The Problems of Best Approximation in β-Normed Spaces $(0<\beta<1)$

WANG Jian Yong
(Department of Mathematics, Changshu Institute of Technology, Jiangsu 215500, China)
(E-mail: jywang@cslg.edu.cn)

Abstract

This paper deals with the problems of best approximation in β-normed spaces. With the tool of conjugate cone introduced in [1] and via the Hahn-Banach extension theorem of β-subseminorm in [2], the characteristics that an element in a closed subspace is the best approximation are given in Section 2. It is obtained in Section 3 that all convex sets or subspaces of a β-normed space are semi-Chebyshev if and only if the space is itself strictly convex. The fact that every finite dimensional subspace of a strictly convex β-normed space must be Chebyshev is proved at last.

Keywords locally β-convex space; β-normed space; normed conjugate cone; the best approximation.

Document code A
MR(2000) Subject Classification 41A50; 41A65; 46A16
Chinese Library Classification O174.41

1. Introduction

In this paper, $0<\beta \leq 1$ is a constant, \mathbf{R}^{+}is the set of positive numbers, X is a linear space, and θ is used to denote the zero element or zero functional. If $A \subset X$ satisfies

$$
\begin{equation*}
[x, y]_{\beta}=\left\{\lambda x+\mu y: \lambda, \mu \geq 0, \lambda^{\beta}+\mu^{\beta}=1\right\} \subset A, \quad \forall x, y \in A \tag{1}
\end{equation*}
$$

then A is said to be β-convex, where $[x, y]_{\beta}$ is the β-curve segment with the end points x and y while $[x, y]$ is used to denote the relative line segment.

Definition 1.1 ${ }^{[1-4]}$ Suppose X is a topological linear space and $0<\beta \leq 1 . X$ is called locally β-convex if there exists a θ-neighborhood basis consisting of β-convex sets.

A real-valued functional f on X is called a β-subseminorm if

1) $f(x) \geq 0, x \in X$;
2) $f(t x)=t^{\beta} f(x), t \in \mathbf{R}^{+}, x \in X$;
3) $f(x+y) \leq f(x)+f(y), x, y \in X$.

The algebraic β-conjugate cone X_{β}^{\prime} consisting of all β-subseminorms on X was first introduced in [1]. If X is a topological linear space, then X_{β}^{*} is used to denote the topological β-conjugate cone consisting of all continuous β-subseminorms on X. If X is locally β-convex, then X_{β}^{*} is

Received date: 2006-04-21; Accepted date: 2006-08-28
Foundation item: the Foundation of the Education Department of Jiangsu Province (No. 05KJB110001).
large enough to separate the points of X by [1], i.e., for each pair $x, y \in X, x \neq y$, there is $\theta \neq f \in X^{*}$ such that $f(x) \neq f(y)$. Then X_{β}^{*} is called the conjugate cone of X shortly. If the positive β-homogeneity 2) is replaced by the absolute β-homogeneity
$\left.2^{\prime}\right) . f(t x)=|t|^{\beta} f(x), t \in \mathbf{R}, x \in X$,
then f is called a β-seminorm. If a β-seminorm $\|\cdot\|_{\beta}$ also satisfies the zero hypothesis
$\left.1^{\prime}\right) .\|x\|_{\beta}=0 \Leftrightarrow x=\theta$,
then the F-norm $\|\cdot\|_{\beta}$ is called a β-norm and $\left(X,\|\cdot\|_{\beta}\right)$ a β-normed space. A complete β-normed space is called a β-Banach space ${ }^{[5]}$. Now with the θ-neighborhood basis consisting of β-convex sets

$$
U_{\varepsilon}=\left\{x \in X:\|x\|_{\beta}<\varepsilon\right\}(\varepsilon>0)
$$

$\left(X,\|\cdot\|_{\beta}\right)$ forms a locally β-convex space. Sequence space l^{β}, function space $L^{\beta}(\mu)$ and Hardy space H^{β} are three typical β-Banach spaces. Suppose $\left(X,\|\cdot\|_{\beta}\right)$ is a β-normed space. Then under the norm

$$
\begin{equation*}
\|f\|=\sup \left\{f(x):\|x\|_{\beta} \leq 1\right\}, f \in X_{\beta}^{*} \tag{2}
\end{equation*}
$$

$\left(X_{\beta}^{*},\|\cdot\|\right)$ forms a normed topological cone in the sense of [6], called the normed conjugate cone of $\left(X,\|\cdot\|_{\beta}\right)$. Then with the induced metric $\rho: X_{\beta}^{*} \times X_{\beta}^{*} \rightarrow R^{+}$

$$
\begin{equation*}
\rho(f, g)=\inf \left\{t>0: \exists h, l \in X_{\beta}^{*},\|h\|,\|l\| \leq t \text { s.t. } f+h=g+l\right\} \tag{3}
\end{equation*}
$$

X_{β}^{*} forms a Quasi-translation invariant topological cone in the sense of [6].
Generally the problem of best approximation is discussed in normed spaces ${ }^{[7-8]}$ and it is very difficult to study in ordinary F-normed spaces. But β-norm is one of the best F-norms, so it is possible to get some more pretty results if we study this problem in β-normed spaces. In this paper, with the tools of conjugate cone X_{β}^{*} introduced in [1] and via the Hahn-Banach Theorems about β-subseminorms obtained in [2], we study the problem of best approximation in β-normed spaces, the characteristics of an element to be the best approximation in a closed subspace are given in Section 2. It is obtained in Section 3 that all convex sets or subspaces of a β-normed space are semi-Chebyshev if and only if the space is itself strictly convex. The fact that every finite dimensional subspace of a strictly convex β-normed space must be Chebyshev is proved at last.

2. The characteristics of best approximation elements in closed subspaces

Let $\left(X,\|\cdot\|_{\beta}\right)$ be a β-normed space, E be a subset of X and $x \in X$. Then

$$
\begin{equation*}
d(E, x)=\inf \left\{\|y-x\|_{\beta}: y \in E\right\} \tag{4}
\end{equation*}
$$

is called the distance from x to E. If there is a $y_{0} \in E$ such that $d(E, x)=\left\|y_{0}-x\right\|_{\beta}$, then y_{0} is called an element of best approximation to x in E, and the set of all such elements is denoted by $P_{E}(x)$. If $P_{E}(x) \neq \phi$ for every $x \in X$, then E is called a proximal set; if $P_{E}(x)$ is at most a singleton for every $x \in X$, then E is called a semi-Chebyshev set; if $P_{E}(x)$ contains exactly one element for every $x \in X$, then E is called a Chebyshev set. The Chebyshev set is naturally the
best set. If $x \in A \subset X$ satisfies that $\forall y \in X, y \neq x$, there is $z \in(x, y)$ such that $[x, z] \subset A$, then x is called an algebraic interior point of A. Suppose $\theta \in A$. A is said to be an absorbing set if $\forall x \in X, x \neq \theta$, there is $t>0$ such that $[0, t] x \subset A ; A$ is said to be a star shaped set if $\forall x \in A$, $[\theta, x] \subset A$. To deal with the problem of the best approximation we need following two lemmas.

Lemma 2.1 ${ }^{[6,9]}$ Suppose $0<\beta<1$ and $\phi \neq A \subset X$.
(i) If A is β-convex and θ is an algebraic interior point of A, then A is a star shaped absorbing set.
(ii) If $\left(X,\|\cdot\|_{\beta}\right)$ is a β-normed space and $f \in X_{\beta}^{\prime}$, then $f \in X_{\beta}^{*}$ if and only if $\|f\|<\infty$, and then we have $f(x) \leq\|f\|\|x\|_{\beta}, x \in X$.

Lemma 2.2 (Dominated extension theorem ${ }^{[2]}$) Suppose Y is a non-trivial subspace of $X, f \in Y_{\beta}^{\prime}$ and $p \in X_{\beta}^{\prime}$ such that $f(x) \leq p(x), \forall x \in Y$. Then there exists $g \in X_{\beta}^{\prime}$ such that

$$
\begin{equation*}
g(x)=f(x), \quad \forall x \in Y ; \quad g(x) \leq p(x), \quad \forall x \in X \tag{5}
\end{equation*}
$$

When $f \in Y_{a \beta}^{\prime}$ and $p \in X_{a \beta}^{\prime}$ with $f(x) \leq p(x), \forall x \in Y$, then there exists $g \in X_{a \beta}^{\prime}$ satisfying (5), too.

To prove the main theorems of this paper, we need to improve the dominated extension theorem as follows:

Lemma 2.3 (Norm-preserving extension theorem) Let Y be a non-trivial subspace of β-normed $\operatorname{space}\left(X,\|\cdot\|_{\beta}\right), f \in Y_{\beta}^{*}$. Then there exists a $g \in X_{\beta}^{*}$ such that

$$
\begin{equation*}
g(x)=f(x), \forall x \in Y ; \quad\|g\|=\|f\| \tag{6}
\end{equation*}
$$

When $f \in Y_{a \beta}^{*}$ there exists $g \in X_{a \beta}^{*}$ satisfying (6), too.
Proof Suppose $f \in Y_{\beta}^{*}$. Then by (ii) of Lemma 2.1 we have $\|f\|<\infty$. Take $p(x)=\|f\|\|x\|_{\beta}, x \in$ X, then by $\|\cdot\|_{\beta} \in X_{\beta}^{*}$ we have $p \in X_{\beta}^{*}$ and $\|p\|=\|f\|$. Using (ii) of Lemma 2.1 once again, we have $f(x) \leq p(x), \forall x \in Y$, namely, p is the dominant function of f. Thus by Lemma 2.2 there exists a dominated extension $g \in X_{\beta}^{\prime}$ such that

$$
g(x)=f(x), \quad \forall x \in Y ; \quad g(x) \leq p(x), \quad \forall x \in X
$$

From $g(x) \leq p(x)$ and $p \in X_{\beta}^{*}$ we know g is continuous at θ. For every $x, y \in X$, if $\|x-y\|_{\beta} \rightarrow 0$, then by the subadditivity of g we have

$$
|g(x)-g(y)| \leq \max \{g(x-y), g(y-x)\} \rightarrow 0
$$

so g is continuous on X or $g \in X_{\beta}^{*}$. By $g(x) \leq p(x)$, we have $\|g\| \leq\|p\|=\|f\|$. On the other hand, from

$$
\|g\|=\sup _{x \in X,\|x\|_{\beta} \leq 1} g(x) \geq \sup _{x \in Y,\|x\|_{\beta} \leq 1} g(x)=\sup _{x \in Y,\|x\|_{\beta} \leq 1} f(x)=\|f\|
$$

it follows $\|g\| \geq\|f\|$, thus $\|g\|=\|f\|$. If $f \in Y_{a \beta}^{*}$, then from $p \in Y_{a \beta}^{*}$ and the corresponding result of Lemma 2.2 we know that there exists norm-preserving extension $g \in X_{a \beta}^{*}$ satisfying (6). This completes the proof.

The characteristics of best approximation elements in a closed subspace of a β-normed space are given by the following two theorems.

Theorem 2.1 Let $\left(X,\|\cdot\|_{\beta}\right)$ be a β-normed space with $0<\beta<1$. Suppose E is a closed subspace of X and $x_{0} \notin E$. Then y_{0} is a best approximation to x_{0} in E if and only if there is $f \in X_{a \beta}^{*}$ such that
(i) $\|f\|=1$;
(ii) $f\left(x_{0}\right)=\left\|y_{0}-x_{0}\right\|_{\beta}$;
(iii) $f\left(y+x_{0}\right)=f\left(x_{0}\right), \forall y \in E$.

Proof Let $f \in X_{a \beta}^{*}$ satisfy the conditions (i)-(iii). Then for every $y \in E$ we have

$$
\left\|y_{0}-x_{0}\right\|_{\beta}=f\left(x_{0}\right)=f\left(y-x_{0}\right) \leq\|f\|\left\|y-x_{0}\right\|_{\beta}=\left\|y-x_{0}\right\|_{\beta}
$$

thus y_{0} is a best approximation to x_{0}. On the other hand, if $y_{0} \in P_{E}\left(x_{0}\right)$, then by the closeness of E and $x_{0} \notin E$ we have

$$
d=\inf \left\{\left\|y-x_{0}\right\|_{\beta}: y \in E\right\}=\left\|y_{0}-x_{0}\right\|_{\beta}>0
$$

Denote by

$$
Y=\operatorname{span}\left\{x_{0}, E\right\}=\left\{t x_{0}+y: t \in R, y \in E\right\}
$$

the subspace generated by x_{0} and E, and define

$$
\begin{equation*}
f_{1}\left(t x_{0}+y\right)=|t|^{\beta} d, \quad t x_{0}+y \in Y \tag{7}
\end{equation*}
$$

We can verify $f_{1} \in Y_{a \beta}^{*}$ which satisfies the conditions (i)-(iii). It is clear by $0<\beta \leq 1$ that f_{1} has absolute β-homogeneity and subadditivity. Thus $f_{1} \in Y_{a \beta}^{\prime}$. In direct-sum space Y, $t_{n} x_{0}+y_{n} \rightarrow t x_{0}+y$ if and only if $t_{n} \rightarrow t$ and $y_{n} \rightarrow y$, then f_{1} is continuous or $f_{1} \in Y_{a \beta}^{*}$. By its structure, f_{1} satisfies conditions (ii) and (iii). For every $t \neq 0$ and $y \in E$, since

$$
\begin{aligned}
& f_{1}\left(t x_{0}+y\right)=|t|^{\beta} d=|t|^{\beta}\left\|y_{0}-x_{0}\right\|_{\beta} \\
& \quad=|t|^{\beta} \inf _{x \in E}\left\|x-x_{0}\right\|_{\beta} \leq|t|^{\beta}\left\|\frac{-y}{t}-x_{0}\right\|_{\beta}=\left\|t x_{0}+y\right\|_{\beta},
\end{aligned}
$$

$\left\|f_{1}\right\| \leq 1$. Otherwise for every $\varepsilon>0$, by (4) there is $y_{1} \in E$ such that $0<\left\|y_{1}-x_{0}\right\|_{\beta}<d+\varepsilon$. Then by the (2) and (7) we have

$$
\left\|f_{1}\right\| \geq f_{1}\left(\frac{y_{1}-x_{0}}{\left\|y_{1}-x_{0}\right\|_{\beta}^{\frac{1}{\beta}}}\right)=\frac{d}{\left\|y_{1}-x_{0}\right\|_{\beta}} \geq \frac{d}{d+\varepsilon}
$$

Let $\varepsilon \rightarrow 0$. We have $\left\|f_{1}\right\|=1$, namely, condition (i) also holds. At last let $f \in X_{a \beta}^{*}$ be the norm-preserving extension of f_{1} by Lemma 2.3. It is natural that f also satisfies conditions (i)-(iii), which completes the proof.

Lemma 2.4 Let E be a subspace of linear space $X, x_{0} \notin E$ and $f \in X_{a \beta}^{\prime}$. Then

$$
\begin{equation*}
f\left(y+x_{0}\right)=f\left(x_{0}\right), \quad \forall y \in E \Leftrightarrow f(y)=0, \forall y \in E . \tag{8}
\end{equation*}
$$

Proof If $f\left(y+x_{0}\right)=f\left(x_{0}\right), \forall y \in E$, then by the absolute β-homogeneity and the subadditivity of f we have

$$
f(y)-f\left(x_{0}\right)=f(y)-f\left(-x_{0}\right) \leq f\left(y+x_{0}\right)=f\left(x_{0}\right)
$$

for every $y \in E$, i.e., $0 \leq f(y) \leq 2 f\left(x_{0}\right)$. If there is some $\theta \neq y_{0} \in E$ with $f\left(y_{0}\right)>0$, then by absolute β-homogeneity of f and above inequality we have

$$
n^{\beta} f\left(y_{0}\right)=f\left(n y_{0}\right) \leq 2 f\left(x_{0}\right)
$$

for every natural number $n \in N$. This is contrary to $f\left(y_{0}\right)>0$, so $f(y)=0, \forall y \in E$.
If $f(y)=0, \forall y \in E$, then for every $y \in E$, by subadditivity of f we have

$$
f\left(y+x_{0}\right) \leq f(y)+f\left(x_{0}\right)=f\left(x_{0}\right)
$$

Otherwise for every $y \in E$, by $f(-y)=0$ and the subadditivity of f we have

$$
f\left(x_{0}\right)=f\left(x_{0}\right)-f(-y) \leq f\left(x_{0}+y\right)
$$

thus $f\left(x_{0}\right)=f\left(x_{0}+y\right), \forall y \in E$.
By Lemma 2.4 we have immediately the improved form of Theorem 2.1
Theorem 2.2 Let $\left(X,\|\cdot\|_{\beta}\right)$ be a β-normed space with $0<\beta<1$. Suppose E is a closed subspace of X and $x_{0} \notin E$. Then y_{0} is a best approximation to x_{0} in E if and only if there is $f \in X_{a \beta}^{*}$ such that
(i) $\|f\|=1$;
(ii) $f\left(x_{0}\right)=\left\|y_{0}-x_{0}\right\|_{\beta}$;
(iii) $f(y)=0, \forall y \in E$.

3. The semi-Chebyshev problems

To deal with the semi-Chebyshev problems, we need to introduce the concept of strict convexity for β-normed spaces.

Definition 3.1 $A \beta$-normed space $\left(X,\|\cdot\|_{\beta}\right)$ is called strictly convex if its unit ball $B=\{x \in$ $\left.X:\|x\|_{\beta} \leq 1\right\}$ is strictly convex in the common sense, namely, for every $x \neq y,\|x\|_{\beta}=\|y\|_{\beta}=1$, there holds $\left\|\frac{1}{2}(x+y)\right\|_{\beta}<1$ or

$$
\begin{equation*}
\|x+y\|_{\beta}<2^{\beta} . \tag{9}
\end{equation*}
$$

Differing greatly from normed space, the unit ball of a β-normed space may not be convex if $0<\beta<1$. For example, $\left(R^{2},\|\cdot\|_{\beta}\right)$ forms a β-normed space with

$$
\|(x, y)\|_{\beta}=|x|^{\beta}+|y|^{\beta}, 0<\beta<1
$$

Its unit ball B is just the set surrounded by $|x|^{\beta}+|y|^{\beta}=1$, with the four β-curve segments bending toward origin with end points $(1,0),(0,1),(-1,0)$ and $(0,-1)$. Thus B is not convex and $\left(R^{2},\|\cdot\|_{\beta}\right)$ is not strictly convex. But with another β-norm

$$
\||(x, y)|\|_{\beta}=\left(|x|^{2}+|y|^{2}\right)^{\frac{\beta}{2}}
$$

$\left(R^{2},\||\cdot|\|_{\beta}\right)$ forms a strictly convex β-Banach space, and its unit ball is just the unit disk in the ordinary sense. The following two theorems imply that for a β-normed space with $0<\beta<1$, the strict convexity is of the characteristic that all convex sets or subspaces are semi-Chebyshev.

Theorem 3.1 Suppose $\left(X,\|\cdot\|_{\beta}\right)$ is a β-normed space, where $0<\beta<1$. Then every nonempty convex set in X is semi-Chebyshev if and only if $\left(X,\|\cdot\|_{\beta}\right)$ is strictly convex.

Proof Suppose $\left(X,\|\cdot\|_{\beta}\right)$ is a strictly convex β-normed space. If there is a nonempty convex set $M \subset X$ that is not semi-Chebyshev, then there exists some $x_{0} \notin M, y_{1}, y_{2} \in M$, and $y_{1} \neq y_{2}$ such that $y_{1}, y_{2} \in P_{M}\left(x_{0}\right)$. By the zero hypothesis $\left.1^{\prime}\right)$ we have

$$
d=d\left(M, x_{0}\right)=\left\|y_{1}-x_{0}\right\|_{\beta}=\left\|y_{2}-x_{0}\right\|_{\beta}>0
$$

thus

$$
\left\|\frac{y_{1}-x_{0}}{d^{\frac{1}{\beta}}}\right\|_{\beta}=\left\|\frac{y_{2}-x_{0}}{d^{\frac{1}{\beta}}}\right\|_{\beta}=1 .
$$

By the strict convexity of $\left(X,\|\cdot\|_{\beta}\right)$ we have

$$
\left\|\frac{\frac{y_{1}+y_{2}}{2}-x_{0}}{d^{\frac{1}{\beta}}}\right\|_{\beta}=\left\|\frac{1}{2}\left(\frac{y_{1}-x_{0}}{d^{\frac{1}{\beta}}}+\frac{y_{2}-x_{0}}{d^{\frac{1}{\beta}}}\right)\right\|_{\beta}<1,
$$

so $\left\|\frac{y_{1}+y_{2}}{2}-x_{0}\right\|_{\beta}<d$. By the convexity of M we get $\frac{y_{1}+y_{2}}{2} \in M$, which contradicts the presupposition $d=d\left(M, x_{0}\right)$, and the sufficiency is proved.

Now let us show the necessity. Use S to denote the unit sphere of X, i.e., $S=\left\{x \in X:\|x\|_{\beta}=\right.$ $1\}$. If X is not strictly convex, then there are $x_{1}, x_{2} \in S, x_{1} \neq x_{2}$ such that $\left\|\frac{1}{2}\left(x_{1}+x_{2}\right)\right\|_{\beta} \geq 1$. Let $x_{0}=\frac{1}{2}\left(x_{1}+x_{2}\right)$. If $\left\|x_{0}\right\|_{\beta}>1$ or $x_{0} \notin B$, denote by

$$
\left[x_{1}, x_{2}\right]=\left\{x_{0}+t\left(x_{2}-x_{1}\right): t \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right\}
$$

the line segment with the end points x_{1} and x_{2}. Then by $x_{0} \notin B, x_{1}, x_{2} \in B$ and the closeness of B there are

$$
\begin{aligned}
t_{1} & =\max \left\{t<0: x_{0}+t\left(x_{2}-x_{1}\right) \in B\right\} \in\left[-\frac{1}{2}, 0\right) \\
t_{2} & =\min \left\{t>0: x_{0}+t\left(x_{2}-x_{1}\right) \in B\right\} \in\left(0, \frac{1}{2}\right]
\end{aligned}
$$

such that

$$
\begin{aligned}
& x_{1}^{\prime}=x_{0}+t_{1}\left(x_{2}-x_{1}\right) \in\left(x_{1}, x_{0}\right), \\
& x_{2}^{\prime}=x_{0}+t_{2}\left(x_{2}-x_{1}\right) \in\left(x_{0}, x_{2}\right),
\end{aligned}
$$

and

$$
\left\|x_{1}^{\prime}\right\|_{\beta}=\left\|x_{2}^{\prime}\right\|_{\beta}=1 ; \quad\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \bigcap B=\phi
$$

By $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \bigcap B=\phi$ and the star shaped property of B (see Lemma 2.1(i)) we know that $\|x\|_{\beta}>1$ for every $x \in\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, thus we have $x_{1}^{\prime}, x_{2}^{\prime} \in P_{M}(\theta)$ for convex set $M=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$. This is contrary to the hypotheses that every convex set is semi-Chebyshev. Improving above procedure a little, we can also prove that there is not any $x \in\left(x_{1}, x_{2}\right)$ such that $\|x\|_{\beta}>1$.

Now it remains to consider $\left\|x_{1}\right\|_{\beta}=\left\|x_{2}\right\|_{\beta}=\left\|x_{0}\right\|_{\beta}=1$ and $\|x\|_{\beta} \leq 1, \forall x \in\left(x_{1}, x_{2}\right)$. If $\|x\|_{\beta}=1$ for every $x \in\left(x_{1}, x_{2}\right)$, then we also have $x_{1}, x_{2} \in P_{M}(\theta)$ for closed convex set $M=\left[x_{1}, x_{2}\right]$. This is contrary to the hypothesis. Otherwise, assume without loss of generality that there is $y_{2} \in\left(x_{0}, x_{2}\right)$ with $\left\|y_{2}\right\|_{\beta}<1$ or $y_{2} \in \operatorname{int} B$. Thus there is $b>1$ such that $z_{2}=b y_{2} \in S$. Assume $y_{2}=a x_{1}+(1-a) x_{2}$. Then by $y_{2} \in\left(x_{0}, x_{2}\right)$ we have $0<a<\frac{1}{2}$. Denote by $l^{+}\left(\theta, x_{0}\right)=\left\{t x_{0}: t \geq 0\right\}$ the ray starting from θ passing through x_{0}. Then we can prove that the open line segment $\left(x_{1}, z_{2}\right)$ intersects $l^{+}\left(\theta, x_{0}\right)$ at a point outside x_{0}, i.e., there are some positive numbers $\lambda>1$ and $0<\mu<1$ such that $\mu x_{1}+(1-\mu) z_{2}=\lambda x_{0}$, i.e.,

$$
\mu x_{1}+(1-\mu) b\left[a x_{1}+(1-a) x_{2}\right]=\frac{\lambda}{2}\left(x_{1}+x_{2}\right)
$$

or

$$
\begin{equation*}
[\mu+(1-\mu) b a] x_{1}+(1-\mu) b(1-a) x_{2}=\frac{\lambda}{2}\left(x_{1}+x_{2}\right) \tag{10}
\end{equation*}
$$

By the linear independence of x_{1} and $x_{2}(10)$ is equivalent to

$$
\left\{\begin{array}{l}
\mu+(1-\mu) b a=(1-\mu) b(1-a) \tag{11}\\
\frac{\lambda}{2}=\mu+(1-\mu) b a>\frac{1}{2}
\end{array}\right.
$$

From the first equality we have $\mu=\frac{b(1-2 a)}{1+b(1-2 a)} \in(0,1)$. Let $\lambda=2[\mu+(1-\mu) b a]$. Then by $b>1$ we have

$$
\frac{\lambda}{2}=\mu+(1-\mu) b a=\frac{b(1-a)}{1+b(1-2 a)}=\frac{1}{2} \cdot \frac{b+b(1-2 a)}{1+b(1-2 a)}>\frac{1}{2}
$$

or $\lambda>1$, thus μ, λ are the solution of equalities (11). Thus we again find a pair of $x_{1}, z_{2} \in S$, $x_{1} \neq z_{2}$, and $z_{0}=\lambda x_{0} \in\left(x_{1}, z_{2}\right)$ such that $\left\|z_{0}\right\|_{\beta}=\lambda^{\beta}\left\|x_{0}\right\|_{\beta}=\lambda^{\beta}>1$, and obtain a negative result against above section. The contradiction implies that the necessity also holds and this completes the proof.

Now let us discuss the relation between the semi-Chebyshev property of subspaces and the strict convexity of the space.

Theorem 3.2 Let $\left(X,\|\cdot\|_{\beta}\right)$ be a β-normed space, where $0<\beta<1$. Then every nontrivial subspace of X is semi-Chebyshev if and only if X is strictly convex.

Proof The sufficiency is from Theorem 3.1, so only necessity needs to be shown. When $x \neq y$, use $l(x, y)$ to denote the line determined by x and y, and use $l^{+}(x, y)$ to denote the ray starting from x passing through y. If X is not strictly convex, then there exist $x_{1}, x_{2} \in S, x_{1} \neq x_{2}$ such that $\left\|\frac{1}{2}\left(x_{1}+x_{2}\right)\right\|_{\beta} \geq 1$, namely, $x_{0}=\frac{1}{2}\left(x_{1}+x_{2}\right)$ satisfies $\left\|x_{0}\right\|_{\beta} \geq 1$. If $\left\|x_{0}\right\|_{\beta}>1$ or $x_{0} \notin B$, then assume without loss of generality that X is the two dimensional real space generated by x_{1} and x_{2}. By the following proving process we can see that this assumption is permissible. Let \mathcal{L} be the family of lines $l_{a x_{0}}(x, y)=l(x, y)$ in X that intersects $l^{+}\left(\theta, x_{0}\right)$ at $a x_{0}$, intersects S at x and y on x_{1} side and x_{2} side of $l^{+}\left(\theta, x_{0}\right)$ respectively. It is clear that $x \neq y$ and $l_{x_{0}}\left(x_{1}, x_{2}\right)=l\left(x_{1}, x_{2}\right) \in \mathcal{L}$. For each $a>0$, let

$$
\mathcal{L}_{a}=\left\{l \in \mathcal{L}: l \bigcap l^{+}\left(\theta, x_{0}\right)=a x_{0}\right\}
$$

be the family of concurrent lines in \mathcal{L}. Then $l\left(x_{1}, x_{2}\right) \in \mathcal{L}_{1}$. Let

$$
A=\left\{a>0: \mathcal{L}_{a} \neq \phi\right\}
$$

Then by the boundedness and the compctness of B there exists the maximum $a^{\prime}=\max A \in$ $[1,+\infty)$. By the definition there are $x^{\prime}, y^{\prime} \in S, x^{\prime} \neq y^{\prime}$, lying on x_{1} side and x_{2} side of $l^{+}\left(\theta, x_{0}\right)$ respectively, such that $l_{a^{\prime} x_{0}}\left(x^{\prime}, y^{\prime}\right)=l\left(x^{\prime}, y^{\prime}\right) \in \mathcal{L}$. For subspace $M=l\left(x^{\prime}, y^{\prime}\right)-x^{\prime}$, we assert that
(i) $l\left(x^{\prime}, y^{\prime}\right) \bigcap \operatorname{int} B=\phi$;
(ii) $d\left(M,-x^{\prime}\right)=1$;
(iii) $\theta, y^{\prime}-x^{\prime} \in P_{M}\left(-x^{\prime}\right)$.

By assertion (ii) and (iii) we know that M is not a semi-Chebyshev subspace, which is contrary to the hypotheses. Now it remains only to verify above three assertions. If there is a $w \in$ $l\left(x^{\prime}, y^{\prime}\right) \bigcap \operatorname{int} B$, then there exists $\delta>1$ such that $\delta w \in S$. Assume without loss of generality that w and δw lie on the x_{2} side of $l^{+}\left(\theta, x_{0}\right)$. Thus via the similar methods used in the proof of Theorem 3.1 we can find some $a^{\prime \prime}>a^{\prime}$ such that $l\left(x^{\prime}, \delta w\right) \bigcap l^{+}\left(\theta, x_{0}\right)=a^{\prime \prime} x_{0}$. This is contrary to the assumption $a^{\prime}=\max A$. Therefore (i) holds. From $x^{\prime}, y^{\prime} \in B$ and (i) we have

$$
d\left(M,-x^{\prime}\right)=\inf \left\{\left\|y+x^{\prime}\right\|_{\beta}: y \in M\right\}=\inf \left\{\|y\|_{\beta}: y \in l\left(x^{\prime}, y^{\prime}\right)\right\}=1
$$

namely, (ii) holds. At last by

$$
d\left(\theta,-x^{\prime}\right)=\left\|x^{\prime}\right\|_{\beta}=1, \quad d\left(y^{\prime}-x^{\prime},-x^{\prime}\right)=\left\|y^{\prime}\right\|_{\beta}=1
$$

we also have assertion (iii). Improving above procedure a little, we can also prove that there is not any $x \in\left(x_{1}, x_{2}\right)$ such that $\|x\|_{\beta}>1$.

Thus it remains to consider the situation $\left\|x_{1}\right\|_{\beta}=\left\|x_{2}\right\|_{\beta}=\left\|x_{0}\right\|_{\beta}=1$ and $\|x\|_{\beta} \leq 1$, $\forall x \in\left(x_{1}, x_{2}\right)$. Now if $l\left(x_{1}, x_{2}\right) \bigcap \operatorname{int} B=\phi$, then for subspace $M=l\left(x_{1}, x_{2}\right)-x_{1}$ we have the contrary result $\theta, x_{2}-x_{1} \in P_{M}\left(-x_{1}\right)$. If $l\left(x_{1}, x_{2}\right) \bigcap \operatorname{int} B \neq \phi$, assume without loss of generality that there is a point $y_{2} \in \operatorname{int} B \bigcap l^{+}\left(x_{0}, x_{2}\right)$. Then there are $b>1$ with $z_{2}=b y_{2} \in S$ and an intersection point of ray $l^{+}\left(\theta, x_{0}\right)$ and segment $\left(x_{1}, z_{2}\right)$, say, $z_{0}=\lambda x_{0} \in\left(x_{1}, z_{2}\right)(\lambda>1)$ such that $\left\|z_{0}\right\|_{\beta}>1$. We have obtained the negative result against above section. the contradiction implies that the necessity also holds and this completes2 the proof.

Theorem 3.3 Let $\left(X,\|\cdot\|_{\beta}\right)$ be a β-normed space, where $0<\beta<1$. Then X is strictly convex if and only if every finite dimensional subspace of X has Chebyshev property.

Proof The sufficiency is from the proving procedure of Theorem 3.2. Let E be a finite dimensional subspace of a strictly convex β-normed X. Then by Theorems 3.1 and 3.2 we know that E is a semi-Chebyshev set. For every $x_{0} \notin E$, by the closeness of E we have $d=d\left(E, x_{0}\right)>0$. Let

$$
D=\left\{x \in E:\left\|x-x_{0}\right\|_{\beta} \leq d+1\right\} .
$$

Then by the fact that E has finite dimension we know that D is compact and $d=d\left(E, x_{0}\right)=$ $d\left(D, x_{0}\right)>0, P_{E}\left(x_{0}\right)=P_{D}\left(x_{0}\right)$. By the compactness of D and the continuity of function $d(x)=\left\|x-x_{0}\right\|_{\beta}$, there is $y_{0} \in D \subset E$ such that $d\left(E, x_{0}\right)=d\left(D, x_{0}\right)=\left\|y_{0}-x_{0}\right\|_{\beta}$, thus
$P_{E}\left(x_{0}\right) \neq \phi$, namely, E is a Chebyshev subspace of X.

References

[1] WANG Jianyong, MA Yumei. The second separation theorem in locally β-convex spaces and the boundedness theorem in its conjugate cones [J]. J. Math. Res. Exposition, 2002, 22(1): 25-34.
[2] WANG Jianyong. Conjugate cones of locally β-convex spaces and the Hahn-Banach theorem [J]. Math. Practice Theory, 2002, 32(1): 143-149. (in Chinese)
[3] JARCHOW H. Locally Convex Spaces [M]. Teubner, Stuttgart, 1981.
[4] ROLEWICZ S. Metric Linear Spaces [M]. PWN-Polish Scientific Publishers, Warszawa, 1985.
[5] KALTON N J, PECK N T, ROBERTS J W. An F-space Sampler [M]. London: Cambridge University Press, 1984.
[6] WANG Jianyong. Quasi-translation invariant topological cones and the conjugate cones of locally β-convex spaces [J]. Math. Practice Theory, 2002, 33(1): 89-97. (in Chinese)
[7] XU Shiying, LI Chong, YANG Wenshan. Nonlinear Approximation Theory in Banach Spaces [M]. Beijing: Science Press, 1998. (in Chinese)
[8] LUO Xianfa, HE Jinsu, LI Chong. On best simultaneous approximation from suns to an infinite sequence in Banach spaces [J]. Acta Math. Sinica (Chin. Ser.), 2002, 45(2): 287-294. (in Chinese)
[9] WANG Jianyong. The decomposition theorem of interior and boundary and the first separation theorem of β-convex sets [J]. J. Ningxia Univ. Nat. Sci. Ed., 1991, 12(4): 12-19.

