The Problems of Best Approximation in β -Normed Spaces ($0 < \beta < 1$)

WANG Jian Yong

(Department of Mathematics, Changshu Institute of Technology, Jiangsu 215500, China) (E-mail: jywang@cslg.edu.cn)

Abstract This paper deals with the problems of best approximation in β -normed spaces. With the tool of conjugate cone introduced in [1] and via the Hahn-Banach extension theorem of β -subseminorm in [2], the characteristics that an element in a closed subspace is the best approximation are given in Section 2. It is obtained in Section 3 that all convex sets or subspaces of a β -normed space are semi-Chebyshev if and only if the space is itself strictly convex. The fact that every finite dimensional subspace of a strictly convex β -normed space must be Chebyshev is proved at last.

Keywords locally β -convex space; β -normed space; normed conjugate cone; the best approximation.

Document code A MR(2000) Subject Classification 41A50; 41A65; 46A16 Chinese Library Classification 0174.41

1. Introduction

In this paper, $0 < \beta \leq 1$ is a constant, \mathbf{R}^+ is the set of positive numbers, X is a linear space, and θ is used to denote the zero element or zero functional. If $A \subset X$ satisfies

$$[x, y]_{\beta} = \{\lambda x + \mu y : \lambda, \mu \ge 0, \lambda^{\beta} + \mu^{\beta} = 1\} \subset A, \quad \forall x, y \in A,$$

$$(1)$$

then A is said to be β -convex, where $[x, y]_{\beta}$ is the β -curve segment with the end points x and y while [x, y] is used to denote the relative line segment.

Definition 1.1^[1-4] Suppose X is a topological linear space and $0 < \beta \leq 1$. X is called locally β -convex if there exists a θ -neighborhood basis consisting of β -convex sets.

A real-valued functional f on X is called a β -subseminorm if

- 1) $f(x) \ge 0, x \in X;$
- 2) $f(tx) = t^{\beta} f(x), t \in \mathbf{R}^+, x \in X;$
- 3) $f(x+y) \le f(x) + f(y), x, y \in X.$

The algebraic β -conjugate cone X'_{β} consisting of all β -subseminorms on X was first introduced in [1]. If X is a topological linear space, then X^*_{β} is used to denote the topological β -conjugate cone consisting of all continuous β -subseminorms on X. If X is locally β -convex, then X^*_{β} is

Received date: 2006-04-21; Accepted date: 2006-08-28

Foundation item: the Foundation of the Education Department of Jiangsu Province (No. 05KJB110001).

large enough to separate the points of X by [1], i.e., for each pair $x, y \in X, x \neq y$, there is $\theta \neq f \in X^*$ such that $f(x) \neq f(y)$. Then X^*_{β} is called the conjugate cone of X shortly. If the positive β -homogeneity 2) is replaced by the absolute β -homogeneity

2').
$$f(tx) = |t|^{\beta} f(x), t \in \mathbf{R}, x \in X$$

then f is called a β -seminorm. If a β -seminorm $\|\cdot\|_{\beta}$ also satisfies the zero hypothesis 1'). $\|x\|_{\beta} = 0 \Leftrightarrow x = \theta$,

then the *F*-norm $\|\cdot\|_{\beta}$ is called a β -norm and $(X, \|\cdot\|_{\beta})$ a β -normed space. A complete β -normed space is called a β -Banach space^[5]. Now with the θ -neighborhood basis consisting of β -convex sets

$$U_{\varepsilon} = \{ x \in X : \|x\|_{\beta} < \varepsilon \} (\varepsilon > 0)$$

 $(X, \|\cdot\|_{\beta})$ forms a locally β -convex space. Sequence space l^{β} , function space $L^{\beta}(\mu)$ and Hardy space H^{β} are three typical β -Banach spaces. Suppose $(X, \|\cdot\|_{\beta})$ is a β -normed space. Then under the norm

$$||f|| = \sup\{f(x) : ||x||_{\beta} \le 1\}, f \in X_{\beta}^{*}$$
(2)

 $(X_{\beta}^*, \|\cdot\|)$ forms a normed topological cone in the sense of [6], called the normed conjugate cone of $(X, \|\cdot\|_{\beta})$. Then with the induced metric $\rho: X_{\beta}^* \times X_{\beta}^* \to R^+$

$$\rho(f,g) = \inf\{t > 0 : \exists h, l \in X^*_\beta, \|h\|, \|l\| \le t \text{ s.t. } f + h = g + l\}$$
(3)

 X^*_{β} forms a Quasi-translation invariant topological cone in the sense of [6].

Generally the problem of best approximation is discussed in normed spaces^[7–8] and it is very difficult to study in ordinary *F*-normed spaces. But β -norm is one of the best *F*-norms, so it is possible to get some more pretty results if we study this problem in β -normed spaces. In this paper, with the tools of conjugate cone X_{β}^* introduced in [1] and via the Hahn-Banach Theorems about β -subseminorms obtained in [2], we study the problem of best approximation in β -normed spaces, the characteristics of an element to be the best approximation in a closed subspace are given in Section 2. It is obtained in Section 3 that all convex sets or subspaces of a β -normed space are semi-Chebyshev if and only if the space is itself strictly convex. The fact that every finite dimensional subspace of a strictly convex β -normed space must be Chebyshev is proved at last.

2. The characteristics of best approximation elements in closed subspaces

Let $(X, \|\cdot\|_{\beta})$ be a β -normed space, E be a subset of X and $x \in X$. Then

$$d(E, x) = \inf\{\|y - x\|_{\beta} : y \in E\}$$
(4)

is called the distance from x to E. If there is a $y_0 \in E$ such that $d(E, x) = ||y_0 - x||_{\beta}$, then y_0 is called an element of best approximation to x in E, and the set of all such elements is denoted by $P_E(x)$. If $P_E(x) \neq \phi$ for every $x \in X$, then E is called a proximal set; if $P_E(x)$ is at most a singleton for every $x \in X$, then E is called a semi-Chebyshev set; if $P_E(x)$ contains exactly one element for every $x \in X$, then E is called a Chebyshev set. The Chebyshev set is naturally the best set. If $x \in A \subset X$ satisfies that $\forall y \in X, y \neq x$, there is $z \in (x, y)$ such that $[x, z] \subset A$, then x is called an algebraic interior point of A. Suppose $\theta \in A$. A is said to be an absorbing set if $\forall x \in X, x \neq \theta$, there is t > 0 such that $[0, t]x \subset A$; A is said to be a star shaped set if $\forall x \in A$, $[\theta, x] \subset A$. To deal with the problem of the best approximation we need following two lemmas.

Lemma 2.1^[6,9] Suppose $0 < \beta < 1$ and $\phi \neq A \subset X$.

(i) If A is β -convex and θ is an algebraic interior point of A, then A is a star shaped absorbing set.

(ii) If $(X, \|\cdot\|_{\beta})$ is a β -normed space and $f \in X'_{\beta}$, then $f \in X^*_{\beta}$ if and only if $\|f\| < \infty$, and then we have $f(x) \leq \|f\| \|x\|_{\beta}, x \in X$.

Lemma 2.2 (Dominated extension theorem^[2]) Suppose Y is a non-trivial subspace of X, $f \in Y'_{\beta}$ and $p \in X'_{\beta}$ such that $f(x) \leq p(x), \forall x \in Y$. Then there exists $g \in X'_{\beta}$ such that

$$g(x) = f(x), \ \forall x \in Y; \ g(x) \le p(x), \ \forall x \in X.$$
(5)

When $f \in Y'_{a\beta}$ and $p \in X'_{a\beta}$ with $f(x) \leq p(x)$, $\forall x \in Y$, then there exists $g \in X'_{a\beta}$ satisfying (5), too.

To prove the main theorems of this paper, we need to improve the dominated extension theorem as follows:

Lemma 2.3 (Norm-preserving extension theorem) Let Y be a non-trivial subspace of β -normed space $(X, \|\cdot\|_{\beta}), f \in Y_{\beta}^*$. Then there exists a $g \in X_{\beta}^*$ such that

$$g(x) = f(x), \forall x \in Y; \quad ||g|| = ||f||.$$
 (6)

When $f \in Y_{a\beta}^*$ there exists $g \in X_{a\beta}^*$ satisfying (6), too.

Proof Suppose $f \in Y_{\beta}^*$. Then by (ii) of Lemma 2.1 we have $||f|| < \infty$. Take $p(x) = ||f|| ||x||_{\beta}, x \in X$, then by $|| \cdot ||_{\beta} \in X_{\beta}^*$ we have $p \in X_{\beta}^*$ and ||p|| = ||f||. Using (ii) of Lemma 2.1 once again, we have $f(x) \leq p(x), \forall x \in Y$, namely, p is the dominant function of f. Thus by Lemma 2.2 there exists a dominated extension $g \in X_{\beta}'$ such that

$$g(x) = f(x), \ \forall x \in Y; \ g(x) \le p(x), \ \forall x \in X.$$

From $g(x) \leq p(x)$ and $p \in X^*_{\beta}$ we know g is continuous at θ . For every $x, y \in X$, if $||x - y||_{\beta} \to 0$, then by the subadditivity of g we have

$$|g(x) - g(y)| \le \max\{g(x - y), g(y - x)\} \to 0,\$$

so g is continuous on X or $g \in X_{\beta}^*$. By $g(x) \leq p(x)$, we have $||g|| \leq ||p|| = ||f||$. On the other hand, from

$$\|g\| = \sup_{x \in X, \|x\|_{\beta} \le 1} g(x) \ge \sup_{x \in Y, \|x\|_{\beta} \le 1} g(x) = \sup_{x \in Y, \|x\|_{\beta} \le 1} f(x) = \|f\|$$

it follows $||g|| \ge ||f||$, thus ||g|| = ||f||. If $f \in Y^*_{a\beta}$, then from $p \in Y^*_{a\beta}$ and the corresponding result of Lemma 2.2 we know that there exists norm-preserving extension $g \in X^*_{a\beta}$ satisfying (6). This completes the proof.

The characteristics of best approximation elements in a closed subspace of a β -normed space are given by the following two theorems.

Theorem 2.1 Let $(X, \|\cdot\|_{\beta})$ be a β -normed space with $0 < \beta < 1$. Suppose E is a closed subspace of X and $x_0 \notin E$. Then y_0 is a best approximation to x_0 in E if and only if there is $f \in X^*_{a\beta}$ such that

- (i) ||f|| = 1;
- (ii) $f(x_0) = ||y_0 x_0||_{\beta};$
- (iii) $f(y+x_0) = f(x_0), \forall y \in E.$

Proof Let $f \in X_{a\beta}^*$ satisfy the conditions (i)–(iii). Then for every $y \in E$ we have

$$||y_0 - x_0||_{\beta} = f(x_0) = f(y - x_0) \le ||f|| ||y - x_0||_{\beta} = ||y - x_0||_{\beta}$$

thus y_0 is a best approximation to x_0 . On the other hand, if $y_0 \in P_E(x_0)$, then by the closeness of E and $x_0 \notin E$ we have

$$d = \inf\{\|y - x_0\|_{\beta} : y \in E\} = \|y_0 - x_0\|_{\beta} > 0.$$

Denote by

$$Y = \text{span}\{x_0, E\} = \{tx_0 + y : t \in R, y \in E\}$$

the subspace generated by x_0 and E, and define

$$f_1(tx_0 + y) = |t|^\beta d, \ tx_0 + y \in Y.$$
(7)

We can verify $f_1 \in Y_{a\beta}^*$ which satisfies the conditions (i)–(iii). It is clear by $0 < \beta \leq 1$ that f_1 has absolute β -homogeneity and subadditivity. Thus $f_1 \in Y'_{a\beta}$. In direct-sum space Y, $t_n x_0 + y_n \to t x_0 + y$ if and only if $t_n \to t$ and $y_n \to y$, then f_1 is continuous or $f_1 \in Y_{a\beta}^*$. By its structure, f_1 satisfies conditions (ii) and (iii). For every $t \neq 0$ and $y \in E$, since

$$f_1(tx_0 + y) = |t|^\beta d = |t|^\beta ||y_0 - x_0||_\beta$$

= $|t|^\beta \inf_{x \in E} ||x - x_0||_\beta \le |t|^\beta ||\frac{-y}{t} - x_0||_\beta = ||tx_0 + y||_\beta,$

 $||f_1|| \leq 1$. Otherwise for every $\varepsilon > 0$, by (4) there is $y_1 \in E$ such that $0 < ||y_1 - x_0||_{\beta} < d + \varepsilon$. Then by the (2) and (7) we have

$$||f_1|| \ge f_1(\frac{y_1 - x_0}{\|y_1 - x_0\|_{\beta}^{\frac{1}{\beta}}}) = \frac{d}{\|y_1 - x_0\|_{\beta}} \ge \frac{d}{d + \varepsilon}.$$

Let $\varepsilon \to 0$. We have $||f_1|| = 1$, namely, condition (i) also holds. At last let $f \in X^*_{a\beta}$ be the norm-preserving extension of f_1 by Lemma 2.3. It is natural that f also satisfies conditions (i)–(iii), which completes the proof.

Lemma 2.4 Let *E* be a subspace of linear space *X*, $x_0 \notin E$ and $f \in X'_{\alpha\beta}$. Then

$$f(y+x_0) = f(x_0), \quad \forall y \in E \Leftrightarrow f(y) = 0, \forall y \in E.$$
(8)

The problems of best approximation in β -normed spaces ($0 < \beta < 1$)

Proof If $f(y+x_0) = f(x_0), \forall y \in E$, then by the absolute β -homogeneity and the subadditivity of f we have

$$f(y) - f(x_0) = f(y) - f(-x_0) \le f(y + x_0) = f(x_0)$$

for every $y \in E$, i.e., $0 \leq f(y) \leq 2f(x_0)$. If there is some $\theta \neq y_0 \in E$ with $f(y_0) > 0$, then by absolute β -homogeneity of f and above inequality we have

$$n^{\beta}f(y_0) = f(ny_0) \le 2f(x_0)$$

for every natural number $n \in N$. This is contrary to $f(y_0) > 0$, so $f(y) = 0, \forall y \in E$.

If $f(y) = 0, \forall y \in E$, then for every $y \in E$, by subadditivity of f we have

$$f(y + x_0) \le f(y) + f(x_0) = f(x_0).$$

Otherwise for every $y \in E$, by f(-y) = 0 and the subadditivity of f we have

$$f(x_0) = f(x_0) - f(-y) \le f(x_0 + y),$$

thus $f(x_0) = f(x_0 + y), \forall y \in E$.

By Lemma 2.4 we have immediately the improved form of Theorem 2.1

Theorem 2.2 Let $(X, \|\cdot\|_{\beta})$ be a β -normed space with $0 < \beta < 1$. Suppose E is a closed subspace of X and $x_0 \notin E$. Then y_0 is a best approximation to x_0 in E if and only if there is $f \in X^*_{a\beta}$ such that

(i)
$$||f|| = 1;$$

(ii) $f(x_0) = ||y_0 - x_0||_{\beta};$
(iii) $f(y) = 0, \forall y \in E.$

3. The semi-Chebyshev problems

To deal with the semi-Chebyshev problems, we need to introduce the concept of strict convexity for β -normed spaces.

Definition 3.1 A β -normed space $(X, \|\cdot\|_{\beta})$ is called strictly convex if its unit ball $B = \{x \in X : \|x\|_{\beta} \leq 1\}$ is strictly convex in the common sense, namely, for every $x \neq y$, $\|x\|_{\beta} = \|y\|_{\beta} = 1$, there holds $\|\frac{1}{2}(x+y)\|_{\beta} < 1$ or

$$\|x+y\|_{\beta} < 2^{\beta}.\tag{9}$$

Differing greatly from normed space, the unit ball of a β -normed space may not be convex if $0 < \beta < 1$. For example, $(R^2, \|\cdot\|_{\beta})$ forms a β -normed space with

$$||(x,y)||_{\beta} = |x|^{\beta} + |y|^{\beta}, \ 0 < \beta < 1.$$

Its unit ball B is just the set surrounded by $|x|^{\beta} + |y|^{\beta} = 1$, with the four β -curve segments bending toward origin with end points (1,0), (0,1), (-1,0) and (0,-1). Thus B is not convex and $(R^2, \|\cdot\|_{\beta})$ is not strictly convex. But with another β -norm

$$|||(x,y)|||_{\beta} = (|x|^2 + |y|^2)^{\frac{\beta}{2}}$$

 $(R^2, \||\cdot\||_{\beta})$ forms a strictly convex β -Banach space, and its unit ball is just the unit disk in the ordinary sense. The following two theorems imply that for a β -normed space with $0 < \beta < 1$, the strict convexity is of the characteristic that all convex sets or subspaces are semi-Chebyshev.

Theorem 3.1 Suppose $(X, \|\cdot\|_{\beta})$ is a β -normed space, where $0 < \beta < 1$. Then every nonempty convex set in X is semi-Chebyshev if and only if $(X, \|\cdot\|_{\beta})$ is strictly convex.

Proof Suppose $(X, \|\cdot\|_{\beta})$ is a strictly convex β -normed space. If there is a nonempty convex set $M \subset X$ that is not semi-Chebyshev, then there exists some $x_0 \notin M$, $y_1, y_2 \in M$, and $y_1 \neq y_2$ such that $y_1, y_2 \in P_M(x_0)$. By the zero hypothesis 1') we have

$$d = d(M, x_0) = \|y_1 - x_0\|_{\beta} = \|y_2 - x_0\|_{\beta} > 0,$$

thus

$$\|\frac{y_1 - x_0}{d^{\frac{1}{\beta}}}\|_{\beta} = \|\frac{y_2 - x_0}{d^{\frac{1}{\beta}}}\|_{\beta} = 1.$$

By the strict convexity of $(X, \|\cdot\|_{\beta})$ we have

$$\|\frac{\frac{y_1+y_2}{2}-x_0}{d^{\frac{1}{\beta}}}\|_{\beta} = \|\frac{1}{2}(\frac{y_1-x_0}{d^{\frac{1}{\beta}}}+\frac{y_2-x_0}{d^{\frac{1}{\beta}}})\|_{\beta} < 1,$$

so $\|\frac{y_1+y_2}{2} - x_0\|_{\beta} < d$. By the convexity of M we get $\frac{y_1+y_2}{2} \in M$, which contradicts the presupposition $d = d(M, x_0)$, and the sufficiency is proved.

Now let us show the necessity. Use S to denote the unit sphere of X, i.e., $S = \{x \in X : ||x||_{\beta} = 1\}$. If X is not strictly convex, then there are $x_1, x_2 \in S, x_1 \neq x_2$ such that $||\frac{1}{2}(x_1 + x_2)||_{\beta} \ge 1$. Let $x_0 = \frac{1}{2}(x_1 + x_2)$. If $||x_0||_{\beta} > 1$ or $x_0 \notin B$, denote by

$$[x_1, x_2] = \{x_0 + t(x_2 - x_1) : t \in [-\frac{1}{2}, \frac{1}{2}]\}$$

the line segment with the end points x_1 and x_2 . Then by $x_0 \notin B$, $x_1, x_2 \in B$ and the closeness of B there are

$$t_1 = \max\{t < 0 : x_0 + t(x_2 - x_1) \in B\} \in [-\frac{1}{2}, 0),$$
$$t_2 = \min\{t > 0 : x_0 + t(x_2 - x_1) \in B\} \in (0, \frac{1}{2}],$$

such that

$$x'_{1} = x_{0} + t_{1}(x_{2} - x_{1}) \in (x_{1}, x_{0}),$$
$$x'_{2} = x_{0} + t_{2}(x_{2} - x_{1}) \in (x_{0}, x_{2}),$$

and

$$|x'_1||_{\beta} = ||x'_2||_{\beta} = 1; \quad (x'_1, x'_2) \bigcap B = \phi.$$

By $(x'_1, x'_2) \cap B = \phi$ and the star shaped property of B (see Lemma 2.1(i)) we know that $||x||_{\beta} > 1$ for every $x \in (x'_1, x'_2)$, thus we have $x'_1, x'_2 \in P_M(\theta)$ for convex set $M = [x'_1, x'_2]$. This is contrary to the hypotheses that every convex set is semi-Chebyshev. Improving above procedure a little, we can also prove that there is not any $x \in (x_1, x_2)$ such that $||x||_{\beta} > 1$. Now it remains to consider $||x_1||_{\beta} = ||x_2||_{\beta} = ||x_0||_{\beta} = 1$ and $||x||_{\beta} \leq 1, \forall x \in (x_1, x_2)$. If $||x||_{\beta} = 1$ for every $x \in (x_1, x_2)$, then we also have $x_1, x_2 \in P_M(\theta)$ for closed convex set $M = [x_1, x_2]$. This is contrary to the hypothesis. Otherwise, assume without loss of generality that there is $y_2 \in (x_0, x_2)$ with $||y_2||_{\beta} < 1$ or $y_2 \in \text{int}B$. Thus there is b > 1 such that $z_2 = by_2 \in S$. Assume $y_2 = ax_1 + (1 - a)x_2$. Then by $y_2 \in (x_0, x_2)$ we have $0 < a < \frac{1}{2}$. Denote by $l^+(\theta, x_0) = \{tx_0 : t \geq 0\}$ the ray starting from θ passing through x_0 . Then we can prove that the open line segment (x_1, z_2) intersects $l^+(\theta, x_0)$ at a point outside x_0 , i.e., there are some positive numbers $\lambda > 1$ and $0 < \mu < 1$ such that $\mu x_1 + (1 - \mu)z_2 = \lambda x_0$, i.e.,

$$\mu x_1 + (1-\mu)b[ax_1 + (1-a)x_2] = \frac{\lambda}{2}(x_1 + x_2)$$

or

$$[\mu + (1 - \mu)ba]x_1 + (1 - \mu)b(1 - a)x_2 = \frac{\lambda}{2}(x_1 + x_2).$$
(10)

By the linear independence of x_1 and x_2 (10) is equivalent to

$$\begin{cases} \mu + (1-\mu)ba = (1-\mu)b(1-a);\\ \frac{\lambda}{2} = \mu + (1-\mu)ba > \frac{1}{2}. \end{cases}$$
(11)

From the first equality we have $\mu = \frac{b(1-2a)}{1+b(1-2a)} \in (0,1)$. Let $\lambda = 2[\mu + (1-\mu)ba]$. Then by b > 1 we have

$$\frac{\lambda}{2} = \mu + (1-\mu)ba = \frac{b(1-a)}{1+b(1-2a)} = \frac{1}{2} \cdot \frac{b+b(1-2a)}{1+b(1-2a)} > \frac{1}{2}$$

or $\lambda > 1$, thus μ, λ are the solution of equalities (11). Thus we again find a pair of $x_1, z_2 \in S$, $x_1 \neq z_2$, and $z_0 = \lambda x_0 \in (x_1, z_2)$ such that $||z_0||_{\beta} = \lambda^{\beta} ||x_0||_{\beta} = \lambda^{\beta} > 1$, and obtain a negative result against above section. The contradiction implies that the necessity also holds and this completes the proof.

Now let us discuss the relation between the semi-Chebyshev property of subspaces and the strict convexity of the space.

Theorem 3.2 Let $(X, \|\cdot\|_{\beta})$ be a β -normed space, where $0 < \beta < 1$. Then every nontrivial subspace of X is semi-Chebyshev if and only if X is strictly convex.

Proof The sufficiency is from Theorem 3.1, so only necessity needs to be shown. When $x \neq y$, use l(x, y) to denote the line determined by x and y, and use $l^+(x, y)$ to denote the ray starting from x passing through y. If X is not strictly convex, then there exist $x_1, x_2 \in S$, $x_1 \neq x_2$ such that $\|\frac{1}{2}(x_1+x_2)\|_{\beta} \geq 1$, namely, $x_0 = \frac{1}{2}(x_1+x_2)$ satisfies $\|x_0\|_{\beta} \geq 1$. If $\|x_0\|_{\beta} > 1$ or $x_0 \notin B$, then assume without loss of generality that X is the two dimensional real space generated by x_1 and x_2 . By the following proving process we can see that this assumption is permissible. Let \mathcal{L} be the family of lines $l_{ax_0}(x, y) = l(x, y)$ in X that intersects $l^+(\theta, x_0)$ at ax_0 , intersects S at x and y on x_1 side and x_2 side of $l^+(\theta, x_0)$ respectively. It is clear that $x \neq y$ and $l_{x_0}(x_1, x_2) = l(x_1, x_2) \in \mathcal{L}$. For each a > 0, let

$$\mathcal{L}_a = \{l \in \mathcal{L} : l \bigcap l^+(\theta, x_0) = ax_0\}$$

be the family of concurrent lines in \mathcal{L} . Then $l(x_1, x_2) \in \mathcal{L}_1$. Let

$$A = \{a > 0 : \mathcal{L}_a \neq \phi\}.$$

Then by the boundedness and the compatients of B there exists the maximum $a' = \max A \in [1, +\infty)$. By the definition there are $x', y' \in S, x' \neq y'$, lying on x_1 side and x_2 side of $l^+(\theta, x_0)$ respectively, such that $l_{a'x_0}(x', y') = l(x', y') \in \mathcal{L}$. For subspace M = l(x', y') - x', we assert that

- (i) $l(x', y') \cap \operatorname{int} B = \phi;$
- (ii) d(M, -x') = 1;
- (iii) $\theta, y' x' \in P_M(-x').$

By assertion (ii) and (iii) we know that M is not a semi-Chebyshev subspace, which is contrary to the hypotheses. Now it remains only to verify above three assertions. If there is a $w \in$ $l(x', y') \cap \operatorname{int} B$, then there exists $\delta > 1$ such that $\delta w \in S$. Assume without loss of generality that w and δw lie on the x_2 side of $l^+(\theta, x_0)$. Thus via the similar methods used in the proof of Theorem 3.1 we can find some a'' > a' such that $l(x', \delta w) \cap l^+(\theta, x_0) = a'' x_0$. This is contrary to the assumption $a' = \max A$. Therefore (i) holds. From $x', y' \in B$ and (i) we have

$$d(M, -x') = \inf\{\|y + x'\|_{\beta} : y \in M\} = \inf\{\|y\|_{\beta} : y \in l(x', y')\} = 1,$$

namely, (ii) holds. At last by

$$d(\theta, -x') = \|x'\|_{\beta} = 1, \quad d(y' - x', -x') = \|y'\|_{\beta} = 1$$

we also have assertion (iii). Improving above procedure a little, we can also prove that there is not any $x \in (x_1, x_2)$ such that $||x||_{\beta} > 1$.

Thus it remains to consider the situation $||x_1||_{\beta} = ||x_2||_{\beta} = ||x_0||_{\beta} = 1$ and $||x||_{\beta} \leq 1$, $\forall x \in (x_1, x_2)$. Now if $l(x_1, x_2) \cap \operatorname{int} B = \phi$, then for subspace $M = l(x_1, x_2) - x_1$ we have the contrary result $\theta, x_2 - x_1 \in P_M(-x_1)$. If $l(x_1, x_2) \cap \operatorname{int} B \neq \phi$, assume without loss of generality that there is a point $y_2 \in \operatorname{int} B \cap l^+(x_0, x_2)$. Then there are b > 1 with $z_2 = by_2 \in S$ and an intersection point of ray $l^+(\theta, x_0)$ and segment (x_1, z_2) , say, $z_0 = \lambda x_0 \in (x_1, z_2)(\lambda > 1)$ such that $||z_0||_{\beta} > 1$. We have obtained the negative result against above section. the contradiction implies that the necessity also holds and this completes 2 the proof. \Box

Theorem 3.3 Let $(X, \|\cdot\|_{\beta})$ be a β -normed space, where $0 < \beta < 1$. Then X is strictly convex if and only if every finite dimensional subspace of X has Chebyshev property.

Proof The sufficiency is from the proving procedure of Theorem 3.2. Let E be a finite dimensional subspace of a strictly convex β -normed X. Then by Theorems 3.1 and 3.2 we know that E is a semi-Chebyshev set. For every $x_0 \notin E$, by the closeness of E we have $d = d(E, x_0) > 0$. Let

$$D = \{ x \in E : \|x - x_0\|_{\beta} \le d + 1 \}.$$

Then by the fact that E has finite dimension we know that D is compact and $d = d(E, x_0) = d(D, x_0) > 0$, $P_E(x_0) = P_D(x_0)$. By the compactness of D and the continuity of function $d(x) = ||x - x_0||_{\beta}$, there is $y_0 \in D \subset E$ such that $d(E, x_0) = d(D, x_0) = ||y_0 - x_0||_{\beta}$, thus

 $P_E(x_0) \neq \phi$, namely, E is a Chebyshev subspace of X.

References

- WANG Jianyong, MA Yumei. The second separation theorem in locally β-convex spaces and the boundedness theorem in its conjugate cones [J]. J. Math. Res. Exposition, 2002, 22(1): 25–34.
- WANG Jianyong. Conjugate cones of locally β-convex spaces and the Hahn-Banach theorem [J]. Math. Practice Theory, 2002, 32(1): 143–149. (in Chinese)
- [3] JARCHOW H. Locally Convex Spaces [M]. Teubner, Stuttgart, 1981.
- [4] ROLEWICZ S. Metric Linear Spaces [M]. PWN-Polish Scientific Publishers, Warszawa, 1985.
- [5] KALTON N J, PECK N T, ROBERTS J W. An F-space Sampler [M]. London: Cambridge University Press, 1984.
- [6] WANG Jianyong. Quasi-translation invariant topological cones and the conjugate cones of locally β -convex spaces [J]. Math. Practice Theory, 2002, **33**(1): 89–97. (in Chinese)
- [7] XU Shiying, LI Chong, YANG Wenshan. Nonlinear Approximation Theory in Banach Spaces [M]. Beijing: Science Press, 1998. (in Chinese)
- [8] LUO Xianfa, HE Jinsu, LI Chong. On best simultaneous approximation from suns to an infinite sequence in Banach spaces [J]. Acta Math. Sinica (Chin. Ser.), 2002, 45(2): 287–294. (in Chinese)
- [9] WANG Jianyong. The decomposition theorem of interior and boundary and the first separation theorem of β-convex sets [J]. J. Ningxia Univ. Nat. Sci. Ed., 1991, 12(4): 12–19.