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Abstract This paper deals with the problems of best approximation in β-normed spaces.

With the tool of conjugate cone introduced in [1] and via the Hahn-Banach extension theorem

of β-subseminorm in [2], the characteristics that an element in a closed subspace is the best

approximation are given in Section 2. It is obtained in Section 3 that all convex sets or subspaces

of a β-normed space are semi-Chebyshev if and only if the space is itself strictly convex. The fact

that every finite dimensional subspace of a strictly convex β-normed space must be Chebyshev

is proved at last.
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1. Introduction

In this paper, 0 < β ≤ 1 is a constant, R
+ is the set of positive numbers, X is a linear space,

and θ is used to denote the zero element or zero functional. If A ⊂ X satisfies

[x, y]β = {λx + µy : λ, µ ≥ 0, λβ + µβ = 1} ⊂ A, ∀x, y ∈ A, (1)

then A is said to be β-convex, where [x, y]β is the β-curve segment with the end points x and y

while [x, y] is used to denote the relative line segment.

Definition 1.1
[1−4] Suppose X is a topological linear space and 0 < β ≤ 1. X is called locally

β-convex if there exists a θ-neighborhood basis consisting of β-convex sets.

A real-valued functional f on X is called a β-subseminorm if

1) f(x) ≥ 0, x ∈ X ;

2) f(tx) = tβf(x), t ∈ R
+, x ∈ X ;

3) f(x + y) ≤ f(x) + f(y), x, y ∈ X .

The algebraic β-conjugate cone X ′
β consisting of all β-subseminorms on X was first introduced

in [1]. If X is a topological linear space, then X∗
β is used to denote the topological β-conjugate

cone consisting of all continuous β-subseminorms on X . If X is locally β-convex, then X∗
β is
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large enough to separate the points of X by [1], i.e., for each pair x, y ∈ X, x 6= y, there is

θ 6= f ∈ X∗ such that f(x) 6= f(y). Then X∗
β is called the conjugate cone of X shortly. If the

positive β-homogeneity 2) is replaced by the absolute β-homogeneity

2′). f(tx) = |t|βf(x), t ∈ R, x ∈ X,

then f is called a β-seminorm. If a β-seminorm ‖ · ‖β also satisfies the zero hypothesis

1′). ‖x‖β = 0 ⇔ x = θ,

then the F -norm ‖·‖β is called a β-norm and (X, ‖·‖β) a β-normed space. A complete β-normed

space is called a β-Banach space[5]. Now with the θ-neighborhood basis consisting of β-convex

sets

Uε = {x ∈ X : ‖x‖β < ε}(ε > 0),

(X, ‖ · ‖β) forms a locally β-convex space. Sequence space lβ, function space Lβ(µ) and Hardy

space Hβ are three typical β-Banach spaces. Suppose (X, ‖ · ‖β) is a β-normed space. Then

under the norm

‖f‖ = sup{f(x) : ‖x‖β ≤ 1}, f ∈ X∗
β (2)

(X∗
β , ‖ · ‖) forms a normed topological cone in the sense of [6], called the normed conjugate cone

of (X, ‖ · ‖β). Then with the induced metric ρ : X∗
β × X∗

β → R+

ρ(f, g) = inf{t > 0 : ∃h, l ∈ X∗
β , ‖h‖, ‖l‖ ≤ t s.t. f + h = g + l} (3)

X∗
β forms a Quasi-translation invariant topological cone in the sense of [6].

Generally the problem of best approximation is discussed in normed spaces[7−8] and it is very

difficult to study in ordinary F -normed spaces. But β-norm is one of the best F -norms, so it is

possible to get some more pretty results if we study this problem in β-normed spaces. In this

paper, with the tools of conjugate cone X∗
β introduced in [1] and via the Hahn-Banach Theorems

about β-subseminorms obtained in [2], we study the problem of best approximation in β-normed

spaces, the characteristics of an element to be the best approximation in a closed subspace are

given in Section 2. It is obtained in Section 3 that all convex sets or subspaces of a β-normed

space are semi-Chebyshev if and only if the space is itself strictly convex. The fact that every

finite dimensional subspace of a strictly convex β-normed space must be Chebyshev is proved at

last.

2. The characteristics of best approximation elements in closed subspaces

Let (X, ‖ · ‖β) be a β-normed space, E be a subset of X and x ∈ X . Then

d(E, x) = inf{‖y − x‖β : y ∈ E} (4)

is called the distance from x to E. If there is a y0 ∈ E such that d(E, x) = ‖y0 − x‖β , then y0

is called an element of best approximation to x in E, and the set of all such elements is denoted

by PE(x). If PE(x) 6= φ for every x ∈ X , then E is called a proximal set; if PE(x) is at most a

singleton for every x ∈ X , then E is called a semi-Chebyshev set; if PE(x) contains exactly one

element for every x ∈ X , then E is called a Chebyshev set. The Chebyshev set is naturally the
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best set. If x ∈ A ⊂ X satisfies that ∀y ∈ X, y 6= x, there is z ∈ (x, y) such that [x, z] ⊂ A, then

x is called an algebraic interior point of A. Suppose θ ∈ A. A is said to be an absorbing set if

∀x ∈ X, x 6= θ, there is t > 0 such that [0, t]x ⊂ A; A is said to be a star shaped set if ∀x ∈ A,

[θ, x] ⊂ A. To deal with the problem of the best approximation we need following two lemmas.

Lemma 2.1
[6,9] Suppose 0 < β < 1 and φ 6= A ⊂ X .

(i) If A is β-convex and θ is an algebraic interior point of A, then A is a star shaped absorbing

set.

(ii) If (X, ‖ · ‖β) is a β-normed space and f ∈ X ′
β, then f ∈ X∗

β if and only if ‖f‖ < ∞, and

then we have f(x) ≤ ‖f‖‖x‖β, x ∈ X .

Lemma 2.2 (Dominated extension theorem[2]) Suppose Y is a non-trivial subspace of X , f ∈ Y ′
β

and p ∈ X ′
β such that f(x) ≤ p(x), ∀x ∈ Y . Then there exists g ∈ X ′

β such that

g(x) = f(x), ∀x ∈ Y ; g(x) ≤ p(x), ∀x ∈ X. (5)

When f ∈ Y ′
aβ and p ∈ X ′

aβ with f(x) ≤ p(x), ∀x ∈ Y , then there exists g ∈ X ′
aβ satisfying (5),

too.

To prove the main theorems of this paper, we need to improve the dominated extension

theorem as follows:

Lemma 2.3 (Norm-preserving extension theorem) Let Y be a non-trivial subspace of β-normed

space (X, ‖ · ‖β), f ∈ Y ∗
β . Then there exists a g ∈ X∗

β such that

g(x) = f(x), ∀x ∈ Y ; ‖g‖ = ‖f‖. (6)

When f ∈ Y ∗
aβ there exists g ∈ X∗

aβ satisfying (6), too.

Proof Suppose f ∈ Y ∗
β . Then by (ii) of Lemma 2.1 we have ‖f‖ < ∞. Take p(x) = ‖f‖‖x‖β, x ∈

X , then by ‖ · ‖β ∈ X∗
β we have p ∈ X∗

β and ‖p‖ = ‖f‖. Using (ii) of Lemma 2.1 once again, we

have f(x) ≤ p(x), ∀x ∈ Y , namely, p is the dominant function of f . Thus by Lemma 2.2 there

exists a dominated extension g ∈ X ′
β such that

g(x) = f(x), ∀x ∈ Y ; g(x) ≤ p(x), ∀x ∈ X.

From g(x) ≤ p(x) and p ∈ X∗
β we know g is continuous at θ. For every x, y ∈ X , if ‖x−y‖β → 0,

then by the subadditivity of g we have

|g(x) − g(y)| ≤ max{g(x − y), g(y − x)} → 0,

so g is continuous on X or g ∈ X∗
β. By g(x) ≤ p(x), we have ‖g‖ ≤ ‖p‖ = ‖f‖. On the other

hand, from

‖g‖ = sup
x∈X,‖x‖β≤1

g(x) ≥ sup
x∈Y,‖x‖β≤1

g(x) = sup
x∈Y,‖x‖β≤1

f(x) = ‖f‖

it follows ‖g‖ ≥ ‖f‖, thus ‖g‖ = ‖f‖. If f ∈ Y ∗
aβ , then from p ∈ Y ∗

aβ and the corresponding result

of Lemma 2.2 we know that there exists norm-preserving extension g ∈ X∗
aβ satisfying (6). This

completes the proof. 2
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The characteristics of best approximation elements in a closed subspace of a β-normed space

are given by the following two theorems.

Theorem 2.1 Let (X, ‖ · ‖β) be a β-normed space with 0 < β < 1. Suppose E is a closed

subspace of X and x0 6∈ E. Then y0 is a best approximation to x0 in E if and only if there is

f ∈ X∗
aβ such that

(i) ‖f‖ = 1;

(ii) f(x0) = ‖y0 − x0‖β;

(iii) f(y + x0) = f(x0), ∀y ∈ E.

Proof Let f ∈ X∗
aβ satisfy the conditions (i)–(iii). Then for every y ∈ E we have

‖y0 − x0‖β = f(x0) = f(y − x0) ≤ ‖f‖‖y − x0‖β = ‖y − x0‖β,

thus y0 is a best approximation to x0. On the other hand, if y0 ∈ PE(x0), then by the closeness

of E and x0 6∈ E we have

d = inf{‖y − x0‖β : y ∈ E} = ‖y0 − x0‖β > 0.

Denote by

Y = span{x0, E} = {tx0 + y : t ∈ R, y ∈ E}

the subspace generated by x0 and E, and define

f1(tx0 + y) = |t|βd, tx0 + y ∈ Y. (7)

We can verify f1 ∈ Y ∗
aβ which satisfies the conditions (i)–(iii). It is clear by 0 < β ≤ 1 that

f1 has absolute β-homogeneity and subadditivity. Thus f1 ∈ Y ′
aβ . In direct-sum space Y ,

tnx0 + yn → tx0 + y if and only if tn → t and yn → y, then f1 is continuous or f1 ∈ Y ∗
aβ . By its

structure, f1 satisfies conditions (ii) and (iii). For every t 6= 0 and y ∈ E, since

f1(tx0 + y) = |t|βd = |t|β‖y0 − x0‖β

= |t|β inf
x∈E

‖x − x0‖β ≤ |t|β‖
−y

t
− x0‖β = ‖tx0 + y‖β,

‖f1‖ ≤ 1. Otherwise for every ε > 0, by (4) there is y1 ∈ E such that 0 < ‖y1 − x0‖β < d + ε.

Then by the (2) and (7) we have

‖f1‖ ≥ f1(
y1 − x0

‖y1 − x0‖
1

β

β

) =
d

‖y1 − x0‖β

≥
d

d + ε
.

Let ε → 0. We have ‖f1‖ = 1, namely, condition (i) also holds. At last let f ∈ X∗
aβ be the

norm-preserving extension of f1 by Lemma 2.3. It is natural that f also satisfies conditions

(i)–(iii), which completes the proof. 2

Lemma 2.4 Let E be a subspace of linear space X , x0 6∈ E and f ∈ X ′
aβ . Then

f(y + x0) = f(x0), ∀y ∈ E ⇔ f(y) = 0, ∀y ∈ E. (8)
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Proof If f(y + x0) = f(x0), ∀y ∈ E, then by the absolute β-homogeneity and the subadditivity

of f we have

f(y) − f(x0) = f(y) − f(−x0) ≤ f(y + x0) = f(x0)

for every y ∈ E, i.e., 0 ≤ f(y) ≤ 2f(x0). If there is some θ 6= y0 ∈ E with f(y0) > 0, then by

absolute β-homogeneity of f and above inequality we have

nβf(y0) = f(ny0) ≤ 2f(x0)

for every natural number n ∈ N . This is contrary to f(y0) > 0, so f(y) = 0, ∀y ∈ E.

If f(y) = 0, ∀y ∈ E, then for every y ∈ E, by subadditivity of f we have

f(y + x0) ≤ f(y) + f(x0) = f(x0).

Otherwise for every y ∈ E, by f(−y) = 0 and the subadditivity of f we have

f(x0) = f(x0) − f(−y) ≤ f(x0 + y),

thus f(x0) = f(x0 + y), ∀y ∈ E. 2

By Lemma 2.4 we have immediately the improved form of Theorem 2.1

Theorem 2.2 Let (X, ‖ · ‖β) be a β-normed space with 0 < β < 1. Suppose E is a closed

subspace of X and x0 6∈ E. Then y0 is a best approximation to x0 in E if and only if there is

f ∈ X∗
aβ such that

(i) ‖f‖ = 1;

(ii) f(x0) = ‖y0 − x0‖β;

(iii) f(y) = 0, ∀y ∈ E.

3. The semi-Chebyshev problems

To deal with the semi-Chebyshev problems, we need to introduce the concept of strict con-

vexity for β-normed spaces.

Definition 3.1 A β-normed space (X, ‖ · ‖β) is called strictly convex if its unit ball B = {x ∈

X : ‖x‖β ≤ 1} is strictly convex in the common sense, namely, for every x 6= y, ‖x‖β = ‖y‖β = 1,

there holds ‖ 1
2 (x + y)‖β < 1 or

‖x + y‖β < 2β. (9)

Differing greatly from normed space, the unit ball of a β-normed space may not be convex if

0 < β < 1. For example, (R2, ‖ · ‖β) forms a β-normed space with

‖(x, y)‖β = |x|β + |y|β , 0 < β < 1.

Its unit ball B is just the set surrounded by |x|β + |y|β = 1, with the four β-curve segments

bending toward origin with end points (1, 0), (0, 1), (−1, 0) and (0,−1). Thus B is not convex

and (R2, ‖ · ‖β) is not strictly convex. But with another β-norm

‖|(x, y)|‖β = (|x|2 + |y|2)
β
2
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(R2, ‖| · |‖β) forms a strictly convex β-Banach space, and its unit ball is just the unit disk in the

ordinary sense. The following two theorems imply that for a β-normed space with 0 < β < 1,

the strict convexity is of the characteristic that all convex sets or subspaces are semi-Chebyshev.

Theorem 3.1 Suppose (X, ‖ · ‖β) is a β-normed space, where 0 < β < 1. Then every nonempty

convex set in X is semi-Chebyshev if and only if (X, ‖ · ‖β) is strictly convex.

Proof Suppose (X, ‖ · ‖β) is a strictly convex β-normed space. If there is a nonempty convex

set M ⊂ X that is not semi-Chebyshev, then there exists some x0 6∈ M , y1, y2 ∈ M , and y1 6= y2

such that y1, y2 ∈ PM (x0). By the zero hypothesis 1′) we have

d = d(M, x0) = ‖y1 − x0‖β = ‖y2 − x0‖β > 0,

thus

‖
y1 − x0

d
1

β

‖β = ‖
y2 − x0

d
1

β

‖β = 1.

By the strict convexity of (X, ‖ · ‖β) we have

‖
y1+y2

2 − x0

d
1

β

‖β = ‖
1

2
(
y1 − x0

d
1

β

+
y2 − x0

d
1

β

)‖β < 1,

so ‖ y1+y2

2 − x0‖β < d. By the convexity of M we get y1+y2

2 ∈ M , which contradicts the

presupposition d = d(M, x0), and the sufficiency is proved.

Now let us show the necessity. Use S to denote the unit sphere of X , i.e., S = {x ∈ X : ‖x‖β =

1}. If X is not strictly convex, then there are x1, x2 ∈ S, x1 6= x2 such that ‖ 1
2 (x1 + x2)‖β ≥ 1.

Let x0 = 1
2 (x1 + x2). If ‖x0‖β > 1 or x0 6∈ B, denote by

[x1, x2] = {x0 + t(x2 − x1) : t ∈ [−
1

2
,
1

2
]}

the line segment with the end points x1 and x2. Then by x0 6∈ B, x1, x2 ∈ B and the closeness

of B there are

t1 = max{t < 0 : x0 + t(x2 − x1) ∈ B} ∈ [−
1

2
, 0),

t2 = min{t > 0 : x0 + t(x2 − x1) ∈ B} ∈ (0,
1

2
],

such that

x′
1 = x0 + t1(x2 − x1) ∈ (x1, x0),

x′
2 = x0 + t2(x2 − x1) ∈ (x0, x2),

and

‖x′
1‖β = ‖x′

2‖β = 1; (x′
1, x

′
2)

⋂

B = φ.

By (x′
1, x

′
2)

⋂

B = φ and the star shaped property of B (see Lemma 2.1(i)) we know that ‖x‖β > 1

for every x ∈ (x′
1, x

′
2), thus we have x′

1, x
′
2 ∈ PM (θ) for convex set M = [x′

1, x
′
2]. This is contrary

to the hypotheses that every convex set is semi-Chebyshev. Improving above procedure a little,

we can also prove that there is not any x ∈ (x1, x2) such that ‖x‖β > 1.
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Now it remains to consider ‖x1‖β = ‖x2‖β = ‖x0‖β = 1 and ‖x‖β ≤ 1, ∀x ∈ (x1, x2).

If ‖x‖β = 1 for every x ∈ (x1, x2), then we also have x1, x2 ∈ PM (θ) for closed convex set

M = [x1, x2]. This is contrary to the hypothesis. Otherwise, assume without loss of generality

that there is y2 ∈ (x0, x2) with ‖y2‖β < 1 or y2 ∈ intB. Thus there is b > 1 such that

z2 = by2 ∈ S. Assume y2 = ax1 + (1 − a)x2. Then by y2 ∈ (x0, x2) we have 0 < a < 1
2 . Denote

by l+(θ, x0) = {tx0 : t ≥ 0} the ray starting from θ passing through x0. Then we can prove

that the open line segment (x1, z2) intersects l+(θ, x0) at a point outside x0, i.e., there are some

positive numbers λ > 1 and 0 < µ < 1 such that µx1 + (1 − µ)z2 = λx0, i.e.,

µx1 + (1 − µ)b[ax1 + (1 − a)x2] =
λ

2
(x1 + x2)

or

[µ + (1 − µ)ba]x1 + (1 − µ)b(1 − a)x2 =
λ

2
(x1 + x2). (10)

By the linear independence of x1 and x2 (10) is equivalent to
{

µ + (1 − µ)ba = (1 − µ)b(1 − a);
λ
2 = µ + (1 − µ)ba > 1

2 .
(11)

From the first equality we have µ = b(1−2a)
1+b(1−2a) ∈ (0, 1). Let λ = 2[µ + (1 − µ)ba]. Then by b > 1

we have
λ

2
= µ + (1 − µ)ba =

b(1 − a)

1 + b(1 − 2a)
=

1

2
·
b + b(1 − 2a)

1 + b(1 − 2a)
>

1

2

or λ > 1, thus µ, λ are the solution of equalities (11). Thus we again find a pair of x1, z2 ∈ S,

x1 6= z2, and z0 = λx0 ∈ (x1, z2) such that ‖z0‖β = λβ‖x0‖β = λβ > 1, and obtain a negative

result against above section. The contradiction implies that the necessity also holds and this

completes the proof. 2

Now let us discuss the relation between the semi-Chebyshev property of subspaces and the

strict convexity of the space.

Theorem 3.2 Let (X, ‖ · ‖β) be a β-normed space, where 0 < β < 1. Then every nontrivial

subspace of X is semi-Chebyshev if and only if X is strictly convex.

Proof The sufficiency is from Theorem 3.1, so only necessity needs to be shown. When x 6= y,

use l(x, y) to denote the line determined by x and y, and use l+(x, y) to denote the ray starting

from x passing through y. If X is not strictly convex, then there exist x1, x2 ∈ S, x1 6= x2 such

that ‖ 1
2 (x1+x2)‖β ≥ 1, namely, x0 = 1

2 (x1+x2) satisfies ‖x0‖β ≥ 1. If ‖x0‖β > 1 or x0 6∈ B, then

assume without loss of generality that X is the two dimensional real space generated by x1 and

x2. By the following proving process we can see that this assumption is permissible. Let L be the

family of lines lax0
(x, y) = l(x, y) in X that intersects l+(θ, x0) at ax0, intersects S at x and y on

x1 side and x2 side of l+(θ, x0) respectively. It is clear that x 6= y and lx0
(x1, x2) = l(x1, x2) ∈ L.

For each a > 0, let

La = {l ∈ L : l
⋂

l+(θ, x0) = ax0}
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be the family of concurrent lines in L. Then l(x1, x2) ∈ L1. Let

A = {a > 0 : La 6= φ}.

Then by the boundedness and the compctness of B there exists the maximum a′ = maxA ∈

[1, +∞). By the definition there are x′, y′ ∈ S, x′ 6= y′, lying on x1 side and x2 side of l+(θ, x0)

respectively, such that la′x0
(x′, y′) = l(x′, y′) ∈ L. For subspace M = l(x′, y′)−x′, we assert that

(i) l(x′, y′)
⋂

intB = φ;

(ii) d(M,−x′) = 1;

(iii) θ, y′ − x′ ∈ PM (−x′).

By assertion (ii) and (iii) we know that M is not a semi-Chebyshev subspace, which is contrary

to the hypotheses. Now it remains only to verify above three assertions. If there is a w ∈

l(x′, y′)
⋂

intB, then there exists δ > 1 such that δw ∈ S. Assume without loss of generality

that w and δw lie on the x2 side of l+(θ, x0). Thus via the similar methods used in the proof of

Theorem 3.1 we can find some a′′ > a′ such that l(x′, δw)
⋂

l+(θ, x0) = a′′x0. This is contrary

to the assumption a′ = max A. Therefore (i) holds. From x′, y′ ∈ B and (i) we have

d(M,−x′) = inf{‖y + x′‖β : y ∈ M} = inf{‖y‖β : y ∈ l(x′, y′)} = 1,

namely, (ii) holds. At last by

d(θ,−x′) = ‖x′‖β = 1, d(y′ − x′,−x′) = ‖y′‖β = 1

we also have assertion (iii). Improving above procedure a little, we can also prove that there is

not any x ∈ (x1, x2) such that ‖x‖β > 1.

Thus it remains to consider the situation ‖x1‖β = ‖x2‖β = ‖x0‖β = 1 and ‖x‖β ≤ 1,

∀x ∈ (x1, x2). Now if l(x1, x2)
⋂

intB = φ, then for subspace M = l(x1, x2) − x1 we have the

contrary result θ, x2 − x1 ∈ PM (−x1). If l(x1, x2)
⋂

intB 6= φ, assume without loss of generality

that there is a point y2 ∈ intB
⋂

l+(x0, x2). Then there are b > 1 with z2 = by2 ∈ S and an

intersection point of ray l+(θ, x0) and segment (x1, z2), say, z0 = λx0 ∈ (x1, z2)(λ > 1) such

that ‖z0‖β > 1. We have obtained the negative result against above section. the contradiction

implies that the necessity also holds and this completes2 the proof. 2

Theorem 3.3 Let (X, ‖ · ‖β) be a β-normed space, where 0 < β < 1. Then X is strictly convex

if and only if every finite dimensional subspace of X has Chebyshev property.

Proof The sufficiency is from the proving procedure of Theorem 3.2. Let E be a finite dimen-

sional subspace of a strictly convex β-normed X . Then by Theorems 3.1 and 3.2 we know that

E is a semi-Chebyshev set. For every x0 6∈ E, by the closeness of E we have d = d(E, x0) > 0.

Let

D = {x ∈ E : ‖x − x0‖β ≤ d + 1}.

Then by the fact that E has finite dimension we know that D is compact and d = d(E, x0) =

d(D, x0) > 0, PE(x0) = PD(x0). By the compactness of D and the continuity of function

d(x) = ‖x − x0‖β, there is y0 ∈ D ⊂ E such that d(E, x0) = d(D, x0) = ‖y0 − x0‖β , thus
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PE(x0) 6= φ, namely, E is a Chebyshev subspace of X . 2
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