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Abstract We present a novel approach to behaviour recognition in visual surveillance under which
scene events corresponding to object behaviours are modelled as groups of atfiliated autonomous
pixel-level events automatically detected using Pixel Change Histories (PCHs). The Expectation-
Maximisation (EM) algorithm is employed to cluster these pixel-level events into semantically
more meaningful blob-level scene events, with automatic model order selection using modified
Minimum Description Length (MDL). The method i1s computationally etficient allowing for real-
time performance. Experiments are presented to demonstrate the efiectiveness of recognmsing these
scene events without object trajectory matching.
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1 Problem statement

Understanding visual behaviour captured in CCTV f{ootage is fundamental in visual
surveillance. We consider that visual behaviours of objects are underpinned by scene
events that are defined by groups of spatio-temporally affiliated autonomous pixel-level e-
‘1) By autonomous, we imply that both the number of these events and their wherea-
bout in the scene are to be determined automatically bottom-up without top-down labelling
using predefined hypotheses.

Over the past decade, numerous efforts have been made to model object beha-
viours-> %1, Most of which heavily relied upon segmentation and tracking of objects in the
scene ", This is due to the fact that visual behaviours have traditionally been modelled
through matching the trajectories of objects observed in a scene, either statically as tem-
plates or dynamically as state machines. This process critically relies upon the accuracy
and consistency of object segmentation and tracking which are often ill-posed in a typical
surveillance scenario due to the presence of multiple objects, occlusion, drastic lighting
change and discontinuous motion, all contributing to the {ragmentation and inconsistent
labelling of object trajectories.

More recently, several attempts have been made to circumvent the problems intrinsic
to the trajectory based matching approach to behaviour recognition. Instead of computing
trajectories through object tracking, these methods focus on discrete semantic event corre-
lation based on localised pixel-level event detection through learning'!"'*~'*! In particular,
object grouping and segmentation were avoided. However, these purely pixel-level based
approaches can be sensitive to noise due to the lack of modelling spatial correlations in the
image space. They can also be computationally expensive due to the large number of e-
vents to be monitored simultaneously.

To address this problem, we present in this work a method for learning higher-level
scene events given pixel-level autonomous events but crucially without the need for mate-
hing object trajectories. In Section 2, Pixel Change History (PCH) 1s introduced for pixel-
level events detection. PCHs are computed as local intensity temporal histories of individu-
al pixels. Signilicantly, they can be computed very etticiently in real-time compared to oth-
er techniques such as multi-scale temporal wavelets'?*!., PCHs are combined with an adap-
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tive mixture background model to form a representation for detecting and classifying pixel-
level events. They also provide the basis for computing higher-level scene events with clea-
rer semantics, In Section 3, blob-level scene events are computed using unsupervised clus-
tering based on Expectation-Maximisation (EM) with automatic model order selection
ustnga moditied Minimum Descriptive Length (MDL) criterion. Experiments are presented
in Section 4 to demonstrate that semantically more meaningful scene events were recog-
nised consistently without object trajectory matching. Conclusions are drawn in Section 5.

2 Detecting pixel-level autonomous events

Our aim here 1s to define a suitable multi-scale temporal representation that is capable
of distinguishing at the pixel level temporal scene change of different durations. Due to the
large number of pixel-level changes to be monitored in each image iframe, the representa-
tion must also be 1inexpensive for real-time performance. Temporal wavelets were adopted
for such a multi-scale analysis-®!, However, the computational cost for such multi-scale
temporal wavelets at the pixel level 1s very expensive. Alternatively, Motion History Im-
age (MHI) was introduced to detect visual changes by keeping a history ot change which
decays over time. It has been used to build holistic motion templates for the recognition of
human movement-'’! and moving object tracking!'®’, An important advantage of MHI is
that although 1t 1s a representation of the history of pixel-level changes, only one previous
frame needs to be stored. It is also easy to implement with minimal extra computational
cost. However, at each pixel, explicit information about its past 1s mostly lost in MHI
when current change 1s updated to the model. This is because that a change occurring in
the current frame will make the MHI *jump’ to its maximal value. To overcome this prob-
lem, Pixel Energy History was introduced to measure the mean magnitude of pixel-level
temporal energy over a period of time defined by a backward window''*'. The size of the
backward window determines the number of frames Chistory) to be stored. However, this
approach suffers from sensitivity to noise and also being relatively expensive to compute.
2.1 Computing pixel change history (PCH)

Here we propose a new representation, Pixel Change History (PCH), for describing
multi-scale temporal change at the pixel-level based on computing both the Motion History
Image and Pixel Signal Energy. It is important to point out that this measurement is dif-
ferent from that computed by multi-scale spatio-temporal filtering widely adopted for esti-

mating apparent image motion such as optic flow. No spatio-temporal correspondence is

established. The PCH of a pixel is delined as:
min(Pg!T<Iﬂyat“_ ].)

255
S

max(P;*r(x,y,t— 1) 255,0), otherwise

k_ T
where P, .(x,y,t) is the PCH {for a pixel at (x,y), D(x,y,t) is a binary image indicating
the foreground region, { is an accumulation factor and z is a decay factor. When D(x,y,t)
=1, instead of jumping to the maximum value, the value of a PCH increases gradually ac-
cording to the accumulation factor. When no significant pixel-level visual change is ob-
served in the current frame, pixel (x,vy) will be treated as part of background and the cor-
responding pixel change history starts to decay. The speed of decay 1s controlled by the de-
cay factor {. The accumulation factor and the decay factor give us the flexibility of charac-
terising the pixel-level change over time. In particular, large values of ¢ and ¢z imply that
the history of visual change at (x,vy) 1s considered over a longer backward temporal win-
dow. In the meantime, the ratio between ¢ and 7 determines how much weight is put on
the recent change.

We consider that Motion History Image is a special case of PCHs in that a combined
PCHs of all the pixels over a sequence of images is equivalent to the Motion History Image

9255), if DCx,y,t) =1

P;,T(Iayat) — < (1)
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of the image sequence when ¢ is set to 1. Furthermore, similar to that of Pixel Signal En-
ergy-'*, a PCH also captures a zero order pixel-level change, i. e. the mean magnitude of
change over time. In addition, it is capable of capturing higher order temporal changes oc-
curred at a pixel over time including speed, trend (uphill or downhill) and the phase of a
change,

2.2 Pixel-level event detection

The significance of any localised pixel-level change depends on the underlying object
activities and behaviours they are associated with. We ultimately wish to have a completely
automated method to extract scene level semantics from local pixel-level visual change. We
begin by considering the problem of detecting and differentiating pixel-level changes that
are semantically significant at the scene level. For example, in a busy scene in the public
place such as in a supermarket. we are interested in automatically detecting and classitying
localised and persistent movement of objects (e. g. people stop and browse) and changes to
the background (e. g. the introduction of new objects into the scene or the removal ot ex-
isting objects from the scene). To this end, we wish to compute pixel-level events using
both adaptive mixture background modelling and PCHs.

Adaptive mixture background models are commonly used to memorise and maintain
the background color distribution of a dynamic scene™”''*). The major strength of such a
model is its insensitivity to persistent movements of background objects such as waving
tree leaves. However, an adaptive mixture background model cannot differentiate, al-
though may still be able to detect the presence of, pixel-level changes caused by different
types of scene events with different significance. In general, pixel-level change can be

1) short term caused by constant moving objects such as the waving tree leaves,

2) median term caused by the introduction of novel dynamics (of moving object),

3) long term caused by either the introduction of novel static objects into the scene, or
the removal of existing objects from the scene.

We consider that only median and long term changes are of semantical signiticance and re-
fer them as pixel-level events.

If the binary image D(x,y,t) in Equation (1) is given by the temporal dilference be-
tween the current frame and the dynamic background maintained by an adaptive mixture
model, then a PCH based foreground model can be introduced to not only detect the median and
long term pixel-level changes but also filter out the short term changes associated with the back-
ground. More precisely, we delimitate pixel-level events as foreground pixels that satisty:

P, (x,y,t) > Ty (2)
where Ty 1s a threshold. We can further detect those events that are assoctated median
term change i

| I(x,yst) — ICx,v,t — 1) | > Ty (3)
where Ty 1s a threshold. Events that do not satisfy the above condition are caused by long
term change such as the introduction of static novel objects into the scene or the removal of
existing objects from the scene. For example, a pixel-level event caused by a browsing
person and a pixel-level event caused by the removal of an object from a shelf in a shopping
mall may have very similar PCH value, but the tormer event satisties Condition (3) above
while the latter does not, thus they are detected as different classes of events.

3 Recognising scene events

Recognition of scene level events for behaviour profiling has been attempted directly
based on pixel-level events'®!, However, the large number of events detected and the
noise sensitivity caused by ignoring spatial correlation among pixel-level events limit the
success of such an approach. To address this problem, we consider unsupervised cluste-
ring (grouping) of pixel-level events not only according to spatial proximity but also by
temporal correlation.
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3.1 Grouping of pixel-level events

Let us first consider grouping pixel-level events spatially. The connected component
method 1s adopted to group the detected pixel-level events into blobs, represented by
bounding boxes. Small blobs are removed by a size filter. Those remaining blobs with an
average PCH (of the PCHs for all the pixels within each blob) larger than a threshold T
are considered as scene events, Each scene event is given by a 6-dimensional feature vector;

 x.ys wyhy R, 4R, (4)

where (x,y) 1s the central position of the corresponding bounding box in the image, (w,h)
ts the bounding box dimension, R, represents the percentage of the bounding box occupied
by pixel-level events and R,, represents the percentage of those pixel-level events which
satisty Condition (3).
3.2 Scene event recognition using unsupervised clustering

Given detected scene events, we wish to automatically cluster them into ditferent clas-
ses with corresponding semantics. This 1s performed by unsupervised clustering in the 6D
feature space using Expectation-Maximisation (EM) with automatic model order selection
using modified Minimum Description Length (MDL) principlet*®?,

Suppose there are n independent training data {v,,***,v,}, belonging to class w and

w={1,,K}. The estimated model order K by a standard MDL algorithm is given by:

]

K = argmin{— Snf Gy, | wib(K)) + 5 () (5)

where f(v;|w,8(K)) is the class-conditional density function, 9(K) are the mixture pa-
rameters estimated by a maximum likelihood algorithm such as EM and £(K) 1s the number
of parameters needed for a K-component mixture, If full covariance matrix is used, we have:

2
(K)=K—1+¢ erwK (6)

where d 1s the dimensionality of the feature space.

The first term in the bracket of Equation (5) corresponds to maximum likelihood,
measuring the system entropy, while the second term measures the number of bits needed
to encode the model parameters, serving as a penalty term for model complexity (1. e. very
large K). One major problem with the standard MDL is that each component in the mix-
ture can only ‘see’ the m,;n subset of the data that has already been clustered to this com-
ponent instead of the whole data set, where m; 1s the weight tor the j,, component. To o-

vercome this problem, we adopt a modified MDL measure?®! with the model order K esti-
mated as:

. K d* +3d

K = argmin;—“ Elnf(yf/waé(K)) | ; lln(n) | 1 (7)
\ =1

The improvement from this modification over the standard MDL approach can be seen in

iy,

Fig. 1. The resulting K gives the number of scene event classes and in a recognition
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Fig.1 Automatic model order selection using MDL and modified MDL. Model orders were considered in
a range of (1,15)
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process, a scene event 1s classified as one of the K with minimal Mahalanobis distance be-
tween the event and the mean of the cluster in the feature space.

4 Experiments

Experiments were conducted on a simulated ‘shopping scenario’ captured on a 20 mi-
nutes video at 25Hz. Some typical scenes and automatically detected pixel-level scene e-
vents are shown in Fig. 2. The °scene’ consists of a shop keeper sat behind a table on the
right side of the view. Drink cans were laid out on a display table. Shoppers entered {rom
the left and either browsed without paying or took a can and paid for it. An abnormal be-
haviour involves taking a can and leaving without paying. The data used for this experi-
ment were sampled at 8 frames per second with total number of 5699 frames ol images
sized 320X 240 pixels.

Two different approaches adopted for event detection are reterred as Approach I and
Approach 11 respectively as follows. For Approach 1, only those foreground pixels that
satisfy Condition (2) are detected as pixel-level events and all the blobs formed are recog-
nised as scene events. For Approach 11, all the foreground pixels are detected as pixel-level
events and only those blobs with average Pixel Change History values larger than Ty are
recognised as scene events. For the adaptive Gaussian mixture background model, the pa-
rameters were. learning rate ¢=0. 002, background model threshold T=0. 7, six Gaussian
components were maintained and a diagonal co-variance matrix was adopted. The parame-
ters for pixel-level event detection were: =12, r=10, Ty=180, Ty =10 and Ty =100.
Only those Blobs whose sizes were larger than 40 were considered. It was observed that u-
sing both approaches, localised movements such as “shopper paying” and the removal of
background objects such as *“can taken” were recognised automatically as scene events
whist the occurrences of passing-by shoppers were ignored. For the whole 20 minutes sce-
nario, 5019 and 4134 scene events were recognised using Approach I and Approach II re-
spectively. Some examples of detected events are shown in Fig. 2. The algorithm was run
on an Athelon 1. 5G dual processor platform at an average speed of 6 Hz without optimisation.

Unsupervised learning was performed on the first 3000 frames, where 2459 and 1922
scene events were detected using Approach I and Approach 1l respectively. EM was em-
ployed to obtain the parameters of the mixture model. It was combined with a modified
MDI. to determine the number of the classes of scene events and their whereabout. Both
Approach I or Approach 11 automatically identified {ive different classes of scene events ac-
cording to their location and temporal order through unsupecrvised clustering. They were
labelled as “can taken”, “entering and leaving”, “shop keeper”, “browsing” and *pay-
ing”. For comparison, automatic model order selection using standard MDI. 1s also shown
in Fig, 1.

A testing set was composed using the rest of the frames from the 20 minutes video.
The detected and classified autonomous events from this testing set were then projected
onto the first three principal components of the 6D feature space (shown in Fig. 3). The
spatial distributions of each class of events were illustrated by only showing their (x, v)
co-ordinates of the central position of the corresponding bounding boxes in Figures 4,5,6,
7,8 and 9.

The model was used to perform online scene event recognition. Fig. 10 shows an ex-
ample frame of the process. The extra computational cost was negligible and the algorithm
still ran at 6 Hz. For performance evaluation, the ground truth was labelled manually (see
(a) and (b) in Fig. 11). Recognised events in each {rame are shown in (¢), (d), (e) and
(f) of Fig. 11. To achieve a degree of robustness in event detection and classification, an e-
vent of a particular class was considered as presence if it has been recognised over a number
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of consecutive frames. Then, events were counted only once when they happened continu-
ously. The detection rates and false detections of our algorithm in both individual classes
of events and overall were measured against the ground truth and are shown in Table 1.

L - .-.}' b J fs.
e

:.. -"Apra{:h [

Approach 11

Fig. 2 Autonomous pixel-level event detection in a simulated shopping scenario. The figures in the top
three rows from left to right, top to bottom are the typical scenes of the shopping scenario,
which were sampled from frame 110 to frame 330 of the 20 minutes video. The figures in the
fourth and the tifth rows are a number of events detected using Approach I and Approach II re-
spectively. Pixel-level events that satisfied Condition (3) in Section 2. 2 were highlighted in
white and those that did not were in grey. Recognised scene events were indicated with bounding boxes
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Fig. 3 Event detection and classification of the testing set in the 6-dimeensional feature space
(the first 3 principal components are shown)
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Fig. 4 Event detection and classification of the testing set 1n the image space. Top: 2560 scene events
( not sustained) were detected using Approach-1, among which 929 were classified as“can taken”
events, 283 as “entering and leaving” events, 293 as“shop keeper” events, 522 as “browsing” e-
vents and 533 as “paying” events. Bottom: 2212 scene events were detected using Approach-II,
among which 1116 were classified as “can taken” events, 33 as “entering and leaving” events,
316 as “shop keeper” events., 406 as “browsing” events and 341 as “paying” events, Detected
individual events of ditferent classes are shown in Figures 6.7,8.9 and 10
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Fig. 5 Detected “can taken™ events in the testing set. Top: 929 by Approach-1. Bottom:
1116 by Approach-II
0.8 1 . - 0.8
* Entering & leaving Entering & leaving
06 T 0.6+
#0487 o 0.4F e
3 %ﬁﬁ g e od ¥
0.20 -+ 0.2}
U5 0.2 0.4 0.6 0.8 1.0 U8 02 04 0.6 0.8 L0
A A
Fig. 6 Detected “entering and leaving” events in the testing set. Top: 283 by Approach-I,
Bottom: 293 by Approach-I1I
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Fig. 7 Detected “shop keeper” events in the testing set
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Fig. 8 Detected “browinig” events in the testing set. Top: 522 by Approach-1. Bottom:
406 by Approach-II
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Fig. 9 Detected “paying” events in the testing set. Top: 533 by Approach-1. Bottom: 341
by Approach-I1

Fig. 10 Recognition of scene events at frame 3542 of the “can shop” sequence using Approach 1. The
left image shows the input frame and the right image depicts the output from the event recogni-
tion model. Events of “paying”, “can taken” and “shop keeper” were indicated bounding boxes
of different shades. Filled rectangular bins of the same shades were flashed out at the top-left
corner of the screen to indicate the occurrences of events

Table 1 Event recognition rates and false detections. In the table, ‘N’ counts for the number of sustained
events rather than the instantaneous events accumulated over time, 1. e. a set of events ot the
same class detected continuously over successive frames was counted as 1 event of that class.
“App. [’ and *App. I’ denote Approach I and Approach II respectively

Training set Testing set
Events B Det, rate False det. Det. rate False det.
N App. 1(%) App. 11(%) App.1 App.ll N App. 1(%) App. IIC%) App.1 App. 11

Can taken 7 86 100 0 0 10 100 100 0 0
Ent, & lev. 18 67 56 8 I 18 61 6 3 0
Shop keeper 12 75 67 1 0 12 33 50 | |
Browsing 10 60 100 3 / 8 63 100 9 10
Paying 8 100 o 6 0 6 100 100 6 1
Overall 55 75 75 18 8 o4 67 oif 19 12
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Fig. 11 Compare the ground truth with the recognised blob-level scene events. Each “can taken” event
was counted for 100 frames in the ground truth

Results shown in Table 1 illustrate that scene events of “can taken” and “paying” were
recognised accurately using both approaches, as was “browsing” using Approach II. The
reason for the low recognition rate of “shop keeper” events was that the movements of the
shop keeper were {requently occluded by the shoppers. Some shoppers entered and left the
view without slowing down, thus no localised movement (median term change) was recog-
nised in the scene, which resulted in the poor recognition rate of “entering and leaving”
Other errors were mainly in the recognition of “paying” and “browsing” events. With Ap-
proach I, many “browsing” events were mistakenly recognised as *“paying”, leading to low

¥

recognition rate for *“browsing” and large number of false recognitions for “ paymg With
Approach 11, the starting and ending phases of “Paying”, as well as some “entering and
Leaving” events were frequently recognised as “browsing”. leading to a large number of
false recognitions of “browsing”. A fusion of the two approaches could give more accurate
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recognition,

It was noticed that many “paying” and “browsing” events were spatially very close
and featured similar movements. This will potentially pose a problem for the current mod-
el. For example, when a shopper stands in front of the shop keeper, it i1s impossible to tell
whether he 1s going to pay or he is just browsing unless one takes into consideration
whether any drink can was taken a moment ago. Even when the shopper has a can in
hand, he still can walk back and continue browsing without paying. That i1s normal in any
real shopping scenarto. This suggests that one should not expect the system to resolve this
ambiguity unless higher order spatio-temporal correlations among different classes of
eventscan be fully explored. These correlations could be both spatial and temporal. The
explicit modelling of such correlations among different classes of scene events provides the
means for automatic extraction of high level semantics. This is our ongoing work.

5 Conclusion

To summarise, we present 1n this paper a novel approach to behaviour recognition 1n
visual surveillance under which scene events and object behaviours are modelled as groups
of affiliated autonomous pixel-level events automatically detected at the pixel-level using
Pixel Change Histories (PCHs). PCH i1s employed as a more etfective representation for
modelling autonomous visual events at the pixel-level. The Expectation-Maximisation
(EM) algorithm is employed to cluster these autonomous pixel-level events into semanti-
cally more meaningful blob-level scene events, with automatic model order selection using
modified Minimum Description Length (MDL), The method i1s computationally efficient
allowing for real-time pertformance. Our experiments show that such scene events can pro-
vide semantically meaningful interpretations without the need for object trajectory matc-

hing. The work done so far only represents the first step toward a more comprehensive
model for behaviour recognition. Our future work will be focused on exploiting higher or-
der spatio-temporal affiliations among different classes of events for automatic extraction ot
higher-level scene semantics.

References

1 Gong S, Ng J, Sherrah J. On the semantics of visual behaviour,structured events and trajectories of human action.
Image and Vision Computing , 2002,20(12) . 873 ~888
2 Aggarwal ] K,Cal Q. Human motion analysis;: A review. Computer Vision and Image Understanding , 1999, 73(3) .
428~440
3  Gavrila D M. The visual analysis of human movement: A survey, Computer Vision and Image Understanding ,1999,
73(1).82~98
4  Buxton H, Gong S. Visual surveillance 1n a dynamic and uncertain world. Arti ficial Intelligence, 1995,78(3) ;431
~ 459
5 Moeslund T, Granum E. A survey of computer vision-based human motion capture, Computer Vision and Image
Understanding , 2001,81(3):231~268
6 Gong S, Buxton H. On the visual expectations of moving objects; A probabilistic approac with augmented hidden
Markov models. In;Proceedings of European Conference on Artificial Intelligence, Austria; Vienna, 1992, 781~ 786
7 Haritaoglu I, Harwood D,Davis L. S. W4 ;Real-time surveillance of people and their activities. IEEFE Transactions on
Pattern Analysis and Machine Intelligence, 2000,22(8) :809~830
8§ Intille S, Davis J.,Bobick A. Real-time closed-world tracking. In: IEEE Conference on Computer Vision and Pattern
Recognition, 1997, 697 ~703
8 McKenna S, Jabn S, Duric Z, Rosenfeld A, Wechsler H. Tracking group of peaple. Computer Vision and Image
Understanding ,2000,80(1) :42~56
10 Stauffer C, Grimson W. l.earning patterns of activity using real-time tracking, IEEFE Transactions on Pattern Analy-
sis and Machine Intelligence, 2000,22(8).747~758
11 Wada T, Matsuyama T, Multiobject behavior recognition by event driven selective attention method. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence ,2000,22(8) ;873 ~887
12  Sherrah J, Gong S. Continuous global evidence-based Bayesian modality fusion for simultaneous tracking of multiple
objects. In; IEEE International Conference on Computer Vision,2001. 42~49




No. 3 sShaogang ong et al. . dScene lvent Recognition Without | racking 331

13  Sherrah J, Gong S, Tracking discontinuous motion using Bayesian inference. In; European Conference on Computer
Vision,2000. 150~166
14 NgJ, Gong S. Learning pixel-wise signal energy for understanding semantics, In: Briush Machine Vision Conference,

2001, 6956~704

15 Sherrah J. Gong S. Automated detection of localised visual events over varying temporal scales. In; European Work-
shop on Advanced Video-based Surveillance System, 2001

16 Chomat O, Martin J,Crowley J. A probabilistic sensor {or the perception and the recognition of activities. In: Proceed-
mmgs of European Conference on Computer Vision,2000. 487 ~503

17 Bobick A, Davis ]. The recognition of human movement using temporal templates., IEEE Transactions on Pattern
Analysis and Machine Intelligence ,2001,23(3) 257 ~267

18 Piater ] H,Crowley ] L.. Multi-modal tracking of interacting targets using {saussian approximation. In: Proceedings of
the 2nd TEEE Workshop on Pertormance Evaluation of Tracking and Surveillance.2001, 141~ 147

19 Figueiredo M, Jain A K. Unsupervised learning of fimte mixture models. IEEE Transactions on Pattern Analysts
and Machine Intelligence ,2002,24(3):381~396

20 Vailaya A,Figueiredo M, Jain A K,Zhang H J. Image classification {or content-based indexing. IEEE Transactions on
Image Processing , 2001, 10(1):117~130

Shaogang Gong Received the bachclor degree (information theory &. measurement) from the Universi-
ty of Electronic Sciences and Technology of P. R. China in 1985 and the Ph, D. degree (computer vision)

from the University of Oxford in 1989. He was a recipient of a Sino-Anglo Queen’s Research Scientist A-
ward 1in 1987, a Royal Society Research Fellow in 1987 and 1988, a GEC sponsored Oxford industrial fellow

in 1989, a Postdoctoral Research Fellow on the EU ESPRIT-II project VIEWS in 1989~1993. He joined
the faculty of Department of Computer Science at Queen Mary College, University of L.ondon as a lLecturer
in 1993, was made a Reader in 1999 and appointed as Professor of Visual Computation in 2001. His re-

search interests include computer vision, visual synthesis and machine learning including dynamic scene un-
derstanding. motion-based recognition, generative dynamical models. face and gesture recognition, activity
and behaviour recognition, expression and gesture synthesis, visually mediated interaction. visual surveil-
lance, statistical learning and kernel methods, probabilistic graph models, Bayesian networks and hidden
Markov models.

Tao Xiang Received the bachelor degree in electrical engineering from Xian Jiaotong University of P.
R. China in 1995 and the Ph. ID. degree in electrical and computer engineering from National University of
Singapore in 2002, In 2001, he joined the Computer Science Department, Queen Mary College, Unmiversity
of [.ondon, as a Postdoctoral Research Fellow, where he 1s currently working on group activity modelling
for visual surveillance, His research interests include computer vision. pattern recognition, and data mining,

= IR R 1Y 35 = = 1R 5l

Shaogang Gong Tao Xiang

(Department o f Computer Science, Queen Mary, University of London, London E1 4NS, S32[FE)
(E-mail: sgg@dcs. qmul. ac. uk)

M E RO -MATHACEESRT AR A& ZTEGEEMNTHRITANG RS
4 @t b — 20 {8 i PCH (Pixel Change Histories) M) BIEB E R FH. 455 & oo MDL
(Minimum Description Length) i B & B3 I 1% $F , EM( _.xpectatlon—Mammlbatmn)%%ﬁ%
ARBRXEBRREAAVBIGEMHENRNAMEX LEAEXNREXBEN Y REBH. 2T EE2ITE EAX
VEREREIUE V EEATIRA B ES T 8 315505 5 F 4w A .

b ]

I.T

X T RIRA,FHEREB BT R A X S
hESES  TP391. 41




