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Abstract

In this paper we study global attractors of discrete dispersive dynamical systems gen-
erated by set-valued mappings and the structure of trajectories of these dynamical
systems.
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1 Introduction

In the present paper we study a discrete-time dynamical system introduced in [2, 3] and
studied in [4, 6]. This dynamical system is described by a compact metric space of states
and a transition operator which is set-valued. Dynamical systems theory has been a rapidly
growing area of research which has various applications to physics, engineering, biology
and economics. In this theory one of the goals is to study the asymptotic behavior of the
trajectories of a dynamical system. Usually in the dynamical systems theory a transition
operator is single-valued. In the present paper we study dynamical systems with a set-
valued transition operator. Such dynamical systems describe economical models [2, 3, 5].

Let (X,ρ) be a compact metric space and leta : X → 2X \{ /0} be a set-valued mapping
whose graph

graph(a) = {(x,y) ∈ X×X : y∈ a(x)}
is a closed subset ofX×X. For each nonempty subsetE ⊂ X set

a(E) = ∪{a(x) : x∈ E} anda0(E) = E.
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By induction we definean(E) for any natural numbern and any nonempty subsetE⊂ X as
follows:

an(E) = a(an−1(E)).

In this paper we study convergence and structure of trajectories of the dynamical system
generated by the set-valued mappinga. Following [2, 3] this system is called a discrete
dispersive dynamical system. It should be mentioned that iterations of set-valued operators
were also studied in [1].

First we define a trajectory of this system.
A sequence{xt}∞

t=0 ⊂ X is called a trajectory ofa (or just a trajectory if the mappinga
is understood) ifxt+1 ∈ a(xt) for all integerst ≥ 0.

Put
Ω(a) = {z∈ X : for eachε > 0 there is a trajectory{xt}∞

t=0

such thatliminf
t→∞

ρ(z,xt)≤ ε}. (1.1)

Clearly,Ω(a) is a nonempty closed subset of(X,ρ). In the present paper the setΩ(a) will
be called a global attractor ofa. Note that in [2-4]Ω(a) was called a turnpike set ofa. This
terminology was motivated by mathematical economics [3].

For eachx∈ X and each nonempty closed subsetE ⊂ X put

ρ(x,E) = inf{ρ(x,y) : y∈ E}.
It is clear that for each trajectory{xt}∞

t=0 we havelimt→∞ ρ(xt ,Ω(a)) = 0.
Let φ : X → R1 be a continuous function such that

φ(z)≥ 0 for all z∈ X, (1.2)

φ(y)≤ φ(x) for all x∈ X and ally∈ a(x). (1.3)

It is clear that the functionφ is a Lyapunov function for the dynamical system generated
by the mappinga. Note that in [6] we consider a particular case of the dynamical system
considered here with the functionφ identically zero. In [7] we generalize the results of [6]
for dynamical systems generated by mappingsa : K → 2X \{ /0}, whereK is a closed subset
of X. It should be mentioned that in mathematical economics usuallyX is a subset of the
finite-dimensional Euclidean space andφ is a linear functional on this space [3, 5].

The following theorem is our first main result. It will be proved in Section 2.

Theorem 1.1. The following properties are equivalent:
(1) If a sequence{xt}∞

t=−∞ ⊂X satisfiesxt+1∈ a(xt) andφ(xt+1) = φ(xt) for all integers
t ,then

{xt}∞
t=−∞ ⊂Ω(a).

(2) For eachε > 0 there exists a natural numberT(ε) such that for each trajectory
{xt}∞

t=0 ⊂ X satisfyingφ(xt) = φ(xt+1) for all integerst ≥ 0 the inequalityρ(xt ,Ω(a)) ≤ ε
holds for all integerst ≥ T(ε).

For eachx∈ X set

π(x) = sup{ lim
t→∞

φ(xt) : {xt}∞
t=0 is a trajctory andx0 = x}. (1.4)

The following two results will be proved in Section 3.
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Proposition 1.2. Let x∈ X. Then there is a trajectory{xt}∞
t=0 such thatx0 = x andπ(x) =

limt→∞ φ(xt).

Proposition 1.3. The functionπ : X → R1 is upper semicontinuous.

It is clear that for eachx∈ X and eachy∈ a(x)

π(y)≤ π(x), (1.5)

for eachx∈ X
π(x)≤ φ(x) (1.6)

and that for eachx∈ X and each natural numbern

π(x)≤ sup{φ(y) : y∈ an(x)}. (1.7)

It is easy to see that the following proposition holds.

Proposition 1.4. Letx∈ X and{xt}∞
t=0 ⊂ X be a trajectory such thatx0 = x. Then

lim
t→∞

φ(xt) = π(x)

if and only if for each integert ≥ 0

π(xt+1) = max{π(z) : z∈ a(xt)}.

The following result will also be proved in Section 3.

Proposition 1.5. Letx∈ X. Then

π(x) = lim
n→∞

sup{φ(y) : ∈ an(x)}.

The following theorem is our second main result which will be proved in Section 4.

Theorem 1.6. Assume that the property (1) of Theorem 1.1 holds.
Let ε > 0 andx∈ X. Then there existδ > 0 and a natural numberL such that for each

integerT > 2L and each trajectory{xt}T
t=0 satisfying

x0 = x andφ(xT)≥ π(x0)−δ

the following inequality holds:

ρ(xt ,Ω(a))≤ ε, t = L, . . . ,T−L.

In the paper we use the following property.
(P) If x1,x2 ∈Ω(a) andφ(x1) = φ(x2), thenx1 = x2.
Note that the property (P) holds for many models of economic dynamics for whichΩ(a)

is a subinterval of a line [3, 5].
The following theorem will be proved in Section 5.
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Theorem 1.7. Assume that the property (P) holds. Then each trajectory ofa converges to
an element ofΩ(a).

It is not difficult to see that the following result holds.

Proposition 1.8. Assume that the property (P) holds and that{xt}∞
t=0 is a trajectory ofa

such thatlimt→∞ φ(xt) = π(x). Then by Theorem 1.7 there exists

F(x) = lim
t→∞

xt ,

the equality
φ(F(x)) = lim

t→∞
φ(xt) = π(x)

holds and moreover,F(x) is a unique element ofΩ(a) belonging toφ−1(π(x)).

In the sequel if the property (P) holds, then for eachx∈X we denote byF(x) the unique
element ofΩ(a)∩φ−1(π(x)).

The following turnpike result [2, 4] describes the structure of optimal (with respect to
the functionalφ) trajectories ofa. It will be proved in Section 6.

Theorem 1.9. Assume that the property (P) and the property (1) of Theorem 1.1 hold. Let
ε > 0 andx∈ X. Then there existδ > 0 and a natural numberL such that for each integer
T > 2L and each trajectory{xt}T

t=0 satisfying

x0 = x andφ(xT)≥ π(x)−δ

the following inequality holds:

ρ(xt ,F(x))≤ ε, t = L, . . . ,T−L.

2 Proof of Theorem 1.1

It is clear that the property (2) implies the property (1).
Let us show that the property (1) implies the property (2). Assume that the property (1)

holds and assume that the property (2) does not hold. Then there isε > 0 such that for each
natural numbern there exist a trajectory{x(n)

t }∞
t=0 and an integerτn ≥ n such that

ρ(x(n)
τn ,Ω(a)) > ε,

φ(x(n)
t ) = φ(x(n)

0 ), t = 0,1, . . . . (2.1)

Let n≥ 1 be an integer. Define

y(n)
t = x(n)

t+τn
for all integerst ≥−τn. (2.2)

Clearly,

y(n)
0 = x(n)

τn , n = 1,2, . . . . (2.3)
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Extracting subsequences and using diagonalization process we obtain that there exists a
strictly increasing sequence of natural numbers{n j}∞

j=1 such that for each integert there is

yt = lim
j→∞

y
(n j )
t . (2.4)

It is not difficult to see that

yt+1 ∈ a(yt) andφ(yt) = φ(yt+1) for all integerst. (2.5)

In view of (2.1), (2.3) and (2.4),
ρ(y0,Ω(a))≥ ε. (2.6)

By (2.5) and property (1),{yt}∞
t=−∞ ⊂ Ω(a). This contradicts (2.6). The contradiction we

have reached proves that (1) implies (2). Theorem 1.1 is proved.

3 Proofs of Propositions 1.2, 1.3 and 1.5

Proof of Proposition 1.2.It is clear that for each integern≥ 1 there is a trajectory{x(n)
t }∞

t=0
such that

x(n)
0 = x, lim

t→∞
φ(x(n)

t )≥ π(x)−1/n. (3.1)

Extracting subsequences and using diagonalization process we obtain that there exists a
strictly increasing sequence of natural numbers{n j}∞

j=1 such that for each integert ≥ 0
there is

yt = lim
j→∞

x
(n j )
t . (3.2)

Clearly,{yt}∞
t=0 is a trajectory andy0 = x. By (3.2) and (3.1) for each integers≥ 0

φ(ys) = lim
j→∞

φ(x(n j )
s )≥ limsup

j→∞
lim
t→∞

φ(x(n j )
t )

≥ lim
j→∞

π(x)−n−1
j = π(x).

Proposition 1.2 is proved.

Proof of Proposition 1.3.Let

x∈ X ,{x(n)}∞
n=1 ⊂ X, lim

n→∞
x(n) = x. (3.3)

We show that
π(x)≥ limsup

n→∞
π(x(n)).

We may assume without loss of generality that there islimn→∞ π(x(n)).
By Proposition 1.2 for each integern≥ 1 there is a trajectory{x(n)

t }∞
t=0 such that for

each integern≥ 1

x(n)
0 = x(n), lim

t→∞
φ(x(n)

t ) = π(x(n)
0 ) = π(x(n)). (3.4)
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Extracting subsequences and using diagonalization process we obtain that there is a strictly
increasing sequence of natural numbers{n j}∞

j=1 such that for each integert ≥ 0 there is

xt = lim
j→∞

x
(n j )
t . (3.5)

Clearly,{xt)∞
t=0 is a trajectory and

x0 = lim
j→∞

x
(n j )
0 = lim

j→∞
x(n j ) = x. (3.6)

By (3.5) and (3.4) for each integert ≥ 0

φ(xt) = lim
j→∞

φ(x(n j )
t )≥ limsup

j→∞
lim
s→∞

φ(x(n j )
s ) = limsup

j→∞
π(x(n)).

Together with (1.4) and (3.6) this implies

π(x)≥ lim
t→∞

φ(xt)≥ lim
n→∞

π(x(n)).

Proposition 1.3 is proved.

Proof of Proposition 1.5.Clearly the sequence{sup{φ(z) : z∈ an(x)}}∞
n=1 is monotone

decreasing and its limit is larger or equal thanπ(x).
Assume that the proposition does not hold. Then

l := lim
n→∞

sup{φ(z) : z∈ an(x)}> π(x). (3.7)

For each natural numbern there is a trajectory{x(n)
t : t = 0, . . . ,n} such that

x(n)
0 = x, φ(x(n)

n )≥ l . (3.8)

Extracting a subsequence and using diagonalization process we obtain that there exists a
strictly increasing sequence of natural numbers{n j}∞

j=1 such that for each integert ≥ 0
there is

xt = lim
j→∞

x
(n j )
t . (3.9)

Clearly,{xt}∞
t=0 is a trajectory and

x0 = x. (3.10)

By (3.7)-(3.9) for each integert ≥ 0,

φ(xt) = lim
j→∞

φ(x(n j )
t )≥ l

and
lim
t→∞

φ(xt)≥ l > π(x).

This contradicts the definition ofπ(x) (see (1.4)). The contradiction we have reached proves
Proposition 1.5.
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4 Proof of Theorem 1.6

Assume that the theorem does not hold. Then for each natural numbern there exist an
integerTn > 4n, a trajectory{x(n)

t }Tn
t=0 satisfying

φ(x(n)
Tn

)≥ π(x)−1/n, x(n)
0 = x (4.1)

and an integer
τn ∈ [n,Tn−n] (4.2)

such that
ρ(x(n)

τn ,Ω(a)) > ε. (4.3)

By (1.3) and (4.1) for each integern≥ 1 and each each integert ∈ [0,Tn]

φ(x)≥ φ(x(n)
t )≥ π(x)−1/n. (4.4)

Let n≥ 1 be an integer. Set

y(n)
t = x(n)

t+τn
for all integerst =−τn, . . . ,Tn− τn. (4.5)

In view of (4.5), (4.3) and (4.1)
ρ(y(n)

0 ,Ω(a)) > ε, (4.6)

φ(y(n)
Tn−τn

)≥ π(x)−1/n. (4.7)

By (4.5) and (4.4) for each integern≥ 1 each integert ∈ [−τn,Tn− τn],

φ(x)≥ φ(y(n)
t )≥ π(x)−1/n. (4.8)

Extracting subsequences and using diagonalization process we obtain that there exists a
strictly increasing sequence of natural numbers{n j}∞

j=1 such that for each integert there
exists

yt = lim
j→∞

y
(n j )
t . (4.9)

By (4.9) and (4.6),
ρ(y0,Ω(a))≥ ε. (4.10)

In view of (4.8) and (4.9) for each integert ≥ 0,

φ(yt) = lim
j→∞

φ(y(n j )
t )≥ π(x). (4.11)

Let t be an integer. By (4.1), (4.5), (4.9) and Proposition 1.5

φ(yt) = lim
j→∞

φ(y(n j )
t ) = lim

j→∞
φ(x(n j )

t+τnj
)

≤ limsup
j→∞

sup{φ(z) : z∈ at+τnj (x)}= π(x).

Together with (4.11) this implies that

φ(yt) = π(x) for all integerst. (4.12)

By (4.9) and (4.5),yt+1 ∈ a(yt) for all integerst. Combined with (4.12) and the property
(1) this implies that

{yt}∞
t=−∞ ⊂Ω(a).

This contradicts (4.10). The contradiction we have reached proves Theorem 1.6.
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5 Proof of Theorem 1.7

Let {xt}∞
t=0 be a trajectory ofa andy be its limit point. Theny∈Ω(a) and

φ(y) = lim
t→∞

φ(xt).

If z is also a limit point of{xt}∞
t=0, thenz∈Ω(a) andφ(z) = limt→∞ φ(xt). By the property

(P)y = z. This implies that
y = lim

t→∞
xt .

Theorem 1.7 is proved.

6 Proof of Theorem 1.9

Recall thatF(x) is as guaranteed by Proposition 1.8. Namely,

{F(x)}= Ω(a)∩φ−1(π(x)).

By the property (P) there isδ1 > 0 such that the following property holds:
(P1)

if z1,z2 ∈Ω(a) satisfy|φ(z1)−φ(z2)| ≤ 2δ1, thenρ(z1,z2)≤ ε/4.

Sinceφ is uniformly continuous onX there isε1 ∈ (0,ε/4) such that the following
property holds:

(P2) For eachz1,z2 ∈ X satisfyingρ(z1,z2)≤ 4ε1,

|φ(z1)−φ(z2)| ≤ δ1/4.

By Proposition 1.5 there is a natural numberL0 such that

|sup{φ(z) : z∈ aL0(x)}−π(x)| ≤ δ1/2. (6.1)

By Theorem 1.6 there existδ∈ (0,δ1) and a natural numberL > 2L0 such that the following
property holds:

(P3) For each integerT > 2L and each trajectory{xt}T
t=0 satisfying

φ(xT)≥ π(x0)−δ, x0 = x

the inequality
ρ(xt ,Ω(a))≤ ε1, t = L, . . . ,T−L

holds.
Assume that an integerT > 2L and that a trajectory{xt}T

t=0 satisfies

x0 = x, φ(xT)≥ π(x)−δ. (6.2)

Then by (6.2) and (P3),

ρ(xt ,Ω(a))≤ ε1, t = L, . . . ,T−L. (6.3)
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Assume that an integert ∈ [L,T−L]. By (6.3) and (6.2) there iszsuch that

z∈Ω(a), ρ(xt ,z)≤ ε1. (6.4)

In view of (6.1), (6.2) and the relationL0 < L≤ t ≤ T,

φ(xt)≥ φ(xT)≥ π(x)−δ≥ π(x)−δ1,

φ(xt)≤ φ(xL0)≤ π(x)+δ1/2

and
|φ(xt)−π(x)| ≤ δ1. (6.5)

By (6.4) and (P2),
|φ(z)−φ(xt)| ≤ δ1/4. (6.6)

It follows from Proposition 1.8 and (6.6) that

|φ(z)−φ(F(x))|= |φ(z)−π(x)| ≤ |φ(z)−φ(xt)|+ |φ(xt)−π(x)| ≤ (3/2)δ1.

Together with the definition ofF(x), (P1) and the inclusionsz, F(x) ∈ Ω(a) this implies
that

ρ(F(x),z)≤ ε/4.

Together with (6.4) this implies that

ρ(xt ,F(x))≤ ρ(xt ,z)+ρ(z,F(x))≤ ε1 + ε/4 < ε/2.

Theorem 1.9 is proved.
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