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Abstract: Given an m x nmatrix A and its perturbation matrix E , some new properties of the W-weighted Drazin in-
verse A; y and B,  of A and B are obtained, where B = A + E. Under certain conditions, the Banach - type perturba-
tion theorem for the W-weighted Drazin inverses of A and B are established, and the perturbation bounds of || B,w |
and || Byy - A,w ||/ || Ay || are presented. When A and B are square matrices and W is an identity matrix, some
known results in the literature related to the Drazin inverse and the group inverse are reduced by the results in this pa-
per as special cases.
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1 Introduction

It is well known that the Drazin inverse of matrix is very useful because of its various applications. The
perturbation theory of the Drazin inverse has been widely discussed and can be found in the literature!*-2*~3!
In the important paper'®’, Cline and Greville extended the Drazin inverse of a square matrix to a rectangular
matrix and introduced the notion of the W-weighted Drazin inverse. Many properties and applications of the W-
weighted Drazin inverse have been discussed later in [1,2,9,10,11]. In this paper, we study some proper-
ties of the W-weighted Drazin inverse, establish a Banach - type perturbation theorem for this inverse, and
give the perturbation bounds for || B,y || and | B,y ~ A,y ||/ | A w | - Some results in [4,6,7] are spe-

cial cases of our results.
2 Preliminaries

LetA € C™" . The smallest nonnegative integer k such that rank(A*) = rank(A**') is called the index
of A, and denoted by & = Ind(A) .
Letd e C™"and W e C™™. A matrix X is called the W-weighted Drazin inverse of A if
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(AW XW = (AW)*, XWAWX = X, AWX = XWA, (2.1)

for some integer k > O . In this case, X is denoted by X = A, ;. In particular, when A is square and W =/,
the W-weighted Drazin inverse is called the Drazin inverse and denoted by X = A, . Furthermore, ifk = 1, the
Drazin inverse is reduced to the group inverse and denoted by 4, .
LetA € C™" with Ind(A) = k. rank(A*) is called the core-rank of A and written as core-rank(A4).
Throughout this paper, all the notations are the same as those in [2]. And the following lemmas will be
used.
Lemma 2.1""?"  Let L and M be complementary subspaces of C* . LetA e C"*" . Then
(a) P, yA = Aif and only if R(A) C L ;
(b) AP, ,y = Aif and only if N(A) D M.
Lemma 2.2!"*" LetA e C™". Then
(a) Ind(A) = kif and only if R(A*) @& N(4*) = C";
(b) If A has index k, A’ has index 1 and (A'), = (4,)' forl = k;
(c) IfA has index k, A4, = AI(A[)E and A, = (A[)gAH forl = k.
Lemma 2.3%) LetA € C™", W € C”™ . Then A has the unique W-weighted Drazin inverse Ay w
which satisfies :
(a) Ay = A(WA), = (AW)iA ;
(b) Ad,WW = (AW)d H
(c) WA,, = (WA),.
Lemma2.4" Letd ¢ C™", W ¢ C”™, Ind(AW) = k, and Ind(WA) = k,. Then
(a) R(A.y) = RC(AW)™) = R((AW),) ;
(b) N(Ad,W) = N( (WA)kZ) = N((WA)d) H
(C) WAWA&_W = (WA)(WA)d = PR((WA)“Z)_N((WA)“Z);
(d) Ad,WWAW = (AW)d(AW) = PR((AW)h)_N((AW)h);
(e) R(A,yW) ® N(A, W) = C";
(f) R(WA,¢) & N(WA, 5) = C".
Lemma 2.5''*!  Suppose that || F|| < 1. Then! + F is nonsingular and
I -F)™ 1 <1/ - [ F). (2.2)

3 Main Results

In this section, we prove some new properties of A, ; and B, ;, , establish the Banach - type theorem
and give the perturbation bounds for || B, y || and || B,z - A, ¢ || 7/ | Auw Il -

Theorem 3.1 letA,E € C"""and W € C" . LetB = A + E, Ind(AW) = k,, Ind(WA) = k,,
Ind(BW) =j,, Ind(WB) =j,, 1, = maxl|k,, j | andl, = maxlk,, j,}. Andlet (EW)(L,) = (BW)" -
(AW)'' and (WE) (L,) = (WB)" - (WA)? . If | WEWA,, | < land [|[A,;WEW| <1, then

Byw = (I + A, ,WEW) 'A,, =
Agw(l + WEWA, 4) " (3.1)
if and only if
core-rank (AW) = core-rank( BW) ; (3.2a)

1

core-rank ( WA) = core-rank( WB) ; (3.2b)
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A wWAW(EW) (1) = (EW) (L) = (EW)(I)A, yWAW, (3.2¢)

WAWA, w(WE) (1,) = (WE) (1) = (WE) (1) WAWA, 4. (3.2d)
Proof (= ). Suppose that (3.1) holds. Then it is easy to see that
R(B,y) = R(A,y) and N(B, ) = N(A, ).

By Lemma2.4, we obtain
R((AW)") = R((BW)") and N((WA)*) = N((WB)").

Hence

core-rank (AW) core-rank (BW) ,
core-rank ( WA) = core-rank( WB).
Furthermore ,by using Lemma 2. 1 and Lemma 2.4, we have
Ad,WWAW(EW) (ll) = PR((AW)"!),N((AW)H)((BW)Il - (AW)I') =
(BW)" — (AW)" = (EW) (L),

and
(WE) (L) WAWA, 5 = (WE) (L,).
Similarly, we can establish the other two equalities in (3.2c¢) and (3.2d).
(«<). Conversely, suppose that all the four equations in (3.2) hold. From Lemma 2.2 and Lemma
2.3, we have
(BW)" = (AW)" + (EW) (L) = (AW)"" + A, ,WAW(EW)(],) =
(AW) + (AW)" ((AW)') (EW) (L)) =
(AW) (1 + ((AW)™) (EW) (1})).
Notice that core-rank(AW) = core-rank (BW). Then R((AW)*') = R((BW)’*). Similarly, notice that
core-rank( WA) = core-rank(WB). We have (WB)2 = (I + (WE')(ZZ)((WA)IZ)K)(WA)'2 and
N((WA)*) = N((WB)"?). Therefore, we have
R(A; ) = R(B,y) = R({AW)"), N(A,,) = N(B,,) = N((WA)").
By computation, we obtain
Biw—-Asw = —ByyWEWA, 5y + Byy —Ayy + BywW(B -A)WA, , =
- B, yWEWA, w + (Byy = BywPriwniy, vowry) = (Aaw = Priommy, mmmAaw) =
- B, yZWEWA, .
Therefore
B, o(I + WEWA, y) = Ay 4.
Because of the assumption || WEWA, || < 1,1+ WEWA, , is nonsingular. Thus
Byyw = Ay (1 + WEWA, ) 7.
Similarly, by the method described above, we can obtain the other equality in (3.1). This completes the
proof.

From this Theorem, we can easily obtain the following corollary.

Corollary 3.1 letA,E e C™"and W e C”" . LetB = A + E, Ind(AW) = k,, Ind(WA) = k,,
Ind(BW) =j,, Ind(WB) =j,, 1, = maxlk,, | andl, = max{k,, j,}. Andlet (EW)(l,) = (BW)" -
(AW)" [ (WE)(1,) = (WB)" - (WA)" , || WEWA,, || <land ||A, ,WEW | < 1. If Eqs. (3.2)hold,
then
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WAWA, , = WBWB, , and A, WAW = B, ,WBW.

Theorem 3.2 LetA,E € C™"and W e C”" . LetB = A + E, Ind(AW) =k, Ind(WA) =k,
Ind(BW) = j,, and Ind( WB) = j,. Suppose that

A, yWAWEW = EW = EWA, ,WAW, (3.3a)
and
WEWAWA, , = WE = WAWA, ,WE. (3.3b)
Then the matrices
I+ WA, ,WE, I +EWA, ;W, 1+ WEWA,,,I+A,,WEW, (3.4)
are nonsingular if and only if
N((BW)') = N((AW)"), R((BW)*) = R((AW)"), i =1,k (3.5a)
and

N((WB)') = N((WA)), R((WB)') = R((WA)),j = 1, k, (3. 5b)
Proof (<). Suppose that Eqs. (3.5) hold. We note that Ind(BW) = Ind(AW) =k, and Ind(WB) =
Ind( WA) = k,. By Lemma 2.2, we have some facts which will be used in this proof:
R((AW)") @ N((AW)")) = C™, R((BW)") @ N((BW)")) = C",
R((WA)") @ N((WA)*)) = C", R((WB)"”) @ N((WB)")) = C",
and
WAWA, , = WBWB, ., A, yWAW = B, ,WBW. (3.6)
We shall prove that all the four matrices in (3.4) are nonsingular through the following four steps.
(a) Suppose that for some vectorx e C*, (I + WEWA, y)x = 0. From the assumption of Theorem3. 2,
we have
x = — WEWA, yx = - WAWA, ,WEWA, ,x =
= Priomayiny, viownyin) WEWA, yx.
This tell us thatx € R((WA)*).
On the other hand, it holds that B, , (I + WEWA, ;,)x = O . Furthermore, we see from (3.6) that
B, y(I + WEWA, ,) = B,, + B, yWEWA, , =
B,y + B, yWBWA, y - B, yWBWB, y, =
Ay wWAWA, o = A, 4.
Then we have 4, yx = 0,i.e. , x € N(A4,,) = N((WA)*). Hence
x e R((WAY?) N N((WA)"?) = {0}.
Therefore, we can conclude that I + WEWA, y is nonsingular.
(b) Suppose that for some vector x € C", (I + A, ;WEW)x = 0. Then x =- A, ,WEWx
R((AW)"). On the other hand, we note that
x =-A, gW(B -A)YWx = - A, ;WBWx + A, ; WAWx
and from Lemma2.4(d), we obtain
A, wWAWx = Py ey viamin X = X (3.7)
Hence A, WBWx = 0. This tell us that WBWx e N(A,,) = N(B,y),i.e, B, yWBWx = 0. From the fact
(3.6),we have A, ;WAWx = 0. By (3.7), we obtainx = 0. Therefore, I + A, , WEW is nonsingular.
(c) Suppose thatx € C™ and (I + EWA, ,W)x = 0. We notice that
x + EWA, ,Wx = 0. (3.8)
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Then (I + WEWA, ) Wx = 0. Thus Wx = O from the non-singularity of / + WEWA, ;. By (3.8), we obtain
x = 0. This tell us that I + EWA, , W is nonsingular.
(d) By an analogous argument like that in (c), we can prove that [ + WA, ;WE is also nonsingular.
(=). We shall prove this part of Theorem3.2 by induction.
Suppose that the matrices in (3.4) are nonsingular. Firstly, with the assumption, it is evident that
BW = AW + EW = AW + EWA, ,WAW =
(I + EWA, ,W)AW, (3.9)
and
BW = AW(I + A, ,WEW). (3.10)
By using the non - singularity of the matrices in (3.4), we see that R(AW) = R(BW) and N(AW) =
N(BW). Secondly, suppose that
N((BW)') = N((AW)'), R((BW)*) = R((AW)*), i =1,---,k -1 (3.11)
Then we have
rank( (BW)"') = rank( (I + EWA, ,W)AW(BW)* ") =
rank (AW(BW)“™") = dim(R(AW(BW)*™")) =
dim(AWR((BW)“™")) = dim(R(AW)*) =
rank ((AW)*1), (3.12)
From (3.9), (3.10), (3.11), and (3.12), it follows that
N((BW)") = NC(AW)"), R((BW)") = R((AW)").
This completes the proof of (3.5a) by induction. Similarly, we can prove that (3.5b) also holds. With the
above work, the proof is completed.
Combining Theorem 3.1 and Theorem 3.2, when both A and E are square matrices and W is an identity
matrix, we come to the following results immediately.
Corollary 3.2'") LetB = A + EwithInd(A) = kandInd(B) = . Let! = maxlk, I} and E(]) =
B' — AL If |EA,|| < 1. Then
B, = (I +AE)"A; = A (1 + EA) ™,
if and only if
core-rank(B) = core-rank(A) and AA E(l) = E(l) = E(1)AA,.
Corollary 3.3 [7] Let B = A + EwithInd(A) = k. Suppose that AA,E = E = EAA,. Then[l + A E is
invertible if and only if

R(B') = R(A'") and N(B') = N(A"),i =1,k
Furthermore, AA,E(k) = E(k) = E(k)AA,, where E(k) = B* — A%,
Now we show the Banach - type perturbation theorem for the weighted Drazin inverse.
Theorem 3.3 letB =A+E e C*", We C", Ind(AW) =k,, Ind(WA) =k,, Ind(BW) =j,,
Ind(WB) =j,, I, = maxik,,ji}, l, = maxlk,, j,}, (EW)(L) = (BW)" — (AW)" and (WE) (l,) =
(WB)" - (WA)"“. Suppose that (3.2) holds. If || WEWA, , || < land ||A, ,WEW | < 1, then

I Agw |l I Asw
L+ | WEWA, y || 1 - [|WEWA, 4 || °

(3.13)

s [Buwll =

and

| WEWA,v |l
K d

B,, -A
(A1 + | WEW|| |A,0]) < | Baw = Aaw |l
o 14w
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Kiw(A) | WEW ||/ || WAW | (3.14)

S T=Ku(A) | WEW [/ [WAW ]
where K, ,(A) = || WAW || || A,y || is defined as the condition number of the W-weighted Drazin inverse

A,y ,and || + || indicates any consistent matrix norm with || I || = 1.
Proof From Theorem 3.1, we see thatB, , = A, (I + WEWA, ;) ~'. Notice that || + || is a consistent
matrix norm with {7 || = 1. By Lemma 2.5, we obtain (3.13) immediately

ldowd g o A
1 + || WEWA = eI =0~ | WEWA vl
d,W d,

From the fact that B,y —~ A,y = B, yWEWA, ;, and (3.13), we have
| Baw = Ay | _ 1 Buw | I WEWAL | _ I WEWAL, I _
I Aaw |l I Agw i 1 - || WEWA, ¢ ||
Il Aww il | WAW || || WEW || / || WAW ||
L=l w | | WAW || || WEW || / || WAW ||
Kow(A) | WEW ||/ | WAW |

(=K, (A) | WEW [/ WAW ] (3.15)
This is the upper bound of (3.14). Next we deal with the lower bound of (3. 14).
By Corollary 3.1, we see that
WAWA, y, = WBWB, g and A, ;WAW = B, ,WBW.
Then
WEWA,y = W(B ~A)WA,y = WBWA, , - WAWA, , =
WBWA,y - WBWB,y, = WBW(A,, - B,,) =
(WAW + WEW) (A, 4 - B, ).
Thus
WEWA
Ber = An | = Ty 3 REVT
Notice the fact
| WEW || | Agw | = | WEW | | A, g WAWA, 4 |
< I WEW | | gy | Kuw(A).
We have
| Buw = Asw [l _ | WEWA, y |
Hawll = NWAWI [ Auw |l + | WEW A,y |
- | WEWA, v |l
Kiw(A) + [[WEW | A w |
a | WEWA, v | 5.16)

Kiw(A)(1 + | WEW || | Ag |l )
Therefore, (3.14) holds from (3.15) and (3.16). This completes the proof.

Moreover, by Theorem3.3, when both A and E are square and W = [ , we can directly get some results in
[4,6,7] which are omitted here.
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