | and U, °) is a unary convex {unction. Each I/ has a right derivative I ,_ (&) and
a left derivative U7, _1a,} at every @, € %', These are nondecreasing funetions of a, that satisfy — oo <<
U ey <L U a) <4 oo,

In problem (P}, the minimal {unction /¢ x) is a convex function defined on £ . Thus s a feasi-
ble solution if and only if it is 4 point of 2 where /1) is finite, and it is an optimal solution if and oaly
if, in addition,

fUurd) =0 for all 4 € 12, (2. 1)
where /"(r;d) is the generalized directional derivative of f at rin the directiond € #*. A function /'
is said 10 be regular at 7 if the one-sided directional derivative f* 4.z;d) exists for all directions J & e
ard

Faxid) = flxid). (2. 2)
The function f is said to be regular on a set £2if it is regular at every point of the set §2,

Since the unary {unction discussed in this paper is always assumed 10 be convex analysis ¢ for ex-
ample, see Theorem 23. 1 of ROCKAFELLAR [ 3]) and a convex function always has a one-sided di-
rectional derivative. Convex analysis says that /"1r:d) and /" (z:d) coincide for a convex function.
As fir) is 2 unary convex function, ils directional derivative along any direction ¢ exists, which can

be written by a direci formula for the directional derivative of ft.r)

fiaad) = DU a)d, + DU, _a)d., 2.3)
1,20 el <

Because the value of /' ¢x;d) depends on the sign of 4, . its calculation is inconvericnt,

For [ itself, the generalized gradient of f at s the set

i) = {g € gld < fflaid), ¥ d €577, (2. 4)
and because of scparability, this reduces ta
Aftey = Al jca) X U, (@) X - 2 AU ), (2.5)

Furthermore. using the derivatives of I7,c¢,), i = 1,m) , we have that the subgradient of [7,(& )
dUe) ={e, €' U _te) <Kot KUy (1)) (2.6
is the interval [U'_ca) U7 )],

As fta) in problem « P) is a separable convex function, along any direction o/ the directiona!
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derivative f"{(a;d} exists. In fact.
fllasd) = maxi<< &, > |§ € df(a)] =
maxi<?E.d T U _(a) S & ULy, i = 1.2, 0, (2.7
where £, are the components of veetor £
Thus by duality theorem of linear programming . f'(a;d ) can be expressed as a minimum value
of the {ollowing dual problem (see [7])
fila;d) = min iU',, (wv, + iU’.* (o, o,

=1 =1

stoowvta=d, =1.2,-,m
VO, w U= 1.2,
The lormula is very important in the practical calculation for the unary convex programmingg.
On the other hand, for any & € 2 with f' {r:d) < 0. given a direction of descent {rom #; for
small enough t = 0. x -+ #d is another [casible solution to ( P ) and f(z + td) <7 f(r).
Summarizing the above results in operational terms. we have a special descent procedure that can

be implemented in the unary programming.

3  Nonmonotone Line Search Algorithm

We describe a nonmonotone line search method with the descent directions for the unary convex
programming. Our algorithm is as [ollows,

Algorithm NLS
Initialization Step
Date: o, € 2, integer M =0, ¥ € (W1}, o & (0,10, 82> 0.
Marm Step:
Step 1: Setk =0, m(0) = 0 and compute S = Sz}, U _ (') and U7, ('),
Step 2: Solve the NI.S subproblem as the form given by

(5,) min {v,w) = iU"_ (o, )y + i[!’hL (&Y,

=1 =1

scl, v, L0y w2t = 1,2, ,m {3.1)
& +v+ o
v+ @l - < 1
Obtain the solution »* .« and the optimal value @, (4 ') .
Step 3: W |04 0!} | <{e . stop with the approximate solution e” , otherwise go to the next step.
Step 4: Set A = 1, compute &, = ¥ + o',
Step 5; Compute f(a, + Adyy . It
Floy + Adyy =2 Ué?/;ai“[f(r-‘qﬁ,)] + FAF (o, dy) (3.9
halds, set @y, = ay +Ady k=Ek+ 1, flay ) = fla, + Ady), m{E) < min[m(k — 134+ 1, M]and
go to step 2; otherwise go to the next step.
Step 6: Set A = odand go 1o Siep 5.
Remarlk: If the /.. norm or the !, norm is used in the consiraint . the subprablem ( & ;) simply becomes
an L.P problem of »*.e'. Alter sloving 1. we take Js = »* 4+ &' and consider @44, = o, + ey as a cand

date {or the next iterative point, provided that @y, = @, + </, can pass the test stated in Step 5.
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4  The Global Convergence of Algorithm NLS

For any eand AZ2 00, let wand v be the solution of the subproblem ( 5, ) at the point 2, = aand

(e, A) be the minimum value of € 55 ¥ 1. €.

Tia, ) = DU (e + 2 (a), (4. 1)

=1 r==]
Lemma 4.1 Y(z,A)is a monotonically decreasing [unction of A, thatis, if 0<C A, = A, , then
Via, A ) = Fia,A,) .

Lemma 4 277 Yz .A)<Imn{l,AF,1).
Lemma 4.3 lm sup{¥(a.1)} = 0if and anly 1f1|m sup"?'{a* AYy =00 A=,

d-rca

Proof I{ hm Sup"I"(ﬂJE A}l =0, ¥ AZ= 0holds. it is obvious that lim sup{¥ie*,13) =

dana

Assume that hm supl¥{a*,1)} = 0 holds. Obviously, the Lemma is true for & = 0.
oo
Ho<IA<I1, then by lemma 4. 2, we have ¥, Ay < A¥4e*, 1), At the same time. by lem-
ma 4. 1, ¥{a*,A4) = ¥(d.1) always holds for 0 << A< 1. So we have ¥id,1) << ¥(d,A) <
AF (1.

HA> 1. then¥(a".4) < ¥{a, 1) holds. On the other hand. by the convex praperty ol ohjec-

ot

) ) W
tive function P (v, w?, @(A /_‘s’] £ (1 — —%)%(D.O) -}—%@;U—f".w") (0 << % < 1), wherev' 4 &

is the optimal solution of the subproblem (.5, ) with Aat &' and {0,0) is always the [easible solution of

) , W of ] ) ] .
(5;). Since L_z-—u £ 1. we have that % and % is the leasible solution of the subprablem (5, )

&
with A = 1. Hence A¥({e*,1) =< @k(%.%) L V", Ay = Tia*, A), that is AT (5, 1) =5 Tiat, A)
< ¥(a*,1). The proaf is completed. G
I[ lir? sup{¥ia*, 1)} £ 0. there exists an &€ = 0, such that ¥(e*,1) <{— ¢, since ¥{a*,1) is al-

ways less than zero. By Lemma 4. 2, we have W(e', A) S min{1. AV (&' 1) << — eA. for 0 < A =S
1. Because of f'{e:ed;) & ¥ia*, | d.| ) for any A > 0 . we have Af' {ap:d,) <<— ed i d, || . for
|, | =<1, By l.emma 4. 3, we only need to solve { S, ) with A= 1. Now we give the global can-
vergence theorem of the algorithm NL.S,

Thearem lLet {x} be a sequence delined hy a, |, = &, + Aedy i 50, Teta € (0,1Y, 7€ (0,
1 and let M be a nonnegative integer. Assume that.

(i) the level set £2, & {a. fay < f{a,)} is compact. S (a) is uniformly continuous on £2, ;

{ii) there exist positive numbers A >> 0 and € > 0 , such that

Af laged)) — Al di | . (1. 2)
(i) A= g™, where &4 is the [irst nonnegative integer & [or which
Slay + o'dy) < max LSt )]+ Y0 Caidar s (1. 3)
U = M'.

where m{0) = Qand 0 <, m{k) < min[mk — ]J + 1.M7, 222 1. Then the sequence {a; | remains
in £2, and every limit point a satisfies f"(a:d ) = 0.

Proof T.et {{%) be an integer such that & — m (k) <TI(k) <A, fay )= max [fia, )] By

LEE-qTIT ]
(iii} we get that the sequence { /() } is nonincreasing. Now, since (o} << fle, ) forallk , (o)} C

£, so fla,;, ) admits a limit [or £ — <o, Moreover we obtain from (4. 3) that [or & > M,
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Fan ) < Aoy, Yho o S (oo sdin -y ). (110
Also since Ayy,—1 => Oand S Gy idiw -0 << 0 o it Tollows from (4. 4) that
lim’lrun;]fr (e :d.nh—]) = 0. {4.3)
bovoc

By (i) we have A f (o :d,) <S— edf| & || » for all &, and thus, we have
0 = lmig, o f ey 1 1) = L_ﬁ*m(_ eAa—10 | Doy | << 0.
& -roc -

That is to say (4. 5) implics

limds, | diar oy | = 0, (4.6
We prove now ihat }iﬂrg/l, ldoll =0. Teticks &0k + M + 2). First we show . by inductian, that
for any given 7 == 1,
lma || digo-, | = 0. 4.7
and
}Lrgf(a,\hﬂ} = }irzf(ﬂq.“}. 14. 82

(Here and in the sequel we assume. without loss of generality, that the iteration index £ is large e-
nough to avoid the occurrence of negative subscripts, that is % #Zj— 1) For j=1, since {{(&)} —
{/{k)} (4.7 Tollows from (4. 62 . and this in turn implies || &, — @G- | =0 . so (4. §) holds for
7=1 . since f{a) is uniformly continuous on ¢2, . Assume now that (4.7) and (4. 8) hold for a given
7. Then by (4. 3) one can write: fleu_,) <X flang_ ) + LETTEY L V- Y SN Sl 1 P
ing limits as £ -+ co , we have, by (4. 8) .,

‘l_i*ni»\;m,.,ﬂ,f’(nm,,%,,;d,m;(,ﬂ,) = 0. (4.9
Using the same arguments employed for deriving 4. 6 from (4. 5). we obtain

}_‘[’EAMH-(HIJ " dhn—uﬂn ” =

Moreover this implies || .-, — @uy— 1,00, | = 0, by (4. 8 and the unilorm continuily of /an {2, .

m f{&u, 42 = lim e,y = }imf(am).l.
e e

Thus we conclude thai (;4’;) and (4. 85 hold Jor any given j 22 1. Now for any # .
N—p—
Gppy = iy — " ]E IA?ch—,d.’m—;v 1. 100
by the definition of Z(£)} , we haveftk) — 7 — 1= IJ(ikl—l—M +2)—k—1<M-+1. So (1 1t} imphes
Her—o—
}LIE I s — an |l = }LIE | JZ‘_{ iﬁm}qdlm—, | = 0. (4. 112

Since { f{#y, 2} admits a limit, it follows from the uniform continuity of f on {2, that
limf(ﬂ’}+[} = limf(-ahh}- (4.12)
Eweor e
By (4. 3) we have
S ) << flayy, ) + YA, [ Caad,).
Taking limits as £ — oo , by (4. 12} we obtain:

limd, f/"¢a;d,) = 0. (4.13:
koo
which implies. as noted before,
lima il 4, | =0, T

Now let @ be any limit point of {&} and relabel {2} a subsequence converging to @. Then by (4. 13)

either lim /' {a,:d;}) = 0, or there exists a subsequence {e;}x  {a,} such that; lim A = 0.
o e e

Because we assume that lim sup{¥(&*.1)} £ 0. the first case doesnt occur. In the next case, by
F—= o
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assumption (iii) there exists an index & such that for all £ = ELhkEK,
A . . A
Sla + %d“‘ > max} [ffflf,_J)] + 7?}"(0,,:&,) = Mla) + T"i‘f’(aﬁd})»
UL pEiml

that is

A .

fla, + ?"d,) — Sl
T == Y§ gsdi ), (4.15)
‘b

o

Let now [au}xl . {a}x be a subsequence such that

lim a, = a, im o, = d.
broanRE K| ek K,

By (4.15) and the delinition of the directional derivative of J* , taking limits fork — o0, 2 € K, , we
obtain: ' (a;d) =¥ (a;d) . thatis (1 —7) S (asd )22 0. Since ] — ¥ > 0and ' {a: d) < Ufor all
E . we havef (a; d) = 0 . and this completes the proof of the theorem. |

5 Local Convergence to a Strongly Unique Solution

In this section, the following hypotheses are required.

Hypothesis H1  a, — o~

Hypothesis H2 4.l — ¢.

Hypothesis H3 There cxist & >> 0 and & > 0 such that {or any ain the ball N{a" ;87 = {a||la —
a* || <5 &), we have J(e2) — jla* ) <K 8la — a*|. Jis said to satisfy the Lipschiiz condition at o .

Hypothesis H4 There exist 8 > 0 and 8 > { such that for any ain the ball N(e* ;8) = {a|ja —
a*|| << &), we have fla) — jJla*) = 8le — e .

Hypothesis H4 is called a growth condition by SACHSY], The condition also has been introduced
by ZHANG™, Moreover. Zhang gave the {ollowing theorem;

Theorem 5.1 If the directional derivative fle" ;d) >0, Y 4 € ||| =1}. e + 4 € 2.
then the growih condition must hold at a*.

Theorem 5.2 Let the sequence {a,} generated by the proposed algorithm satis{y H1. H2, H3.
and H4. Then {o} converges to @ superlinearly, That is lim H—ﬁ:"]_—;“” = 0.
B+ y
Proof The above-made assumptions imply that /(o + &) == fla) + S Ca:d) + al)|d)]) uni-
{ormly {or all £ Since .| = 0. we have that

1

law + de —a* || < 3 (Jle, +d)— fla*)) =

%[U‘(G’*) + et —a) — flam ]+ ol =
affla® — ally + ollldell) = wille® — alld.
Therefore |la, + dy — a* || = o{la® — al|).
Finally, we show that 4, is accepted and A equals 10 1 {or sulficiently large £ .
By H3, there exist # => tand §; >> 0 such that for any e in the ball Nie®:8,) = {z||le — a* || <
18,1 we have S (a) — fla*) < Ola — a*|.

By H4i, there cxist # > 0and 8; > 0 such that {or any #in the ball N(e” ;8,) = {a|la — a* || <<
8.} we have f(@) — fle*) < Blle — o~ |.
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Choosing 6§ = min{8,.&,} . we have Slla — a* | << S {2y — fla* )| €< 0le — a«* ||. That 1s to say
|feedy — fea* st =CH|le— a* ||} . For sulficiently large &y « il 2>k L a, € N2 &) [T N{a™dp

hold ns;r?gﬁnlzjh)] — e —~ Jrayy — fie™y =1 — ff( fla® — el
SO T ane — @ F flag — Jia ) + olllaT — a4l Ola™ — &)

offle’ — 4] , a(lle” — al
——— ] &, > Osuch that £ > &y, ————F——1—
O(lla = all? lere eXIst £y > 1 that & > &, Ola — a7

For

< 1 — 7 holds. So

maxﬁf_a"f"f'k‘[j‘*—r] - f(a. ) ; I
— fflage —a,)
holds for £ 2= max{k, .k} . Hence Step 5 is satisfied and we set 4, = 1. C

We have studied the convergence properties of the nonmonaotone line search method for 1he unary
convex programming problems and given a worked example in the appendix. We cxpeet that the nu-
merical test will be implemented in practice.
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