Atomic Energy Science and Technology

强流质子直线加速器横向屏蔽的估算

郭 文1,赵志祥1,王 伟2

(1. 中国原子能科学研究院 放射性计量测试部,北京 102413;2. 西北核技术研究所,陕西 西安 710024)

摘要:叙述了估算强流质子直线加速器横向屏蔽的方法。束流能量处在 GeV 能区时,使用 Moyer 模型 进行计算;在1 GeV 以下,使用基于点源视线法的 Tesch 公式。在1 W/m 的束流损失情况下,对 50~ 3 000 MeV束流能量范围内的横向屏蔽厚度进行了计算,并给出推荐值。 关键词:强流质子直线加速器;横向屏蔽;Moyer 模型;视线法

中图分类号:TL508 文献标识码:A 文章编号:1000-6931(2007)05-0610-04

Estimation of Transverse Shielding for Intense-Beam Proton Linac

GUO Wen¹, ZHAO Zhi-xiang¹, WANG Wei²

China Institute of Atomic Energy, P.O. Box 275-20, Beijing 102413, China;
 Northwest Institute of Nuclear Technology, Xi'an 710024, China)

Abstract: A simple method for the estimation of the transverse shielding for intensebeam proton linac was described briefly. For beam energy at GeV range, Moyer model was used for calculation, below 1 GeV, Tesch' equation was used. In the case of 1 W/m beam loss, transverse shielding thicknesses were calculated in the beam energy range 50 to 3 000 MeV, and the recommended values were given.

Key words: intense-beam proton linac; transverse shielding; Moyer model; line-of-sight

新一代强流质子直线加速器的设计能量一 般在 GeV 量级(如 SPL^[1]末端能量高达 3.5 GeV),流强高达几十毫安到几百毫安。强 流质子直线加速器具有几百米甚至上千米长的 加速管道,不可避免地存在束流损失现象,在加 速管道周围产生瞬发辐射,这需要足够的横向 屏蔽以将辐射水平降至可接受程度。

质子束流能量在 GeV 量级时,横向屏蔽厚 度通常用蒙特卡罗方法计算得到。当质子能量 为几百 MeV 时,为获得横向屏蔽厚度,以各种 方法(如离散纵标方法、球谐函数法、蒙特卡罗 方法等)求解波尔兹曼输运方程得到不同程度 的应用。这些计算通常可由非常简单的半经验 估算方法替代。

1 GeV 能区

1.1 Moyer 模型

Moyer 于 1961 年提出一种质子加速器屏 蔽的半经验方法, Moyer 模型^[2-5], 在质子加速 器的屏蔽设计中得到了广泛地应用。

考虑由质子束与薄靶相互作用的有效点源 情况(图1)。假定中子是惟一考虑的屏蔽层外表

收稿日期:2006-05-25;修回日期:2007-04-16

作者简介:郭 文(1968-),男,陕西洛南人,研究员,电离辐射剂量专业

$$\exp\left[-d\csc\,\theta/\lambda(E)\right]\frac{\mathrm{d}^{2}n(E,\theta)}{\mathrm{d}E\mathrm{d}\Omega}\mathrm{d}E\qquad(1)$$

式中:N 为相互作用质子数;r 是考察点到源的 距离;d 为屏蔽层厚度;E 为中子能量; λ 为中 子有效消除自由程; $B(E,\theta)$ 为累积因子, θ 为出 射粒子与束流夹角; $d^2n/(dEd_\Omega)$ 为在立体角 Ω 处和能量为 E 时,单位立体角和单位能量区间 的中子产额。

在初始相互作用中,将产生能量大于 150 MeV的高能次级粒子,同时伴随大量低能 粒子。高能次级粒子在屏蔽体中产生强子级 联,其衰减长度与能量无关,而低能部分在通过 屏蔽体时,其强度则按指数规律迅速衰减。因 此,在屏蔽层表面观察到的辐射场由级联中子 组成,伴随着很多低能粒子,主要是在界面附近 产生的中子。

式(1)可用能量高于 150 MeV 的单能中子 组近似, $\lambda(E)$ 在 *E* 大于 150 MeV 时为常数,小 于 150 MeV 时为零。在实际的屏蔽结构中,横 向屏蔽厚度主要受在 60°~120°出射的强子影 响,可假设在此有限角度范围内强子谱基本上 不变,因此, $B(E,\theta)$ 失去了其角度依赖性,可近 似为 B(E)。又因只考虑 150 MeV 以上粒子的 注量,可用 $m(E_p)$ 代替 B(E),对给定的靶材料 和初始质子能量 $E_p, m(E_p)$ 可看作常数。因 此,式(1)可简化为:

$$\Phi(E > 150 \text{ MeV}) =$$

$$Nr^{-2}g(\theta)m(E_{\rm p})\exp\left(-\frac{d\csc\theta}{\lambda}\right) \qquad (2)$$

式中: $g(\theta)$ 为能量大于 150 MeV 的强子的角分 布,有:

$$g(\theta) = \int_{E>150 \text{ MeV}} \frac{\mathrm{d}^2 n(E,\theta)}{\mathrm{d}E \mathrm{d}\Omega} \mathrm{d}E \qquad (3)$$

对于处在平衡状态的级联反应,总剂量当 量正比于能量大于 150 MeV 的强子注量:

$$H = k\Phi(E > 150 \text{ MeV}) \tag{4}$$

在 $\theta = 60^{\circ} \sim 120^{\circ}$ 范围内, $g(\theta)$ 可近似为指数形式:

$$g(\theta) = C\exp(-\beta \theta) \tag{5}$$

式中: C_{β} 为常数。

$$H = kNCm(E_{\rm p})r^{-2} \cdot$$

$$\exp(-\beta\theta)\exp(-d\csc\theta/\lambda) \tag{6}$$

将式(6)中的常数 $k_{s}C_{s}m(E_{p})$ 合并为一实 验确定的常数 $H_{0}(E_{p})$,上式变为:

$$H = NH_0(E_p)r^{-2} \cdot$$

$$\exp(-\beta\theta)\exp(-d\csc\theta/\lambda) \tag{7}$$

式(7)即为 Moyer 模型的数学表达式。

Moyer 模型的 3 个参数 H_0 、 β 、 λ 必须由实 验确定。 H_0 和 β 取决于入射质子能量和初始 靶材料, λ 取决于屏蔽材料。 β 和 λ 在感兴趣的 范围内不依赖于能量。Thomas 等^[3]总结了各 种实验拟合结果,给出的推荐值如下:

$$H_0(E_p) = H_0 E_p^m$$
, $H_0 = (2.84 \pm 0.14) \times 10^{-13} \text{ Sv} \cdot \text{m}^2$, $m = 0.80 \pm 0.10$,

 $\beta = (2.3 \pm 0.1) \text{ rad}^{-1}$

普通混凝土和土壤的 λ 值为 117 g/cm², λ 值的经验公式为 $\lambda = (A/A_E)^{1/3}\lambda_E$, A_E 为土壤 的有效质量数($A_E = 20.4$)。

1.2 点源损失的计算

由于 $\theta = 90^{\circ}$ (横向屏蔽)是最常见情况,式 (7)可进一步简化为:

$$H = NH_{\pi/2}(E_{\rm p})r^2\exp(-d/\lambda) \qquad (8)$$

式中: $H_{\pi/2}(E_p)$ 是距靶单位距离处的剂量当量。 与式(7)比较得到:

 $H_{\pi/2}(E_{\rm p}) = H_0(E_{\rm p})\exp(-\beta \pi/2)$ (9) 将 $\beta = 2.3$ 代入式(9),得到:

 $H_{\pi/2}(E_{\rm p}) = 2.70 \times 10^{-2} H_0(E_{\rm p})$ (10)

$$H = NH_{\pi/2}(E_{\rm p})r^{-2}\exp(-d/\lambda) =$$

7.66 × 10⁻¹⁵ $NE_{p}^{0.8}r^{-2}\exp(-d/\lambda)$ (11)

式(11)为点源模型估算屏蔽层外剂量当量

的公式。

1.3 无限均匀线源的计算

质子直线加速器通常认为具有均匀的束流 损失,可视为无限均匀线源。假定 S 为无限均 匀线源的强度(每米每秒损失的质子数),则屏 蔽层外表面的剂量当量率 *H*_L 由下式给出:

$$\dot{H}_{\rm L} = \frac{H_0(E_{\rm p})S}{r} \times \int_{-\pi}^{\pi} \exp(-\beta\theta) \exp(-d\csc\theta/\lambda) d\theta \quad (12)$$

式 (12) 中的积分可用 $M(\beta, d/\lambda)$ 表示,称 为 Moyer 积分。对高能屏蔽最感兴趣的是 β = 2.3 的 Moyer 积分 $M(2, 3, d/\lambda)$ ^[2-4]。Tesch^[6] 提出,当 d/λ =2~15 时, $M(2, 3, d/\lambda)$ 可较准确 的近似为:

 $M(2,3,d/\lambda) = 0.065\exp(-1.09d/\lambda)$ (13) 代入式(12)得到:

 $\dot{H}_{\rm L} = \frac{0.065 H_0(E_{\rm p})S}{r} \exp(-1.09 d/\lambda)$ (14)

式(14)为线源模型估算屏蔽层外剂量当量公式。

2 50~1 000 MeV 能区

2.1 点源视线法

对于点源的屏蔽,在相当宽的屏蔽厚度范 围内,用式(15)即可估计屏蔽厚度:

$$H(d,\theta) = \frac{H_{\theta}}{r^2} \exp(-d\csc\,\theta/\lambda_{\rm eff}) \quad (15)$$

式中: $H(d,\theta)$ 为屏蔽厚度为d、角度为 θ 处的 屏蔽层外表面剂量当量; H_{θ} 为一常数,指离源 单位距离角度为 θ 处外推到0深度的剂量当 量;r为源到屏蔽层外表面(或屏蔽外其它关心 的点)的距离; λ_{eff} 为屏蔽层的剂量当量有效衰 减长度。

此即视线法,其实质是屏蔽层外某点处剂 量当量是由点源到该点连线上的输运粒子贡献 的。式(15)在屏蔽厚度小于约 100 g/cm²和 λ_{eff} 随屏蔽中深度 d 增加而变化时不适用。但在 实际所关心的范围(200~1 000 g/cm²)内,单 一 λ_{eff} 值是可以满足的。

对于横向屏蔽,式(15)变为:

$$H = \frac{H_{\pi/2}}{r^2} \exp(-d/\lambda_{\rm eff})$$
(16)

式中: $H_{\pi/2}$ 为常数,指离源 1 m、角度为 90°处外 推到 0 深度的剂量当量。 Thomas 等^[3]对质子打铜靶(薄靶和厚靶) 在距靶 1 m 处、90°方向的混凝土屏蔽体(ρ = 2.4 g/cm³)中的剂量当量衰减进行了计算,给 出了 $H_{\pi/2}$ 和 λ_{eff} 的推荐值,质子能量在400 MeV 以下的值是由相关实验资料拟合计算得到的, 400 MeV 以上则是根据由 Moyer 模型描述的 高能情况下的参数进行粗略外推得出的。

2.2 线源

Tesch^[7]比较质子能量在 50~1 000 MeV 时,穿透中子的各向同性分布的 H_p (点源)和 H_L (线源)的表达式与指数角分布的 H_p 和 H_L 的表达式,发现不同角分布引起的差别小,且不 显著。因而,对于质子能量低于1 GeV,计算线 源的表达式如下:

$$\dot{H}_{\rm L} = S \frac{2H_{\pi/2}}{r} \exp\left[-d/(0.89\lambda_{\rm eff})\right] (17)$$

式中:S为单位长度的质子损失率。

3 估算结果与讨论

利用式(14)或(17)可计算强流质子直线加 速器横向屏蔽厚度,为此,将式(14)或(17)改为:

对于 $E_p > 1$ GeV,

$$d = 0.92\lambda \ln\left[\frac{0.065H_0(E_p)S}{r\dot{H}_L}\right] \quad (18)$$

对于 $E_p \leqslant 1$ GeV,

$$d = 0.89\lambda_{\rm eff} \ln \left[\frac{2H_{\pi/2}S}{rH_{\rm L}}\right]$$
(19)

就强流质子直线加速器而言,通常采用的 理想的、可忍受的束流损失的典型数据是 1 W/m^[8],不同质子能量对应的单位长度的质 子损失率 S 列于表 1。横向屏蔽设计就是要将 束流损失在屏蔽层外引起的剂量率降到有关国 家标准要求的限值之下。GB 18871—2002《电 离辐射防护与辐射源安全基本标准》对工作人员 和公众规定的剂量限值导出工作场所及公众场 所的周围剂量率限值分别为 10 和 0.1 μSv/h。

在均匀束流损失为 1 W/m 的情况下,对质 子能量 E_p 分别为 50、100、200、300、400、600、 800、1 000、2 000、3 000 MeV 时的束流损失情况 进行计算, $H_{\pi/2}$ 、 λ_{eff} 取自文献[3],结果列于表 1。

在表1的计算中,*H*_{π/2},λ_{eff}使用了薄靶的数 据,计算的屏蔽厚度是偏于保守的。比较文献 [3]中的数据,薄靶的有效衰减长度大于厚靶的 值,即薄靶模型需要更大的屏蔽厚度。另外,距 离参数表征了控制区域的界限,距离参数的变 动也影响屏蔽厚度的值。

在很多情况下,单独的简单估算是可用的, 这是因为在几乎所有的屏蔽计算中,最大的误 差不是由使用的计算方法或数据引起的,而是 由对辐射损失发生在某一特定部位和某一运行 期间的假定引起的^[7]。当几何简单并且初级粒 子的能量在一个有很好的实验数据区间时,估 算屏蔽外辐射场强度的经验模型与各种数值方 法(包括蒙特卡罗方法)都可以在两倍因子或更 好的精度内来预计辐射场强度^[4]。

表1 不同能量质子横向屏蔽混凝土厚度计算参数及推荐值

Table 2 Calculation parameters and recommended values of transverse shielding thickness at various proton energy

$E_{ m p}/{ m MeV}$	$S/(\mathrm{s}^{-1}\cdot\mathrm{m}^{-1})$	$H_{\pi/2}$, $H_0(E_p)/(\mathrm{Sv}\cdot\mathrm{m}^2)$	λ_{eff} , λ/cm	r/m	d/cm	
					$H_{\rm L}$ =0.1 μ Sv • h ⁻¹	$H_{\rm L}$ =10 μ Sv • h ⁻¹
50	$1.25 imes 10^{11}$	6.6×10 ⁻¹⁵	13.3	5	210(192)	160(138)
100	6.24 $ imes 10^{10}$	7.6 $\times 10^{-15}$	19.2	5	290(269)	210(190)
200	3.12×10^{10}	8.6×10 ⁻¹⁵	30.0	5	440(405)	320(282)
300	2.08×10^{10}	9.3 $\times 10^{-15}$	36.3	6	510(474)	370(325)
400	$1.56 imes 10^{10}$	9.8×10 ⁻¹⁵	39.6	6	550(508)	390(346)
600	1.04×10^{10}	1.0×10^{-14}	44.2	8	590(541)	410(360)
800	7.80 $\times 10^{9}$	1.1×10^{-14}	46.7	8	610(564)	420(372)
1 000	6.24 $ imes 10^{9}$	1.2×10^{-14}	47.9	10	610(563)	420(366)
2 000	3.12×10^{9}	4.9×10^{-13}	49.2	10	630(579)	420(370)
3 000	2.08 $\times 10^{9}$	6.8×10 ⁻¹³	49.2	10	630(575)	420(367)

注:括号内的数据为满足剂量率限值的最小值;括号前的值是考虑2倍的安全系数而增加一个衰减长度后的推荐值

4 结论

横向屏蔽是强流质子直线加速器屏蔽设计 的重要基本参数,在对加速器的设计或修改初 期,可进行估算;当加速器参数最终确定后,通 常使用包括更完善的数学方法计算屏蔽中电磁 和强子级联现象,对这些计算进行验证和修改。 这种经验方法给出的屏蔽现象中的物理图象, 即使在更完善的数学方法中也不是很明显^[4], 其估算值可为数值计算和蒙特卡罗方法计算的 结果提供参考。

参考文献:

- [1] MAGISTRIS M, SILARI M. Shielding requirements and induced radioactivity in the 3.5 GeV SPL, CERN-SC-2005-067-RP-TN [R]. Geneva: CERN,2005.
- [2] PATTERSON H W, THOMAS R H, DEW-ERD L A. Accelerator health physics[M]. New York: Academia Press, 1973.
- [3] THOMAS R H, STEVENSON G R. Radiological safety aspects of the operation of proton accelerators[R]. Vienna: IAEA, 1988.

- [4] STEVENSON G R, LIU Kueilin, THOMAS R
 H. Determination of transverse shielding for proton accelerators using the Moyer model[J].
 Health Physics, 1982, 43(1): 13-29.
- [5] 朱连芳,苏有武,陈学兵.估算高能加速器横向屏 蔽的 Moyer 模式[J].核物理动态,1996,13(4):
 35-38.

ZHU Lianfang, SU Youwu, CHEN Xuebing. Moyer model for evaluation of transverse shielding of high energy accelerators[J]. Trends in Nuclear Physics, 1996, 13 (4): 35-38 (in Chinese).

- [6] TESCH K. Comments on the transverse shielding of accelerators[J]. Health Physics, 1983, 44 (1):79-82.
- [7] TESCH K. A simple estimation of the lateral shielding for proton accelerators in the energy range 50 to 1 000 MeV[J]. Radiat Prot Dosim, 1985,11(3):165-172.
- [8] SILARI M, STEVENSON G R. Radiation shielding and safety criteria for high-intensity linac, CERN-TIS-99-016-RP-CF[R]. Geneva: CERN, 1999.