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Abstract The purpose of this paper is to study the asymptotic behaviour of the
theoretical and numerical solution of the nonlinear differential system with: severz! Zelay
terms. Under the suitable assumptions for right hand funciion, we prove that, the the-
oretical solutions of the roiiiaear differential system with several! dgelay terms are
asymptoiically stable. The analogous benaviour or the numerical solutions of implicit

Euler method are also investigated.
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1 Introduction
First of all, we consider the following linear system of delay differential equation :
P W) =AyW) 4+ Byt —71) + Byt — %) +... + Byt —7),t>0, 1A.1)

y () = @(t), t<0, (1.2)
where

y(‘) = (y1(t)’y2(t)a-- . 9y1v(t))1 E CN)
y(—15) = (1, ¢t — 10,9, — 7)), . ,ynE— )T € CY, 1<;<m.

A = (a;)yxn>B = (b;)yxnare constant matrices and0 < 7, < 7,1 < j<m.

Theorem 1. 11" For any positive integer m > 1 if

(D n(A4) = 1/24 (4 + 47) <0,

G 257 1B, <—aa),
then every solution ¥ (¢) of (1.1) satisfies
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limy (¢) = 0.
Where Ay (4) = max{A:A € o(D}, |B| = Sip | B&Il s and || E)1? =< &, >=

Zj-v:l‘fjéj@ € cv.
As a special example of (1.1), it is
y'O =ay )+ 37 byt =), >0, 1.3
y () = @(0), t < 0. 1.4

Corollary 1. 2017 It
(1) Re(a) < 09
@ 2;;1 |6, <<— Re(a),
then every solution y (¢) of (1. 3) satisfies
limg (¢) = 6. (1.5)

t—»c0

Concerning numericai sclution of (1.3) and (1.4), we have ibz roliowing concepts.

Definition 1. 11" A numerical method f5r DDEs(1. 3) and (1. 4) is called P, -stable if,
under conditiens (1) and {(2), y, —~ 0, asn — oo, for every stepsize k such that & = 7, ; , where
mj,1 << j << m , are positive integers.

Detinition 1.2 ") A numerical method for DDEs (1. 3) and (1. 4) is called GP,, -stable if,
under condition (1) and (2), y, —> 0 , as » —> oo for every stepsize & > 0.

In Torelli“s paper (1, the numerical solution for the nonlinear system of delay differential e-
quations was studied and the conditions for theoretical and numerical solutions which continucusly
depended on the initial value were obtained.

The purpose of this paper is to show that, under similar assumption of right hand function
with several delay terms as that of paper ["7,its theoretical solution is asymptotically stable and
that the numerical solution has same property for implicit Euler method.

2 Asymptotic stability of the theoretical solution for nonlinear system with several delay
terms

We consider the following nonlinear system with two delay terms

') = f U,y (D, — 71)5 (¢t — 1)), t >0, 2,
y () = ¢(6), t <0, 2.2)
and
2'U) = fFU,z(ODyz(t — 1) yz(E — 1)), t >0, (2.3)
z(t) = p(t), t<0, : 2.4

where f:[0,00] X C* X C* X C*— €%, y(t), z(t) :R > %7, > 0,i = 1,2.
Definition 2.1 The nonlinear delay system (2. 1) with any continuous initial function ¢X¢)
is called asymptotically stable if ‘
hg@ —z@ || =0, ast—> oo,

where z(¢) is the solution of (2. 3) with any continuous initial functiong(t), and ||z |’ =<z ,2 >
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is the inner product on C°.
Theorem 2.1 Assume that ¢(t) and $(t) are continuous and
Re < f(t,9,,u,0) — f(yyu,v)sy; — ¥, > olly, —y,l25 V€ R,V u,v,9,,9, € C"
(2.5)
If oy sursv) — oy rup,) | < yylluy — uslls VYiE R y,v,u,u, €C°, (2.6
IF oy susw) — Fyuvd Spllo, —woll, VEER, V y,u,v,v, € C° (2.7)

y159; > 0,0 <C 0 are constants and y, -+ y, <— 0. (2.8)
where R = [0,c0). If the solutions of (2. 1)— (2. 2) and (2. 3)— (2. 4) exist uniquely, then .
lim|y () — 2| = 0. 2.9

t—»oo

Proof According to the definition of the norm on C°, we have
1/2 @/d)(ly (1) — zD]*) =Re <<yg'(®) — 2' ),y C) — 2() >
=Re << fU,yW,g(t — 1)yt — 1)) — ft,z{d2(t — 7),2(t — 1)),y () =~ 2) >
=Re<<f(y@W,yt — 72,3 — ) — fFUz@ @ — 729 ¢ — 1)),y @) — z() >
+ Re <2 F 2,y (b= 1),y (0 — 1)) — F{t,20),20 — 7)),y (0 — 7))y (0) — 2(1)->
4 Re << Fit,2(8),2(t ~ 1),y (t — 1)) — fF @2,z — 7)) ,z(4 — 72)),y (X)) — 2(&) >.
2.10)
An application of Schwartz's inequality, yields
1/2@@ /a0 (ly @) — 2O K olly @) — 2O P+ nlly O — zOlllly ¢ — 7)) — 2@ — w)l
+ yally @ — 2Oy ¢ = ) — 2 — w).
LetY () = Jly @) — z(¢)]|. Then
1/2@ /a0 T OD K oV (O + 9 Y OY(E — 1) + .Y (DY U — 7)),
or
Y (OY'(1) < 0¥ (1O + p,¥ (L — 7)Y (0) + 1, (DY (¢ — 7).
Notice that the solutions of (2.1)—(2.2) and (2. 3) — (2. 4) exist uniquely. Then

YW <oV @)+ YU —1)+ 9 — 1), 1 =0, 2.1
Y () = llgt) — gl = ¢D. t < 0. (2.12)
It can be written as
YW =0Y () + 9Vt — 1) + p,Y ¢ — 1) — a(l), t =0, (2.13)
YY) =o@), t <0, (2.14)

-

where a(t) == 0 is continuous bit by bit.
Let 7 == min{7,,7,} and ¢ € [0,7]. Then the formula (2. 13) may be written in the form
Y'() = oY (1) + 3, @t — 71) + p, @ — 1) — a(0), 0<<i <, (2.15)
Y() = o), t < 0. (2.186)
Set W (&) ==y (t) — Z (1), where the Z (¢) fulfills the following differential equation and initial val-
ue

2 = 0ZW) + 2 — 1) + 7Zt— 1), 0<i<nm, 2.17)
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Z(@) =d@), t< 0. (2.18)
Thus '
W'i(t) = oW (&) — a(t), 0L, 2.19)
W) =0, t < 0. (2.20)
The solution of the above differential equation (2. 19) with initial value (2. 20) is
WO =0+ [T (—auid,  0<isT, (2. 21)
and
W) =0, t < 0.
where
() = ﬁa(t)dt,
From (2.21) and a(t) > 0, it follows
W) <0, 0<t<r,
namely
Yy <z, 0 < (2.22)
When ¢ € [0,21], we consider tiz foilowing equations
(171 = oY (&) + n Yt — 7)) + 7,V (¢ — 7)) — at), 0< ¢ < 27,
{Y(t)‘= o), <0,
and
210 = oZ W) + p B — ) + 92— ), 0< < 2n,
{Z(t)=d>(t), t< 0.
Thus _
{W'(t) =W @) +y WU — 1)+ y,WU— 1) — al®), 0<¢t < 27, (2. 23)
w () =0, ¢ < 0.
From formula (2. 22), we obtain
Y¢—1) —Zt—1) <0, t € [0,27],
and . ;
YU — 1) — 20— 15) <0, t € [0,27].
0<t < 27,
2.20)

Then (2. 23) may be rewritten in the form
W) = oW (1) — a(t),

{W(t)=0, ¢t <0,
a(®) =a(@) —n[YU—1) —Z2U—1)]—p[YU— 1) — 2 — )] =0

here
Therefore v
W) <0, 0t < 27,
that is
Y () <Z(@), 0t < 2
i = 0.

Continue this process, we arrive at
Y <z,
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and
Z'@) = o2() + 7ZG — 1) + p, 2 — 1), t =0,
{Z(t)=a>(c), t< 0.
From the condition (2. 8) and corollary 1. 2, it follows
EE?OZ(‘) = (.
Thus

0LY (U)K Z({) >0, as t = oo,
This completes the proof of this theorem.
The result can be generalized tc the nonlinear systems withm delay terms.

Theorem 2.2 For the systems

'@ =fWy @,y — 1)y .yt — 7)), =0, (2.25)
{y &) = ), t < 0. (2. 26)
and
Z'(Yy = f,2{) 2t — 7))y ve 2t = 1,0, =40, (2.27)
Wty = (LD, t<< 0. (2.28)

Assume that the @(¢) andy (¢) are continuous and ‘
Re <[ty uyyeee uy) — f(t’?79“1’- ceslg )Y — ?7 >< ””ZJ - .77"29
VEE RN 4s0stigse.. iy €C% (2.29)
MF sy sttysene styseee yuy) — FUYsuyse s sise oo s | < willus — wll s
VEE RN g upsees stp,u € 051 <i<m, (2.30)

00,3 yy<—o - (2.31)
If the solutions of (2.25)—(2.26) and (2. 27)— (2. 28) exist uniquely, then

lim]ly (¢) — z(D| = 0. (2.3

P-soxy

The proof of theorem 2. 2 is analogous to the proof of theorem 2. 1.
3 The asymptotic stability of implicit Euler method

From Theorem 2. 1, if the function f satisfies the conditions (2. 5) — (2. 8), then the solu-
tion of (2. 1)— (2. 2) is asymptotically stable. So requiring the numerical process having similar
property is reasonable.

In this section, assume that the function f is real and 1, =2 1, > 0, 0 <0, and y, + y, <—
0. Denote v =ho,y;=hy,(i=1,2) and h = 7,/m, = 7,/mythe stepsize, where m, ,m are positive
integer.

Definition 3.1 A numerical method for DDEs is called asymptotically stable at (5,171,)72)
if, under conditions (2. 5) — (2. 8) , the numerical solutions ¥, and z, at the mesh points of (2.
1)— (2. 2) and (2. 3)— (2. 4) respectively, satisfy the condition

ly. — 2zl > 0,25 n—>co,

for every stepsize & such that b = 7,/m, = 7,/m,.

By applying the implicit Euler method to solve the equation (2. 1)— (2. 2),we arrive at

Yat+r1 = ¥ + ’if(‘n+1,~y.+1 1Y x—m +1 9?/.—m2+1) s a.D
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where t, = ah ,h = 7,/m, = 7,/m,, y, ~ y(t,), and
Zay1 = Zy + A (bagy 120y Zam 19 Zammyt1)e 3.2)
LetV, =y, — z,. From (3.1) and (3. 2), it follows
Varr=Va+ hlf Crrsdatis¥amm 1.8 0mm+1) = F Gt s 2015 %0m 415Z0mm,+1) ]

= Ve + h[f (1980158 at1om 2V amprt) — f Gy Zat19Y at1omy Y ut1-m,) ]

F ALf CarrszanisVutiom s ¥atiomy) = F CattrZat s Zat1om 1Y ntiomy ) ]

+ LS (g1 204y Zat1-m 2 Yatiomy) T S (ak12Zat13 20t 1om; 2 Zatrom,) 0 3.3
Take the inner product with V', on both sides of (3. 3) and use condition (2.5), (2. 6) an(; (2.
7) to obtain |

IV aial? < VAV aisll + &0lVaia 2 + 2y iV agica IV el + B2l assma 1V sl -

Therefore

"Vn+1“ < |v.l + hU”V--H“ + hy, ”Vn+1—u1 Il + ’W?”V--H-»mzii ’ (2. 4)
and
IVl < L+ Vgl F Ayl oy /40 — B, (3.5)
Considzr the following difference e¢quation
Vo ={U, + ’lVlU..+1~,..1 + thU.+1—uz]/(l — ko), (3.6)
with initial value
v_,=1Iv_l, i=0,1,2,...,m, — 1. 3.7
Using (3.5), (3.6) and (3.7), we can obtain recursively
.l <uv., R=1,2,.

To the recurrence relation (3. 6) we adjoin the characteristic polynomial where
Pyu(z) =z"2 — (1 — ho) " [z™™! — hy;z™ ™ — hy,].
The polynomial P, (2) is a Schur polynomial if (see [7])
@ |1/ — k)| <1,
®) |ky, /(1 — k)| < |z — 1/(1 — ko) ], lz) =1,
©) fhy /(1 — k)| <]z— 1/ — ko) | — |hy,/(A — k)|, |z| = 1.
Since o <C 0, the condition (a) is trivial. For condition (b), noticing
min{|z — 1/l — ko) |:|z| =1} =— ho/(1 — ko)
and y, <<— g, we can conclude that the (b) is held. The condition (¢) is equivalent to
ky /(1 — ko) +hy, /(1 — ho) < — ho/(1l — ko).
Since y; + y, <{— 0, it follows that the (c) is true. Therefore P, (z) is a Schur polynomial. Let

:

813825+« »4q,are the zeros of Py (z). Then |£;| << 1. The solution of difference equation (3. 7)
with initial condition is

Us=af" + e ... + cayfn,s and im0, = 0. (3.8)
Thus

Then we establish the Theorem 3.1

V.l

<U,—=>0, n—> o0,
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Theorem 3.1 For any range (¢.9,,7,) € S, the implicit Euler method is asymptotically
stable. Where § = {(7,7,,72)30 <0, y, + 7, <— o).
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