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A Trust Region Algor ithm for
Non snooth Unary Optm ization
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Abstract. Presentsa trust region algorithm for nonsnooth unary optim ization problens Based on
the duality theorem of linear progranming, the directional derivativesof the objective function can
be expressed as a linear progranm ingw hich isvery mportant in the practical calculution of trust
region subproblens Gives a theoretical analysis w hich proves that the proposed algorithm is
globally convergent and has a local superlinear rate under ome reaonable conditions
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1 Introduction

In thispaper w e consider the nonlinear unconstrained m inim ization problen s
minf (x), (11
wheref (x):R" - R'isconvex function Follow ing Goldfurb andW ang in [2] andM oCom ick

and Sofer [3] we call problen (1 1) a unary convex optimization problam if f (x) takes the
fom

f (x) = zllJi(OG(X)), (12

wherefori= 1,...,m, m=> n, 0&(x) = a'x, a isa constant vectorsof sizenx landUi()
is a unary convex function, i e, Ui(x):R' — R', not necessarily differentiable (e g ,
piecaw ise linear or quadratic). Note that the unary functions such as, the sgarable function,
the objective function of the linear robust regrassion problem, the dual objective function of the
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entropy problen in infomation theory™

and the dual objection function of the lower level
progranming in pipe nework optimization'” are of the unary convex function fom. M any
proposed algorithms for the unary optimization utilized the derivatives of unary functions
involving twice continuously differentiable derivatives However it is not aways to be
aupposed, or even given asa finite function on all of R Such aspiecav i< linear and piecev ise
guadratic In such convex unary functions there are ecial waysof generating directions of
descent, and the duality of the linear progranming can play a very strong role

Trust region methods are an mportant class of iterative methods for ©lving nonlinear
optimization problens to asuure global cnvergence In an unoonstrained minim ization
problen, a step to a new iterate is obtained by minimizing a local model of the objective
function over a restricted region centered about the current iterate T he size of this restricted
region dependson how well the local model predicts the behavior of the objective function
This strategy w ill force global convergence of the iterates from an arbitrary starting point to a
pointw hich satidfies the first-order necessary conditions

The main purpose of this pgper is to propose trust region method w ith the generating
directionsof descent by adopting the duality idea Thepaper isorganized asfollow s In section
2, we present the optimality and elenentary directionsof descent In section 3, we desribe
the algorithm w hich combines the techniquesof trust region and descent directions In section
4, the global convergencesof the proposed algorithm are established T he further superlinear
convergence rate is discussed under smem ild conditions in section &

2 Optmality and Elenentary D irectionsof D escent

Just as linear progranming problen can be descried qualitatively as one w here a linear
function isminim ized over a convex polyhedron,  can a unary cnvex progranm ing problem
be described asone of the fom

P) minf (x)= 2. Ui@()),

w here Q is a convex polyhedron inR", and fori= 1,2, ,m, m=> n, &(x) = ax, aisa
oonstant vectors for sizen x 1andUi(x) isa unary convex function
To introduce the exact technical assumptions that will be needed , and to put problen
(1 1) in aconvenient’ nomalized” form at the same time, w e ecify now that for eachi= 1,
,m, we have

a nonempty real interval I, (2 1)
not necessarily closed, possbly allof R*= (- o, + ), and a convex functionU:: |1 —» R*
w hich is continuous relative to 1: (RegardU i as+ o outsideof 1:). L etting

o= 0(x), x= (x1, ,Xn)



observe from the linearingity of & that x rangesover a certain subpace Qof R" A sx ranges
over R" aspointed by Rockafollar in [3], every unary progranming problem can therefore be
reduced to themore fundanental form

(P) min f (x)= Y Ui(a)
st o Ivforv=1, ,m,
o= (o, ,00) Q
where liandU iareasin (2 1), (1 2), repectively fori= 1, ,m and Qis ome subpace of
R" This is a sparable convex progranming problen w ith linear constraints some of w hich
are given abstractly by the condition x Q, but can be represented in other ways as the
situatonwarrants Fori= 1, ,m, %(x) = a x, we have that
0= AX (2 2)

wherea= (04, ,0h) andA" = [a, ,a] Equation (2 2) meansthatae R(A) = {Ax |x

R", the range subspace of A. SinceA has full rank m, we havedm (R(A)) = m and
dm®N (A7) = n- mwhereN (A7) isthe null subpaceofA™. LetQ= [V,W ] R™"bean
orthogomal matrix inw hich the wlumnsofV ~ R™"™ fom an orthonomal basisof R (A) and
the columnswW ~ R™ ™™ fom an orthonomal basisof N (A"). Clearly, by an elanentary
result in linear algebra, we have that® R (A) if andonly ifW &= 0, i e , theprojection of
thexontoN (A") iszera Thisestablishes that the subgpaceR (A) can be expressed as the set
of all olutionsof the linear systam

{a a= 0} (2 3
T herefore, the unary progranm ing problem can be reduced to the follow ing fundam ental form
(P) min f (@)= D U:(e)

st {aWwo= 0 « Q
L et

Q= On {awa= 0}, (2 4
since Qisa subpaceonR", Qisa convex polyhedrom inR" Theproblan can be reduced to a
sparable convex progranm ing problem w ith linear constraints as follow s

(P) min f (@)= D U:(e)
st o Q
In problen (P), theminmal function f (x) is a convex function defined on Q Thusx isa
feasible slution to (P) if and only if it isapoint of Qw heref (x) isfinite, and it isan optimal
®lution if and only if, in addition,
f°(x;d) = Oforald (2 5)
w here of course, the generalized directional derivative of f at x in the directond R",

f(y+ td) - f (y)
t .

0 . — :
Flcd)=jmag
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A functionf is said to be regular at a if the one-sided directional derivative

f(y+ td)- £ (y)
: .

f'(x;d) = IurTg (2 6)

exists for all directionsd  R" and
f'(x;d) = f°(x;d). (27

The function f is said to be regular on a st Q if it is regular at every point of the st Q. Since
the unary function discussed in this paper is aways assumed to be convex analysis (for
exanple, se Theoran 23 1on page 213 of Rockafellar [4]). A oconvex function alw ayshasa
one- sided directional derivative The convex analysis says that these wo derivatives coincide
for a convex function

On theother hand for (2. 1) case, anyd Qwithf ' (x; d) < 0, ifoneexistsand
f°(x;d) = f'(x;d), given adirection of descent from x; for snall enought> 0, x + td is
another feasible olution to (P) andf (x + td) < f (x).

Each U has a right derivativeU '~ (%) and a left derivativeU ' 1 () at every & R*
T hese are nondecreasing functionsof & that satisfy

-0 < U'is (6) < U' (0k) < o0, (2 8)

A sf (x) is a unary convex function, its directional derivative along any direction d exists,

w hich can bew ritten by a direct formula for the directional derivative of f (x) ,

) = tin L= 00

. Ui(oet tdi)- Usi(ox)
Irm)(i,zio t *

Zo t )_

Z U (o) drt Z U’ (o) ds (2 9)
It is clear to see that the value of f ' (x; d) dependson sign of di o that its calculation is
inoonvenient
Forf itself, the generalized gradient of f at & is the set
of (= {g R"|g'd< f°%xd), Vd R"} (2 10)
and because of sparability this reduces to
Oof () = OU1(oe) x OU2(0e) x X OUm (0h) (2 11)
Furthemore, using the derivativesof U (), i= 1,2, m, we have that the subgradient of
Ui(x) ,
oU (o) = {t R1|U'i- () € t< U'w (06)} (2 12)

is the interval [U " (o)) ,U "+ (%) ).
Asf (o) in problen (P) is a sgparable convex function, along any direction d the
directional derivativef ' (¢ d) exists In fact
f'(¢d)=max{< §d> |g 0f (M}=
max {< £d> U' (®)< U ()}, i= 1, ,m} (2 13)
w here & are the i-th componentsof vector §



Thus by duality theoram of linear progranming, f ' (& d) can be expresseed asam inimum
value of the follow ing dual problem

f'(¢d) = min U'ec (ox)vi+ U'is (0w
(o d) Z (o) zl (o)
st vi+ wi=d;, i= 1, ,m
vi< O,w;=2 0, i=1, ,m
The fomula isvery mportant in the practical calculation for the unary convex progranm ing

Summ arizing the above reaults in operational temm's, w e have a gpecial descent procedure
that can be mplenented in the unary progranm ing

3 A lgotithm

In this section w e describe a trust region methodw ith the descent directionsfor the unary
oonvex progranming Our algorithm asfollow s
Algorithm TR
Initialization step
ChoosparanentersO< M < < < 1, and 0< ¥ < %< 1< %
Select an initial trust region radiusAo > O0and amaximal trust region radius Amax > Ao,
give a starting pointoe  Q Setk= 0, go to themain step
M ain step
1 Evaluatef«= f (o), U’ (o) andU i (of)
2 Solve the trust region subproblem as the form given by
min & (v,w) = zluli- (ox) vi + ZlU'H- (0w i
(S) st vicOwi=0 i=1 ,m
o+ v+ w Q
v+ wll < A

Obtain the lutionsv',w “ and optimal value & (v, w ).
3 Il @(w) Il < € stopwith the & gpproximate ®lution off Othew ise go to next

step
4 Calculate the actual reduction of the objective function
Aredi(dd) = f () - f (o + dY), (31
w here
d“= v+ w" (32
and

5 IfM< 1, then Ac— ¥Acand go to step 2 Othew ise, set
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off t= o+ d* (3 4)
and take
min (%A«, Ana) fn=n
A 1= B if i< N (3 5)
A« otherw ise

letk—k+ land go to step 1

Remark: If the = nom or the l. nom is used in the trust region constraint, the
aubproblen ( Sc) smply becomesanL P problen of W decision variablesv’, w* A fter soving
it, wetaked = v+ w"and consider o * = of + d*asa condidate for next iterative point,
provided that of* * = of + d can pass the test stated in step 5

4 The Global Convergence of A Igorithm TR

W e first derive a global convergence of the proposed algorithm. W e show that every
accum ulation point of {0k} is a stationary pointof f i e,
f'(¢d) = Oforalld Q (4 1)
Leanma 4 1 W e have that
I redi(d) - @(w) | = o(A. (4 2)
Proof By the definitionsof A red«(d«) and & (v,w*), we have that
A red(d) - @ wh) | =

If (ot + d% - f (o) + DK wh | = (4 3)
|f (o) - £ (b + d*) + £'(ct5d") |=
I dl = o(A. 0

For any ®and A> 0, letw and v be the ®lution of the subproblam (S.) at point 0k = ®and
W(o, A) be theminmum value, i e,

W(x A) = Z U (o)vi + z Ui (0w (4 4)
Lanma 4 2 W e have that
(o, A) £ min{1, AW (o, 1). (4 5)
Proof If Ax= 1, it isclear to see that
W(o, A) < min{1, AW (ol, 1). (4 6)

On theother hand if A« < 1, then by the convex property of objective function & (v,w) ,
D (A, A ) £ (1- A)D(0,0) + Ad (V,wY),
w herev*, w* is the lution of the subproblen (S)whenAv= latol SinceAdl Vi+ wll <
A«, w e have that Aw* and Aw ¥ is a feasible Dlution of the subproblen (Sc) with A« Hence
W(x A) £ DAV, Aw) £ A (Vw¥)) = AW (o, 1), 47
(4 6) and (4 7) mean that (4 5) istrue i



Theorem 4 1 L et {ol} be the sequence generated by the proposed algorithm, thenwe

have that
Iim ap{W(A)} = a (4 8)

that is at least one accumalation point & of {0} isa stationary point of the problen (P).

Proof Letd“= v+ w"be the ®lution of the subproblem (Sc). Ifll d“Il < 1, itis
clear to see that

Wol,A) = Wl I d'Il ) = W(o, 1).

if I d“I > 1, then by the convexity property of & (v,w) ,

V0wt 1 1 Kok
BT g ) S @ gy ) R00 + T TRV W,
From above, w e have proved
(o, 1) < min{1, m}W(&,Ak). (4 9)

If the conclusion (4 8) isnot true, asfrom I d“ll < A« £ Ana, we have that 1 gl

is
bounded av ay fran zero, wewould have an €> 0 such that
Yl 1) <- € Vk (4 10)
W e now prove that this is mpossble By the definition of W (o, A«) and (4 10), we have
- AW = - W, A) = - min{1, AJW(, 1) = min{1, A}€ (4 11)
A coording to (4 11), we have that
f (o) - f (") = Ared(dd) =
- Na (w2 Mmin{1, Ade (4 12)

A s the function f is bounded, from (4 12), we know that Z min{1, A} is convergent,
=0

w hich mplies that

JirJOAk: Q (4 13)
On the other hand, from (4 2) and (4 11), we have
A redy (dy) _o(A)

0w S minfLaje K-

Thismplies’l - 1ask - o , i e, for largek, > T and hence acoording to the updating

rule for Ax, Aw12= A« That is the trust region radiusw ill be bounded avay from zero ,
w hich contradicts (4 13).

So, at least one accumulation point of & of {0} isa stationary point of the problen (P).

0
From above, w e have the global convergence of the proposed algorithm.

5 L ocal Convergence to a Strongly U nigque Solution

Let  R"bea srongleunique olution of theproblen (P), that is there exist constants
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B> 0, €> 0, wuch that
f@- f@)= Bl oa- ol , Vo Q I x- oIl < € (5 1)
W e further assum e that
o o (52
The oondition has been introduced by Zhang in [5] M oreover, Zhang gave the follow ing
theorem.
Theorem 5 1 If the directional derivative
f'(;d)> 0, Vd {dfldl = 1}, « +d (5 3)
then the condition (5 1) must hold at o'.
Theoran 5 2 If the ssquence {ok} generated by the proposed algorithm converges to a
stationary point, thend« - Q
Proof LetQ= {k N |’1 > M} denote the set of all iteration indices belonging to
acoepted steps The statament is trivial for the subsequence{di} k  Q, If, however, N “Qis
infinite, even A« » Oholds For everyk N “Q A« isreduced by the constant factor ¥ < 1,
while fork Q, Awi1 — Acholds A« - O mpliesd« — Q
From above, the conclusion of theoram holds 0
Theoran 5 3 L et the sequence {0k} generated by the proposed algorithm convenge to a
strongly uniqueminimizer ® of f on @ Then {0} converges® superlinearly. That is,
Il okes- ol

M e an -0 (5 4)
Proof The abovemade assumptions mply that
f(ok+ d) = f (o) + f'(ck;d) + o(ll dll) (5 5)
unifomly for allk Sinced« - 0, we have that
o+ de- o ll < 'fé‘(f (k+ d) - f () =
1

B[f (o) + ' (oo - o) - f(a)]+ ol dill )=

ol & - ol ) + o(ll dill ) =
o(ll o - okl ).
T herefore,
o+ de- ol = o(ll o - okl ) (5 6)
Finally, we have to show that dk isaccepted, i e , 1> Tlfor largek From the accgpting step
value in the algorithm, w e have that, from (4 5),
f + - f - £ (o
In- 1|= (o + di) f'(o:;ofj)k) (o6 du) | _
lo(l dull ) |
min{1,Ad Wk | =% k-
This mplies that 1 = 1 for large kw hich ensures that d« is accepted for sufficiently large k
T hus the proof iscomplete ]




W e have studied the convergence properties of the trust region method for the unary
convex progranming problens W e feel that the numercal test will be mplemeted in practice
further
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