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Abstract

We study the two-action problem in the scale-exponential family via the empirical Bayes
(EB) approach and present a monotone EB test possessing a rate of convergence which can be
arbitrarily close to O(n~') under the condition that the past samples are randomly censored
from the right.
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§1. Introduction

Consider the problem of testing the hypothesis
Hy:0<0p+— Hy:0>06 (1.1)
in the scale-exponential family
f(z]0) = u(x)c(f) exp(—z/0)I(z > 0), 0 >0, (1.2)

where 6y is a known constant and f(z|f) denotes the conditional probability density function (pdf)
of random variable (r.v.) X, given 6, I(A) is the indicator of the set A and u(z) > 0 for z > 0.
The distribution family (1.2) is very often and important, especially it includes the exponential
distribution as a special case which can be used to describe many models appearing in survival
analysis, reliability theory, engineering and environmental sciences.

To avoid the influence of measurement unit, we adopt the following weighted linear loss
function:

“0=O )y g, 000

where j = 0,1 and a > 0 is a constant, and D = {dp,d; } denotes action space with d; accepting
H;.

Assume that the parameter § has an unknown non-degenerate prior G(6) with support on
© = {0 >0:c(f) > 0}. Hence the marginal pdf of r.v. X is

flz) = /@ f(2]0)dG(0) = u(z)p(z), (1.4)

L(8,d;) = 16 < 0y), (13)
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where p(z) = / c(0) exp(—z/0)I(x > 0)dG(9).
Put ©
0(z) = P(accepting Hy|X = ). (1.5)

Then the Bayes risk of the test §(x) is

R(6(x),G(0))

/ / (6, do)5(@) + L(6, dy)(1 — 6(2))]f (2/6)dG(6)dz

= / o(2)8(z)da +/ L(9, d)AG(6) (1.6)
0 e
with
az) = a / 6-1(6 — 6y) £ (2]0)dG(6)
e
= af(z) - aﬂou(m)/ 6 c(8) exp(—z/6)I(z > 0)dG(H). (1.7)
®
Therefore, the best Bayes test minimizing R(d(z), G(6)) would have the form
So(z) = {1 alz) <0 (1.8)
0 a(z) >0
The minimum Bayes risk is
R(6a(z),G(0)) = / ” a(@)de(z)dz + / L(8,dy)dG(6). (1.9)
0 e

Under the assumption that E[c¢(f)] < co and E[f~'¢(8)] < oo, we can rewrite

1)
a(z) = af(z)+ abou(z)p™ (z) = [a — aby uu(x(;:)]f(w) + abofV(z)
= g(@)f(z) +bfD(a), (1.10)
where afly = b and a — afpu'V (z) /u(z) = g(z).
Let »
a(z
Bl =3y (1.11)

Also, assume that E[§~2¢()] < oo, by some simple algebra computation, we have

v (@) (2)p(x) — pD (@)pM (2)]

BN (z 1.12
(z) = Pl (1.12)

Then by Cauchy-Schwarz’s inequality, we easily know
pD(z) >0, (1.13)

which implies that B(z) is strictly increasing under the condition that the prior G(6) is non-
degenerate. Therefore, there exists a unique point ag such that f(ag) = 0, which is usually

regarded as the critical point corresponding to the prior G(8).
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Note that E[#~1¢(8)] < oo can be derived from E[¢(#)] < oo and E[§~2¢(f)] < oo, hence, under
the following condition
E[c(0)] < oo, E[0~2¢c(9)] < oo, (1.14)

we have

1 a@<0 1 p@<0 [1 s<ac (115)
0 a@>0 |0 B@>0 |0 w>as '

da(z) =

However, Bayes test dg(z) (1.15) is unavailable to use since the prior G(6) is unknown. As
an alternative we can use the EB approach to estimate a(z) so as to obtain an EB test.

Since Robbins’ pioneering papers [9, 10], EB approach has generated considerable interest
among the researchers, and the EB test problem has been studied extensively in the literature. For
example, literature [13] and [12] discussed one-tail testing problem for the one-parameter continuous
exponential family ¢(8)u(z) exp(—z6), while [11] considered nonparametric EB solutions to two-
tail test Hyg : 1 < 0 < 03 +— Hy; : 8 < 6, or § > 62 in the exponential family f(z|) =
c(0)u(z) exp(—z/0). Also, the readers are referred to literature [1] and [2] for some original details
of EB test. Recently, employing Bernstein’ inequality and following the lines of [2], [13] and [4],
paper [6] has constructed an EB test for a normal mean and obtain a better rate of convergence
under the assumption that the critical point ag is within a known compact interval.

Usually, the EB approach assumes that there is a sequence of past data Xi, X2, --- , X, which
comes from the past n experiments, is available. Differing from the past many works, we suppose
that the sequence is censored from the right by another sequence with an unknown distribution
function. In fact, right censored data often arise in the study of survival analysis, medical follow-up
and reliability. In past decades, statistical inference with censorship attracts considerable attention
and has been widely applied to many fields.

By combining the censored data with the EB procedure, in this paper we propose an EB test
for the scale parameter and exhibit its optimal rate of convergence without using the Bernstein’
inequality.

The rest of this paper is organized as follows. Section 2 proposes an EB test under random
censorship. In Section 3, we present some useful lemmas. Section 4 is devoted to obtaining the

main result.

§2. Empirical Bayes Test

In the EB framework, we make the following assumptions: let (Xi,6:),---,(Xp,0,) and
(Xnt1,0n+1) = (X, 0) be independent random vectors, the 6; (i = 1,--- ,n) and € are independently
identically distributed (i.i.d.) and have the common prior distribution G(); X1, --- , X, and X are
ii.d. and have the common marginal density f(z). Usually, we call X1, -, X,, the past samples,

X denotes the present sample.
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We suppose that the sequence Xi,---,X,, is censored from the right by Yi,---,Y, with

unknown distribution function W. It is assumed that Xi,---, X, are %ndependent of Yi,---,Y,.
Let Z; = min{X;,Y;} and A; = I(X; < Y;). Define F=1—-F =1 —/ f(@)dz and W =1-W.
—0o0

Then Z; are i.i.d. with the distribution function H, where H =1 — H = FW. A product limit
(PL) estimator }?’(m) of the distribution function F' (see [4]) can be defined as
— A i
1— F(z) = azom<e Pt , (2.1)
0 t> Z(n)

where the Z(y), -+, Z(,) denote the ordered sample, and A;) being the concomitant of Z;).
Estimation of the underlying density function f(z) has been discussed by numerous authors

(see [5] and [8], among others), and the usual procedure is to replace the empirical distribution

function F,(y) in f,(z) = h,;* /k((w —y)/hn)dF,(y) by the PL estimator F(y). Then we obtain

an estimator of f(z) given by

Fuw) = o [ 1o(52)aFw) (22)

where 0 < h,, = 0 as n — 00, and ko(+) is a kernel function satisfying some certain conditions.

Similarly, we can define a kernel estimator for f(!)(z) as

0@ = g7 [ ] (5Y) P ). (23)

Obviously, to estimate a(z), we only need to estimate f(z) and f®)(z) in formula (1.10)
because the g(x) is known when the present sample X = z is obtained.
Define

an(2) = g(2) fu(x) + DI (@). (24)
In the following, we assume that the prior G(6) belongs to the following class of distributions

f={G((9) :0< A1 <ag < A, <OO}, (2.5)

where A, Ay are known constants. Then, it follows from the Bayes test dg(x) (1.15), we propose
the EB test as follows

() = 1 <A or (A1 <z<Ay and a,(z) <0) - (2.6)
0 z>Ay or (A4 <z<Ay and a,(z) >0)
Hence, the Bayes risk of d,(z) is
R(bn(2),G(0)) = / a(z)En[0n(z)]dz + / L(6,d1)dG(0), (2.7)
0 e

where E,, denotes the expectation with respect to the joint distribution of (Z1,--- , Zy).
By definition, if for some g > 0, R(d,(x),G(0)) — R(dc(x),G(0)) = O(n~1), then the rate of
convergence of the EB test d,,(x) is said to be the order O(n~9).
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§3. Several Lemmas

In this paper, ¢, co,c1,- -+ denote positive constants that do not depend on n. They can take
different values while appearing even within the same expression.

Lemma 1 Let T be such that 1— H(T) > § with some 8 > 0. Then the process F(t) — F(t),
—00 <t <o0,1—H(t) >0, can be represented as

F(t) - F() = . (1= FODLO + 1 Ra()
in such a way that

2C
P(sup |R,(t)] > 5 log® n + xlogn) < 2K exp(—A\6’z), x>0,
t<T

where i.i.d. Gaussian processes M1 (t), Ma(t),---, EMy(t) = 0 with covariance function

B , [ dF(t)
EM(s)M(t) = EM(s)" = /m 1-W@)[1-F@®)]’

Here C' > 0, K > 0 and X\ > 0 are some universal constants.
Proof See [7]. #

—0 <5< t<oo.

Before establishing the next lemma, we first make the following assumptions about the kernel
functions k;(-) (¢ =0,1):

(1) ki(z) are continuously differentiable with compact support [0, 1];

' {enszi |
(2)/ ki (z)dz = , jJ=0,1,---,s—1;
0 0 JEX!

® [ e hia)dz 0, k() = kD) =0
where s 202 is an arbitrary but fixed integer.

Remark 1 In fact, for s = 2, a possible choice of the kernel functions k;(z) (i = 0,1)
satisfying the above assumption (1)-(3) is ko(z) = (602 — 9622 + 362)I(0 < z < 1) and k;(z) =
(12023 — 18022 + 602)I(0 < z < 1).

Lemma 2 Let fn(m) and ﬁ(ll) (z) be defined in (2.2) and (2.3), respectively. If f(z) is the s-th

(s > 2) continuously differentiable and the kernel function k;(x) (i = 0, 1) satisfy the assumptions

(1)-(3). Then for z < T, which is the same as in Lemma 1, taking h,, = n="/*1) we have
Elf0 (@) — D @) < {eulfO @) + eaif (@)[1 — W (z)]Fjn~(2o=20/Cs41),
Proof Integrating by parts, we have
@) = 1)
= h11+z /kz'(mh—_t)d[ﬁ(t) F(t)] + hllﬂ /k (mh_ t)dF(t) — fO(z)
= /[F k(l)( dt+ h’ /k f(@ — uhy)du — FO(2)
L + Is. (3.1)
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Since
1 tn
L = —1 | X[ -F(z —uha)]M;(z — uhy)k" (u)du
nhnt Jo j=1
1
(1)
+ W/o Ry (z — uhp)k; ’ (u)du
= Ly + I,
note that
2 o= h2+2’/ / Flo — uh,)F(@ — oha) 3 Mo — uh,)
]:

(3.3)

by Lemma 1 and expanding d(z — uh,), F(z — uh,) and F(x — vh,) at point z, we can show

1
BT = / / E[M, (2 — why) M (z — vho)]

F(m—uh F(z — vhn)ED )k (v)dudo

= h2+2z / / d(z — uhyp)F(x — uhy,)F(z — vh )kgl) (v)dvkgl) (u)du

h2+2' / / (x —vh,)F(x — uhy,)F(zx — vh )kz(l) (v)dvkz(l) (u)du

>

nh—+/ (@1 () + Qe (),
where

—» u f(z) f(z) dM(z) 1
Q1(u) =d(x)F (;1@)/0 {1 + hn [uﬁ(m) +v7($) —u @) ] +o(hn)}k§ )(v)dv

—2 ! (1) .
Qa(w) = d(2)F*(2) / {14 ha[u ((“;))M%((?) _ 4 d(g)]m(hn)}kg’(u)dv,

here d)(z) denotes the derivative of

e dF (1)
d(e) = /_oo - WOIl-FOP

Therefore, combing the assumptions of k;(x) with (3.4) together, it generates

_ f(x) ' 1
E.l7) = [ — W (z)jnh% ! /0 k?(“)duﬂLo(W)-

Also, using Lemma 1, it is easily seen that

Enlfy < cu(#w)zE[?ggan(t)lr
cu<#w)2 /Ooo:cp(fggmn(tﬂ > :c)dm

- o( ke,
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On the other hand, expanding f(x — uh,) and using the assumption (1)-(3), we know

1 1 s—1 f£(k) _ hn k (8) (p*\(_ hn s ;
= ch2 O (@) + o(hTY), z* € (z — uhy, ). (3.8)

Following from (3.1)-(3.8) and taking h,, = n~"/(5*1 we conclude that the conclusion of the

Lemma, 2 is true. The proof of Lemma 2 is complete. #

Lemma 3 If E[¢(d)] < oo and E[f*¢(6)] < oo, where s is a natural number, then
sup [p® (z)] < 00,  k=1,---,s.
Proof By E[c(6)] < oo, w: have
¥ (2)] = ‘ /e (—071)*c(6) exp(—z/)I(z > 0)dG(9)| < E[8~*¢(6)]
E[6 % c(0)1(8 > 1)] + E[6 *c(8)1(8 < 1)]
E[c(8)] + E[6*¢(6)] < oo.

IN

Hence, Lemma 3 holds. #

§4. Rate of Convergence

In this section, we exhibit the optimal rate of convergence of d,(z), which is defined in (2.6).
By (1.9) and (2.7), we know

0 < RGA@).GO) - ROG(@).G6) = [ [Enda(o) - da(@alo)ds
Az

_ /GG(P(an(m) <0)— 1)a(w)d$+/ P(@,(x) < 0)a(z)ds

Aj‘z ag "
- / P(@,(z) < 0)a(z)dz — / P(@n(z) > 0)a(z)dz
ag Ay
5 L +D. (4.1)

For 1 < 7 < 2, by Markov’s inequality and Holder’s inequality, we have

Az
L = P(—a,(z) + a(z) > a(z))a(z)dx
aiZ
< / ()] 7T [En(@n(2) — a(@))*]/*da. (4.2)

Furthermore, it follows from (1.10) and (2.4) and Lemma 2,
En[an(2) — a(@)]?

20°(2)En[fa(®) — f(@)] + 20°En[fiD (2) — O ()]

2¢109% (@) [f ) (2)Pn 2 CoFY 4 205097 (2) £ ()[1 — W ()] "2/ D)

+ 211 B2 [f ) (2)]2n 252/ 54D L 9ey B2 f(2)[1 — W (z)] tn (Zs-2/Cstl) 0 (43)

IA

IA
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Then, under the condition that

Aoz
M / 107 @)@ | £ ()] dz < oo;

ag

As
@ [ @@l @) - W) e < oo

G

Az
(1) / (@) /) @)z < oo;

G
Az
(Iv) / [a(@)]" 7 [ (2)(1 = W(2))"']/?dz < oo, (4.4)
aG
we have
I = O(n~ 7=/ (sH1)y, (4.5)
In fact, for 1 < 7 < 2, note that a¢ is a singular point, then by
lim (2~ ag) " [o(2)]" " = (5 lm )" >0 (4.6)
z—ag f(aG) r—ag /8(1) (33) ’ .

we know that integration / " [a(x)]*""dx is convergent. Furthermore, by Lemma 3, we find that
if g(z) is continuous and u(gs is the s-th (s > 2) continuously differentiable, also, E[¢(6)] < oo and
E[0°c(f)] < oo, then it is easy to see that the condition (4.4) is held.
Under the condition that / " [—a(z)]' "dz < oo, by an similar discussion to I, we can show
that .
I = O(n~ 7=/ @2s+1)), (4.7

Therefore, we state the following Theorem.

Theorem 1 Let §g(z) and d,(z) be defined in (1.8) and (2.6), respectively. If the following
conditions are satisfied:

(i) G(8) € F, E[c(0)] < o0, E[07%¢(0)] < oc;

ag
(ii) / [~a(z)]'"7dz < oo; g(z) is continuous;
Ay

(iii) w(z) is the s-th continuously differentiable.

Then for 1 < 7 < 2, we have
0 < R(6a(x),G(6)) — R(6a(x),G(6)) = O(n 7(+= /et

where s > 2 is an arbitrary but fixed integer.

Proof Following the preceding discussion, we can easily come to the conclusion of the The-
orem. #

Remark 2 Especially, for the exponential distribution f(z|6) = (1/6) - exp(—=z/8), if we
take the conjugate prior density g(d) = (1/8)? exp(—1/6), then a(z) = af(z) + afo f (x) with
f(z) = (z +1)"2I(z > 0). Hence ag = 26y — 1. Let A; = 0, we can easily know the Theorem 1’s
conditions are satisfied and accordingly the rate of convergence can be arbitrarily close to O(n=!)

under the condition that 7 is arbitrarily close to 2 and s is large enough.
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