Journal of Mathematical Research & FEzposition
May, 2008, Vol. 28, No.2, pp. 331-339
DOI:10.3770/j.issn:1000-341X.2008.02.012
Http://jmre.dlut.edu.cn

The Problems of Best Approximation in S-Normed
Spaces (0 < 5 < 1)

WANG Jian Yong
(Department of Mathematics, Changshu Institute of Technology, Jiangsu 215500, China)
(E-mail: jywang@cslg.edu.cn)

Abstract This paper deals with the problems of best approximation in [-normed spaces.
With the tool of conjugate cone introduced in [1] and via the Hahn-Banach extension theorem
of B-subseminorm in [2], the characteristics that an element in a closed subspace is the best
approximation are given in Section 2. It is obtained in Section 3 that all convex sets or subspaces
of a B-normed space are semi-Chebyshev if and only if the space is itself strictly convex. The fact
that every finite dimensional subspace of a strictly convex g-normed space must be Chebyshev
is proved at last.
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1. Introduction

In this paper, 0 < 3 < 1 is a constant, R™ is the set of positive numbers, X is a linear space,

and 6 is used to denote the zero element or zero functional. If A C X satisfies
[w,yls ={ e+ py: A\ p>0,N +p° =1} C A, Vr,yeA, (1)

then A is said to be f-convex, where [z, y]g is the S-curve segment with the end points x and y

while [z,y] is used to denote the relative line segment.

Definition 1.11~4 Suppose X is a topological linear space and 0 < 3 < 1. X is called locally
[B-convex if there exists a #-neighborhood basis consisting of 3-convex sets.

A real-valued functional f on X is called a §-subseminorm if

1) f(z) >0,z €X;

2) f(tx) =tPf(x), t € RY, 2 € X;

3) flat+y) < fl@)+ fly), v,yeX.

The algebraic 8-conjugate cone X [’, consisting of all S-subseminorms on X was first introduced
in [1]. If X is a topological linear space, then X ;5 1s used to denote the topological [b-conjugate

cone consisting of all continuous [-subseminorms on X. If X is locally (-convex, then X7 is
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large enough to separate the points of X by [1], i.e., for each pair z,y € X,z # y, there is
0 # f € X* such that f(z) # f(y). Then X} is called the conjugate cone of X shortly. If the
positive f-homogeneity 2) is replaced by the absolute G-homogeneity

2. f(tx) = [t|Pf(z), t € R,z € X,
then f is called a B-seminorm. If a G-seminorm || - || also satisfies the zero hypothesis

). |lzlg=0<z =0,
then the F-norm ||-||g is called a S-norm and (X, ||-]|3) a 8-normed space. A complete G-normed
space is called a $-Banach spacel®’. Now with the #-neighborhood basis consisting of f-convex
sets

Us={zeX: |z|lg <e}(e>0),

(X, - ||g) forms a locally B-convex space. Sequence space [°, function space L”(u) and Hardy
space HP are three typical S-Banach spaces. Suppose (X, | - [ g) is a S-normed space. Then

under the norm
[ £l = sup{f(z) : |zlls < 1}, f € X (2)

(X5, |- |) forms a normed topological cone in the sense of [6], called the normed conjugate cone
of (X, |- [ls). Then with the induced metric p: X} x Xj — R*

p(fg) = imf{t > 0: Inl e X5, (B <t st f+h=g+1} 3)

X} forms a Quasi-translation invariant topological cone in the sense of [6].

Generally the problem of best approximation is discussed in normed spaces!” 8!

and it is very
difficult to study in ordinary F-normed spaces. But §-norm is one of the best F-norms, so it is
possible to get some more pretty results if we study this problem in G-normed spaces. In this
paper, with the tools of conjugate cone X ; introduced in [1] and via the Hahn-Banach Theorems
about B-subseminorms obtained in [2], we study the problem of best approximation in S-normed
spaces, the characteristics of an element to be the best approximation in a closed subspace are
given in Section 2. It is obtained in Section 3 that all convex sets or subspaces of a f-normed
space are semi-Chebyshev if and only if the space is itself strictly convex. The fact that every
finite dimensional subspace of a strictly convex §-normed space must be Chebyshev is proved at

last.

2. The characteristics of best approximation elements in closed subspaces

Let (X, | - ||3) be a f-normed space, E be a subset of X and € X. Then
d(E,z) = inf{|ly —z]|s - y € E} (4)

is called the distance from x to E. If there is a yo € E such that d(E, z) = ||yo — |3, then yo
is called an element of best approximation to = in F, and the set of all such elements is denoted
by Pg(z). If Pg(x) # ¢ for every x € X, then F is called a proximal set; if Pg(z) is at most a
singleton for every x € X, then E is called a semi-Chebyshev set; if Pg(z) contains exactly one

element for every x € X, then F is called a Chebyshev set. The Chebyshev set is naturally the
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best set. If x € A C X satisfies that Vy € X,y # «, there is z € (x,y) such that [z, z] C A, then
x is called an algebraic interior point of A. Suppose 8 € A. A is said to be an absorbing set if
Vo € X,z # 0, there is t > 0 such that [0,t]z C A; A is said to be a star shaped set if Vo € A,

[0, 2] C A. To deal with the problem of the best approximation we need following two lemmas.

Lemma 2.1 Suppose 0 < f <1 and ¢ # A C X.

(i) If A is B-convex and 0 is an algebraic interior point of A, then A is a star shaped absorbing
set.

(i) If (X,[ - ||) is a B-normed space and f € X}, then f € X} if and only if || f|| < oo, and
then we have f(x) < | flll|z| 5,z € X.

Lemma 2.2 (Dominated extension theorem[®) Suppose Y is a non-trivial subspace of X, f € Y
and p € X} such that f(z) < p(z), Vo € Y. Then there exists g € Xj such that

g(z) = f(z), Yz eY; g(z) <pz), Ve X. (5)

When f € Y, 5 and p € X; 5 with f(z) < p(z), Vo € Y, then there exists g € X, 5 satistying (5),
too.
To prove the main theorems of this paper, we need to improve the dominated extension

theorem as follows:

Lemma 2.3 (Norm-preserving extension theorem) Let Y be a non-trivial subspace of 3-normed
space (X, - [|g), f € Y. Then there exists a g € X} such that
g(@) = f(z),vz € Y5 gl =1l (6)

When f € Y5 there exists g € X5 satisfying (6), too.

a

Proof Suppose f € Y. Then by (ii) of Lemma 2.1 we have || f[| < co. Take p(z) = || f||[|z| g,z €
X, then by || - [|s € X5 we have p € X7 and [|p|| = || f|[- Using (ii) of Lemma 2.1 once again, we
have f(x) < p(z), Vx € Y, namely, p is the dominant function of f. Thus by Lemma 2.2 there

exists a dominated extension g € X é such that
g(z) = f(z), VeeY; g(z) <p(z), Vz e X.

From g(z) < p(z) and p € X we know g is continuous at 0. For every z,y € X, if [z —y|s — 0,
then by the subadditivity of g we have

lg(z) — g(y)| < max{g(z —y),9(y — x)} — 0,

so g is continuous on X or g € X3. By g(z) < p(x), we have |[g|| < [|pl| = [f||. On the other
hand, from
lgll = sup g(&)> sup g(x)= sup f(z)=|f]
zeX,||zllp<1 z€Y,[lz]|p<1 z€Y,[lz]|p<1

it follows ||l > [If||, thus ||g]| = [ f]|- If f € Y3, then from p € Y’; and the corresponding result
of Lemma 2.2 we know that there exists norm-preserving extension g € X 3 satisfying (6). This

completes the proof. O
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The characteristics of best approximation elements in a closed subspace of a f-normed space

are given by the following two theorems.

Theorem 2.1 Let (X, | - ||g) be a B-normed space with 0 < 8 < 1. Suppose E is a closed
subspace of X and xg ¢ E. Then yo is a best approximation to xy in E if and only if there is
[ € X5 such that

@ £ =1;
(ii) f(zo) = llyo — @ol|s;
(iii) f(y +20) = f(20), Vy € E.
Proof Let f € X;; satisfy the conditions (i)—(iii). Then for every y € E we have

lyo = zolls = f(xo) = f(y — w0) < If[llly — zolls = lly — ol s
thus yo is a best approximation to zp. On the other hand, if yo € Pr(z¢), then by the closeness
of F and xg ¢ E we have
d = inf{|ly — zollp : y € E} = [lyo — zolls > 0.

Denote by
Y =span{zo, E} = {tzo+y:t € R,y € E}

the subspace generated by zg and F, and define
fitzo +y) = [t|°d, tzo+y €Y. (7)

We can verify fi € Y3 which satisfies the conditions (i)—(iii). It is clear by 0 < 8 < 1 that
f1 has absolute g-homogeneity and subadditivity. Thus f; € Ya’ﬁ. In direct-sum space Y,
tnTo + yn — txo +y if and only if ¢, — ¢ and y, — y, then f; is continuous or fi € V5. By its

structure, f1 satisfies conditions (ii) and (iii). For every ¢ # 0 and y € E, since
filtzo +y) = [t17d = |t |lyo — woll5
— |18 _ < |8 __y _ _
[t nf [lz —zolls < [t°l—= — zolls = l[tzo + ylls,

[l /1]l < 1. Otherwise for every ¢ > 0, by (4) there is y; € E such that 0 < |jy1 — zo||lg < d + €.
Then by the (2) and (7) we have

Y — To d d

> = > .
1]l = fa T —wolls > A7

1
lyr — ol 5

Let ¢ — 0. We have [|f1]| = 1, namely, condition (i) also holds. At last let f € X; be the
norm-preserving extension of f; by Lemma 2.3. It is natural that f also satisfies conditions

(i)—(iii), which completes the proof. O
Lemma 2.4 Let E be a subspace of linear space X, xg ¢ E and f € X;B. Then

fly+x0) = f(xo), Vye E< f(y)=0,Vy € E. (8)
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Proof If f(y+ xo) = f(x0), Yy € E, then by the absolute S-homogeneity and the subadditivity

of f we have
fy) = fzo) = fy) = f(=x0) < f(y + 0) = f(x0)
for every y € E, ie., 0 < f(y) < 2f(xp). If there is some 6 # yo € E with f(yg) > 0, then by

absolute S-homogeneity of f and above inequality we have

n” f(yo) = f(nyo) < 2f (o)

for every natural number n € N. This is contrary to f(yo) > 0, so f(y) =0, Vy € E.
If f(y) =0, Yy € E, then for every y € F, by subadditivity of f we have

fy+w0) < f(y) + fxo) = f(0).
Otherwise for every y € E, by f(—y) = 0 and the subadditivity of f we have

f(@o) = flwo) = f(=y) < flzo+y),
thus f(zo) = f(zo +y), Yy € E. 0

By Lemma 2.4 we have immediately the improved form of Theorem 2.1

Theorem 2.2 Let (X, | - ||g) be a B-normed space with 0 < 8 < 1. Suppose E is a closed
subspace of X and xo ¢ E. Then yg is a best approximation to xo in E if and only if there is
[ € X, 5 such that

(i) [IfII=1;

(i) f(xo) = llyo — zolls;

(iii) f(y) =0,Vy € E.

3. The semi-Chebyshev problems

To deal with the semi-Chebyshev problems, we need to introduce the concept of strict con-

vexity for G-normed spaces.

Definition 3.1 A (-normed space (X, || - ||g) is called strictly convex if its unit ball B = {x €
X @ ||lz||g < 1} is strictly convex in the common sense, namely, for every x # y, ||z|ls = ||yl = 1,
there holds ||3(z + y)|lg < 1 or

o+ ylls < 2°. o)

Differing greatly from normed space, the unit ball of a S-normed space may not be convex if

0 < 8 < 1. For example, (R?, || - ||3) forms a 3-normed space with
Iz, 9)lls = l2” +[yI” ,0< B <1.

Its unit ball B is just the set surrounded by |z|® + |y|® = 1, with the four B-curve segments
bending toward origin with end points (1,0), (0,1), (—1,0) and (0,—1). Thus B is not convex
and (R?, || - ||g) is not strictly convex. But with another S-norm

s
pi

Iz, )llls = (=] + [y1*)
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(R%,||] - |l g) forms a strictly convex (3-Banach space, and its unit ball is just the unit disk in the
ordinary sense. The following two theorems imply that for a S-normed space with 0 < § < 1,

the strict convexity is of the characteristic that all convex sets or subspaces are semi-Chebyshev.

Theorem 3.1 Suppose (X, || -||3) is a B-normed space, where 0 < § < 1. Then every nonempty

convex set in X is semi-Chebyshev if and only if (X, | - ||g) is strictly convex.

Proof Suppose (X, || -||g) is a strictly convex S-normed space. If there is a nonempty convex
set M C X that is not semi-Chebyshev, then there exists some zo € M, y1,y2 € M, and y1 # yo
such that y1,y2 € Py (z0). By the zero hypothesis 1') we have

d=d(M,zo) = |ly1 — 2ollp = [ly2 — ol > 0,
thus

Y1 — o Y2 — Xo
| s = | |

1 1
B B

s=1.

By the strict convexity of (X, | - |3) we have

Y1+y2
I—2

— 2
ds
so |32 — z4)5 < d. By the convexity of M we get %2 € M, which contradicts the

s <1,

_wLyi—z0 | y2—mo
I = 5 (A + )

presupposition d = d(M, x¢), and the sufficiency is proved.

Now let us show the necessity. Use S to denote the unit sphere of X, i.e., S ={x € X : ||z|g =
1}. If X is not strictly convex, then there are z1,x3 € S, 21 # @2 such that [|3(z1 + z2)|s > 1.
Let zg = 1 (21 + x2). If [|zg[|g > 1 or 29 & B, denote by

11
[x1,@2] = {xo +t(xe — 1) : E € [—5, 5]}

the line segment with the end points 1 and x3. Then by xg € B, x1,x2 € B and the closeness
of B there are

1
t1 = max{t <0:xo+t(ze —x1) € B} € [—5,0),

ty = min{t > 0: xg + t(vy — x1) € B} € (0, %]7
such that
x) = xo + t1(ze — 1) € (21,70),
xhy = xo + to(x2 — 1) € (%0, T2),
and

laills = lahlls = 1; (o 28) () B = 6.

By (2}, 25) [ B = ¢ and the star shaped property of B (see Lemma 2.1(i)) we know that ||z|/g > 1
for every x € (1, x5), thus we have x}, 25 € Py (0) for convex set M = [z}, z5]. This is contrary
to the hypotheses that every convex set is semi-Chebyshev. Improving above procedure a little,

we can also prove that there is not any = € (21, z2) such that ||z|g > 1.
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Now it remains to consider ||z1]jg = |z2]lg = ||zolls = 1 and ||z||g < 1, Vz € (x1,z2).
If |z||g = 1 for every & € (x1,22), then we also have z1,22 € Py () for closed convex set
M = [x1,22]. This is contrary to the hypothesis. Otherwise, assume without loss of generality
that there is yo € (zo,x2) with |jy2llg < 1 or y2 € intB. Thus there is b > 1 such that
29 = bys € S. Assume y3 = ax1 + (1 — a)ze. Then by y2 € (zo,z2) we have 0 < a < % Denote
by IT(0,29) = {tzo : t > 0} the ray starting from 6 passing through xy. Then we can prove
that the open line segment (1, z2) intersects i1 (6, zo) at a point outside zg, i.e., there are some

positive numbers A > 1 and 0 < p < 1 such that pz + (1 — p)ze = Az, ie.,

A
pay + (1 = pblazy + (1 = a)as] = 5 (21 + 22)
or

(1= pbaey + (1= wb(1 — a)a = 5 (1 + ). (10)

By the linear independence of 27 and x2 (10) is equivalent to

p+ (1= p)ba = (1 — p)b(1 — a); (11)
5 =p+(1-pba> 3.

From the first equality we have y = % € (0,1). Let A =2[p+ (1 — p)ba]. Then by b > 1
we have

A b(1 —a) I b+b(1—2a) 1

y b = T T S S 3 T —2a) 2

or A > 1, thus u, A are the solution of equalities (11). Thus we again find a pair of x1,29 € S,
71 # 29, and zg = A\xg € (21,22) such that ||2]|s = M\||zo]s = A\’ > 1, and obtain a negative
result against above section. The contradiction implies that the necessity also holds and this
completes the proof. O

Now let us discuss the relation between the semi-Chebyshev property of subspaces and the

strict convexity of the space.

Theorem 3.2 Let (X,|| - ||g) be a f-normed space, where 0 < 3 < 1. Then every nontrivial
subspace of X is semi-Chebyshev if and only if X is strictly convex.

Proof The sufficiency is from Theorem 3.1, so only necessity needs to be shown. When z # y,
use [(x,y) to denote the line determined by z and y, and use [T (z,y) to denote the ray starting
from x passing through y. If X is not strictly convex, then there exist x1,z2 € S, 1 # x2 such
that ||3(z1+22)||g > 1, namely, zo = 3(z1+2) satisfies ||zolg > 1. If [|zo||3 > 1 or 29 ¢ B, then
assume without loss of generality that X is the two dimensional real space generated by x; and
9. By the following proving process we can see that this assumption is permissible. Let £ be the
family of lines lyz, (2, y) = I(z,y) in X that intersects [T (0, x¢) at axo, intersects S at z and y on
x1 side and x5 side of [T(6, zo) respectively. It is clear that x # y and I, (z1,22) = I(z1,22) € L.
For each a > 0, let

L,={leL: lml+(6‘,xo) =azo}
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be the family of concurrent lines in £. Then I(x1,z2) € L;. Let
A={a>0:L, # ¢}

Then by the boundedness and the compctness of B there exists the maximum o’ = max A €
[1,400). By the definition there are 2/, € S, 2’ # %/, lying on z; side and x5 side of I1(0,xq)
respectively, such that Iy, (2, y") = 1(2/,y’) € L. For subspace M = I(z/,y") —a', we assert that

(i) (', y") NintB = ¢;

(i) d(M,—2") =1;

(iii) 6,y — 2’ € Py(—2a).
By assertion (ii) and (iii) we know that M is not a semi-Chebyshev subspace, which is contrary
to the hypotheses. Now it remains only to verify above three assertions. If there is a w €
I(z',y) N intB, then there exists § > 1 such that dw € S. Assume without loss of generality
that w and dw lie on the xo side of [T(6,zp). Thus via the similar methods used in the proof of
Theorem 3.1 we can find some a” > a’ such that I(z/, dw) ({1 (0, z0) = a”xo. This is contrary

to the assumption @’ = max A. Therefore (i) holds. From z’,3’ € B and (i) we have
d(M,—z') = inf{|ly + 2'[|p : y € M} = inf{{lyllp : y € 1, y)} = 1,
namely, (ii) holds. At last by
(0, —a') = ||2'llp =1, d(y’ —a',—2") = |ly'lls =1

we also have assertion (iii). Improving above procedure a little, we can also prove that there is
not any x € (x1,x2) such that ||z||g > 1.

Thus it remains to consider the situation ||z1]lg = ||z2llg = ||=zollp = 1 and ||z|g < 1,
Vr € (z1,22). Now if [(z1,x2)[)intB = ¢, then for subspace M = [(z1,x2) — 1 we have the
contrary result 6, x5 — x1 € Py(—x1). If [(x1, 22) () int B # ¢, assume without loss of generality
that there is a point yo € intB (I (zg,z2). Then there are b > 1 with 25 = bys € S and an
intersection point of ray {7 (0, z¢) and segment (z1,22), say, zo = A\xg € (z1,22)(A > 1) such
that ||zo]|g > 1. We have obtained the negative result against above section. the contradiction

implies that the necessity also holds and this completes2 the proof. O

Theorem 3.3 Let (X, || -||g) be a B-normed space, where 0 < 3 < 1. Then X is strictly convex
if and only if every finite dimensional subspace of X has Chebyshev property.

Proof The sufficiency is from the proving procedure of Theorem 3.2. Let E be a finite dimen-
sional subspace of a strictly convex G-normed X. Then by Theorems 3.1 and 3.2 we know that
E is a semi-Chebyshev set. For every zo € E, by the closeness of E we have d = d(E, z¢) > 0.
Let

D={z€E:|z—wxp<d+1}.

Then by the fact that E has finite dimension we know that D is compact and d = d(E, zg) =
d(D,z9) > 0, Pg(xo) = Pp(zp). By the compactness of D and the continuity of function
d(z) = ||z — zol|g, there is yo € D C E such that d(E,x¢) = d(D,z0) = |yo — ||, thus
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Pg(xo) # ¢, namely, E is a Chebyshev subspace of X. O
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