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Abstract

In this paper we study global attractors of discrete dispersive dynamical systems gen-
erated by set-valued mappings and the structure of trajectories of these dynamical

systems.
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1 Introduction

In the present paper we study a discrete-time dynamical system introduced in [2, 3] and
studied in [4, 6]. This dynamical system is described by a compact metric space of states
and a transition operator which is set-valued. Dynamical systems theory has been a rapidly
growing area of research which has various applications to physics, engineering, biology
and economics. In this theory one of the goals is to study the asymptotic behavior of the
trajectories of a dynamical system. Usually in the dynamical systems theory a transition
operator is single-valued. In the present paper we study dynamical systems with a set-
valued transition operator. Such dynamical systems describe economical models [2, 3, 5].
Let (X,p) be a compact metric space anddetX — 2X\ {0} be a set-valued mapping

whose graph

grapha) = {(x,y) e XxX: yea(x)}
is a closed subset &f x X. For each nonempty subgetC X set

a(E) = U{a(x): xc E} anda’(E) = E.
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By induction we defin@"(E) for any natural numbar and any nonempty subsgtC X as
follows:
a'(E) = a(@" (E)).

In this paper we study convergence and structure of trajectories of the dynamical system
generated by the set-valued mappmgFollowing [2, 3] this system is called a discrete
dispersive dynamical system. It should be mentioned that iterations of set-valued operators
were also studied in [1].

First we define a trajectory of this system.

A sequencgx }i-, C X is called a trajectory o (or just a trajectory if the mapping
is understood) ik.1 € a(x) for all integers > 0.

Put

Q(a) = {ze X: for eache > Othere is a trajectoryx };—g

such thaﬂi{ninf P(z, %) <&} (1.1)

Clearly,Q(a) is a nonempty closed subset (@, p). In the present paper the <eta) will
be called a global attractor af Note that in [2-4]Q(a) was called a turnpike set af This
terminology was motivated by mathematical economics [3].

For eachx € X and each nonempty closed subSet X put

p(x,E) =inf{p(x,y): ye E}.

It is clear that for each trajectory };> , we haveim;_.., p(x,Q(a)) = 0.
Let @: X — R! be a continuous function such that

@(z) > O0forallze X, (1.2)

@(y) < @(x) for all x e X and ally € a(x). (1.3)

It is clear that the functiopis a Lyapunov function for the dynamical system generated
by the mapping. Note that in [6] we consider a particular case of the dynamical system
considered here with the functignidentically zero. In [7] we generalize the results of [6]
for dynamical systems generated by mappiagk — 2%\ {0}, whereK is a closed subset
of X. It should be mentioned that in mathematical economics usiaitya subset of the
finite-dimensional Euclidean space apis a linear functional on this space [3, 5].

The following theorem is our first main result. It will be proved in Section 2.

Theorem 1.1. The following properties are equivalent:
(1) If a sequencex; }i>_,, C X satisfies¢1 € a(x) and@(x1) = @(x ) for all integers
t ,then
{XH-w € Q(a).
(2) For eache > 0O there exists a natural numbér(g) such that for each trajectory
{X}i2o C X satisfying@(x) = @(x1) for all integerst > 0 the inequalityp(x, Q(a)) < €
holds for all integers > T (¢).

For eachx € X set
(X) = sup{tlim Q%) : {X}i_o is atrajctory andg = X}. (1.4)

The following two results will be proved in Section 3.
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Proposition 1.2. Letx € X. Then there is a trajectoryx };> , such thatx, = x and (x) =
lime o0 Q(X%)-

Proposition 1.3. The functionit: X — R is upper semicontinuous.
It is clear that for eack € X and eacly € a(x)
T(y) < T1(X), (1.5)

for eachx € X
T(X) < @(X) (1.6)

and that for eachk € X and each natural number
T(x) < sup{@(y) : y€ a'(x)}. (1.7)
It is easy to see that the following proposition holds.

Proposition 1.4. Letx € X and{x };> ; C X be a trajectory such thaiy = x. Then
fim g(x) =)
if and only if for each integetr > 0
M(X+1) = max{1(z) : ze a(x)}.
The following result will also be proved in Section 3.

Proposition 1.5. Letx € X. Then
T(X) = r!im sup{@(y) : € a"(x)}.
The following theorem is our second main result which will be proved in Section 4.

Theorem 1.6. Assume that the property (1) of Theorem 1.1 holds.
Lete > 0 andx € X. Then there exish > 0 and a natural numbek. such that for each
integerT > 2L and each trajectory{x },_, satisfying

Xo = xand@(xr) > (%) — 3
the following inequality holds:
p(x,Q(a) <e t=L,..., T—L.

In the paper we use the following property.

(P) If x1,%2 € Q(a) and@(x1) = @(x2), thenxy = Xo.

Note that the property (P) holds for many models of economic dynamics for W{ih
is a subinterval of a line [3, 5].

The following theorem will be proved in Section 5.
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Theorem 1.7. Assume that the property (P) holds. Then each trajectoeyanfnverges to
an element of2(a).

It is not difficult to see that the following result holds.

Proposition 1.8. Assume that the property (P) holds and that};” , is a trajectory ofa
such thalim{_.. @(x) = 1(x). Then by Theorem 1.7 there exists

F(x) = tIim Xt
the equality
®(F (%) = Jim @(x) = 1(x)
holds and moreoveE (x) is a unique element @(a) belonging tap—(1(x)).

In the sequel if the property (P) holds, then for eaehX we denote by (x) the unique
element ofQ(a) N@~1(T(x)).

The following turnpike result [2, 4] describes the structure of optimal (with respect to
the functionaly) trajectories of. It will be proved in Section 6.

Theorem 1.9. Assume that the property (P) and the property (1) of Theorem 1.1 hold. Let
€ > 0andx € X. Then there exish > 0 and a nhatural numbek such that for each integer
T > 2L and each trajectony{x }_, satisfying

Xo =xand@(xr) > 1(x) —
the following inequality holds:

p(x,F(x)) <e t=L....,T—L.

2 Proof of Theorem 1.1

It is clear that the property (2) implies the property (1).
Let us show that the property (1) implies the property (2). Assume that the property (1)
holds and assume that the property (2) does not hold. Then therelssuch that for each

natural numben there exist a trajector{/xt(”) H- and an integet, > n such that

P4 Q(a)) > &,

o) = 00g"), t=0,1,.... (21)
Letn > 1 be an integer. Define
w" =X for all integers > —T,, (2.2)

Clearly,
v =x" n=12... (2.3)
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Extracting subsequences and using diagonalization process we obtain that there exists a
strictly increasing sequence of natural numb[erﬁ‘j;l such that for each integethere is

(nj)

yo=lim y ™. (2.4)
It is not difficult to see that
Yoi1 € alyr) and@(y) = @(y41) for all integerst. (2.5)
In view of (2.1), (2.3) and (2.4),
P(Yo, Q(a)) > €. (2.6)

By (2.5) and property (1}{w }i~_., C Q(a). This contradicts (2.6). The contradiction we
have reached proves that (1) implies (2). Theorem 1.1 is proved.

3 Proofs of Propositions 1.2, 1.3 and 1.5

Proof of Proposition 1.2t is clear that for each integer> 1 there is a trajector\]xt(”) Moo
such that

XV = x, tlig;gp(%”) > m(x)—1/n. (3.1)

Extracting subsequences and using diagonalization process we obtain that there exists a
strictly increasing sequence of natural numbfms}?_; such that for each integer> 0
there is

y = lim x". (3.2)

Clearly,{y };-, is a trajectory anglp = x. By (3.2) and (3.1) for each integer> 0

9lys) = lim g(x") > limsuplim ¢(x")
] — . o0

j—o0
> lim m(x) — nj ™t = T(x).
] —
Proposition 1.2 is proved.

Proof of Proposition 1.3Let
xe X, {xM> X, lim X =x. (3.3)

We show that
m(x) > limsuprx™).
Nn—oo
We may assume without loss of generality that thetirig .., (x").
By Proposition 1.2 for each integar> 1 there is a trajector;{xt(”) oo such that for
each integen> 1

Xg]) _ X(n), tlm(p(xt(n)) _ T[(Xén)) _ T[(X(n)). (34)



6 A. J. Zaslavski

Extracting subsequences and using diagonalization process we obtain that there is a strictly
increasing sequence of natural numbferst{’_; such that for each integer> O there is

x = lim x". (3.5)

J~>oo
Clearly,{x )", is a trajectory and

xo = lim s = fim x"™) = x, (3.6)

] — ]—

By (3.5) and (3.4) for each integer 0
9(x) = lim g(x"’) > limsuplim @) = limsupr(x™).
J—® j—o0 © j—oo
Together with (1.4) and (3.6) this implies

n(x) > lim @(x) > lim m(xM).

Tt n—oo

Proposition 1.3 is proved.

Proof of Proposition 1.5Clearly the sequendsup{¢(z) : z€ a"(x)} };»_; iS monotone
decreasing and its limit is larger or equal tham).
Assume that the proposition does not hold. Then

= lim sup{@(2) : z€ a"(x)} > m(x). (3.7)

For each natural numberthere is a trajector\jx{(”) :t=0,...,n} such that

Xg) =% o0") > 1. (38)
Extracting a subsequence and using diagonalization process we obtain that there exists a
strictly increasing sequence of natural numb{alg}‘f:l such that for each integér> 0
there is _

x = lim x™. (3.9)

] —
Clearly,{x };", is a trajectory and
Xo = X. (3.10

By (3.7)-(3.9) for each integer> 0,

o(x) = lim e(¢™) > |

] —0

and
tIirrgo(p(xt) > > m(x).

This contradicts the definition af{x) (see (1.4)). The contradiction we have reached proves
Proposition 1.5.
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4 Proof of Theorem 1.6

Assume that the theorem does not hold. Then for each natural numthere exist an
integerT, > 4n, a trajectory{xt(") }tTLO satisfying

o) > () — 1/n, X" =x (4)
and an integer
Tn €[N, Th—n] (4.2)
such that
Py, Q(a)) > €. (43)
By (1.3) and (4.1) for each integar> 1 and each each integee [0, Ty]
00x) = 0(x") = ()~ 1/n. (4.4)
Letn > 1 be an integer. Set
y” =X for all integers = —Tp, ..., To—Tn. (4.5)

In view of (4.5), (4.3) and (4.1)
P, Q@) > €,

Py ) > T(x) — 1/n. (4.7)
By (4.5) and (4.4) for each integar> 1 each integet € [—1n, T, — Tp),
o) > @(yt") > T(x) — 1/n. (4.8)

Extracting subsequences and using diagonalization process we obtain that there exists a
strictly increasing sequence of natural numbﬁnﬁ}‘};l such that for each integérthere
exists

ye = lim y{". (4.9)
] —00
By (4.9) and (4.6),
p(Yo, Q(a)) > €. (4.10)
In view of (4.8) and (4.9) for each integep 0,
o) = lim o("') > 1(x). (411

Lett be an integer. By (4.1), (4.5), (4.9) and Proposition 1.5

aly) = lim o™ = lim g, )
< limsupsup{@(z) : z€ a" ™ (x)} = ().

] —
Together with (4.11) this implies that
@(yt) = 1(x) for all integerd. (4.12)

By (4.9) and (4.5)yi+1 € a(y;) for all integerst. Combined with (4.12) and the property
(1) this implies that

{ftht w C Q(a).
This contradicts (4.10). The contradiction we have reached proves Theorem 1.6.
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5 Proof of Theorem 1.7

Let {x };-, be a trajectory of andy be its limit point. Thery € Q(a) and
@(y) = lim ¢(x;).

t—oo

If zis also a limit point of{x };* 5, thenz € Q(a) and@(z) = lim_.. ®(x ). By the property
(P)y =z This implies that
y= tIim Xt

Theorem 1.7 is proved.

6 Proof of Theorem 1.9
Recall that= (x) is as guaranteed by Proposition 1.8. Namely,

{F(0} = Q(a)ne *(m(x).

By the property (P) there & > 0 such that the following property holds:
(P1)

if z1,2 € Q(a) satisfy|@(z1) — P(z2)| < 201, thenp(z1,22) < g/4.

Since@ is uniformly continuous orX there isg; € (0,e/4) such that the following
property holds:
(P2) For eaclzy, z, € X satisfyingp(z1,2) < 4¢;,

0(z1) — 9(z2)| < &1/4.
By Proposition 1.5 there is a natural numhgrsuch that
|sup{@(2) : z€ a0 (x)} —T(X)| < &1/2. (6.1)

By Theorem 1.6 there existe (0,8;) and a natural numbér> 2L such that the following
property holds:
(P3) For each integélf > 2L and each trajectoryx }{_, satisfying

Q(xT) > T(Xp) — 8, Xp = X

the inequality
p()(t7Q<a‘)) < €1, t= L?"'vT —L

holds.
Assume that an integdf > 2L and that a trajectoryx }{_, satisfies

Xo =X, Gxr) > T(X) 3. (6.2)
Then by (6.2) and (P3),

p(%,Q(a)) <&, t=L,....T—L. (6.3)
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Assume that an integére [L, T —L|. By (6.3) and (6.2) there Bsuch that
z€ Q(a), p(x,2) < &1. (6.4)
In view of (6.1), (6.2) and the relatidny <L <t <T,

@) > @(xr) > T(X) — 6> TI(X) — 31,

9%) < BX,) < TX) + 81 /2
and
|p(x%) — T(X)| < &1 (6.5)
By (6.4) and (P2),
0(2) — (%)| < 81/4. (6.6)
It follows from Proposition 1.8 and (6.6) that

|9(2) = O(F ()] = [0(2) — T(X)| < |@(2) — @(x0)[ + |@0x) — TUX)| < (3/2)31.
Together with the definition of (x), (P1) and the inclusions F(x) € Q(a) this implies
that

p(F(x),z) <e/4
Together with (6.4) this implies that
PO, F(X) <p(*,2) +p(zF(x) <e1+e/4<eg/2

Theorem 1.9 is proved.
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