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Abstract

We consider a steady mixed strategy for computing the evolution of a viscous
incompressible fluid inside an elastic Koiter shell in bending dominated state. We pro-
pose mixed finite element formulations of the different subproblems which we couple
by mortar technics. The Koiter shell is approximated by a locking free finite element
inspired by [1]. We deduce from the local discrete infsup conditions and the mortar
coupling a global infsup condition in the same way that [2]. We derive then a con-
vergence result and indicate that the different schemes preserve their accuracy and
stability after coupling.
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1 Introduction

Because of its many applications to industrial [3], [4], and biological problems [5], [6],
fluid structure interaction models have been extensively studied over the past few years.
Many challenging applications involve an incompressible three dimensional fluid lying in-
side flexible thin shell as faced for example when studying medical flows in flexible pipes.
In such situations, each component of the system has its own model and discretization re-
guirements. Moreover, the structure can be very stiff along certain deformation modes. And
when the finite element is used, the calculation faces major difficulties and the convergence
is manifestly deteriorate as the shell thickness becomes small. This phenomena, referred to
as locking is usually overcome by using mixed finite elements formulations treating some
components of the strain tensor as independent variables [1], [7]. The challenge is then to
match the different local finite elements while preserving their stability and robustness.

*E-mail address: Saloua.Mani@fst.rnu.tn
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In the present work, the model involves a time-dependent linearized interaction prob-
lem where an incompressible viscous fluid flows inside a flexible Koiter shell in bending
dominated state. For simplicity, all change of configurations is neglected. Our space dis-
cretization is standard in the fluid part and is locking free in the shell part. The paper
is organized as follows. In section 2, we introduce the shell Koiter dynamic model, we
present a mixed formulation and define the interaction problem. In section3, we present our
space discretization strategies. In section4, our attention is focused on the space discretiza-
tion convergence. By using the local discrete infsup conditions, we prove a convergence
result with constants independent of the shell thickness under some restrictive geometrical
assumption.

2 Problem definition

We consider a system which occupies a fixed donéaimade of a viscous incompressible
fluid in motion in a fixed par and a deformable Koiter shell on the complem@ftWe
suppose tha®' is delimited by the fluid structure interfa€eand by external boundafy’.

2.1 The Koiter shell model

Greek indices take their values in the $&t2} and the Latin indices take their values in

{1,2,3}. Products containing repeated indices are summed.

We consider a shell with a thicknessand a midsurfac&= ¢ () wherew is a domain of
?1/\?2

R and§ € W2 (w,R®) is an injective mapping. LeBq = ¢ 4 and @3 = el be

the covariant basis vectora,= || a1 A E)ZHZ andE = (E®PW)qe, be the elasticity tensor

assumed to be elliptic. For a displacement figld we define the linearized change of
curvature tenso¥ = (Yqp)q,g @and the linearized membrane strain tenSet (Agg)q g b

— ap
—_ = — =
Usq.@p+Usg. @q

We suppose the shell clamped on a pay of its boundary and set

Hi () = {u€ H(w),u= 0 onday},
Hiy (@) = {u € H?(w),u= 33 = 0 ondux }
VS: {7 :ViaI,V(x c Hg-(.od(w)’\l‘?’ S Hazwd(w)}v

Note thatv® is a Hilbert space when endowed with the norm
1V Ive = (SalIVallfs +1val[32) "2
Consider the dynamic bending dominated Koiter shell problem [1], [7], [8]

find Ug € L?(0,T;V9)
M(Us; V) +A(W; V) = Ls(V) VV € VSa.e.in time,
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wheref is the inertia term[s corresponds to the external energy a@ads the bilinear
form associated to the internal energy given respectively by

R
To(0s; T) =€ palle. ¥ /&= (U ),
~ R R) ki
L Es(V)=¢ o s V\/adx—ss'-s(v)’
5 - =
AT V) = wEuoxu(%y ( )Yau( ¥ )—f—zAag(U))/\)\u(V))\/é—dx

To overcome the locking phenomena, we introduce in the same way that [1] a new variable
A by setting for a reato €]0,e 72|

A= Aay)ey Aay= (%2 - CO)EGVGH/\GH(UQ)?
and seek pairs

(Ts,A) € L2(0,T;VS) x L=(0, T;W9) such that
ms( U s(t); 0) -+ As(Ts(t); )+BS(7:;A( ))_LS( )¥V eVeaeint
Bs(U(t);A) — Coszcs( (t); A {$/¢“B€L2(w)} aeint

=
a v

H;>;>
P
<C
m
E

where
ESM( LYoo (T)Vap( V) + Ggao(T)Are( V) v/adlX

As(ﬁ),—\f ——RRw
) =" o aal(V)E/BX Co(Ai8) = o(E Haon &0 /adx

Bs(v?i
Note that the bilinear formas, Bs Cs are continuous respectively &t x VS, VS x WS and
W5 x WS, thatAg is VS-elliptic andCg is WS-elliptic [1], [8].

2.2 The fluid-structure problem

We suppose that the fluid is viscous governed by the Stokes equations. Its evolution problem
determines

Vi €L20,T,HY), p(t) € Lo(Q") such that
o s = ~ 1 .
Vi, Vi) +Ag(Ve, V1) +Br(Vr,p) = L(V 1), VWr € H ae. int

P
m ( 7
Br(Vi(t),q) = orqdiwy(t)dx=0 YgeW' =Lo(Q") ae.int

=
\'

where
HY ={Ve HRl(Qf R3) V =0onr'},
my (Vs, V1) = RQf DtV .V dx
1 — ~

At (Vf , Vf) = 2 H(DW + DtV_>f) : (DV_>f + Dt\T;)dX,
K> 0 denotes the fluid viscositis is the resultant of the applied forces gmddenotes the
mass density of the fluid.
We suppose thdt corresponds to the upper face of a paftC w:

M={%=9E8&) +a(8. %), (E1.&) €wr}. 2.1)
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The global displacement field must be continuous at this intefface

Us(&1,82,t) = Us(x1),VX €T,aeint, (2.2)
VA t
whereTs(.,t) = U¢(.,00+ V(,1)dtis the fluid displacement field.
0

We define the global Hilbert space of stresses test functioMd byWs x W', the global
kinematically admissible velocity test functions space by

V={(Vs V)€V xH}, Vi=Vsonl} (2.3)
and the space for unknown velocity fields by :

V€ L?(0,T;HY),

(Vs, V1) € L%(0,T;L?(w R®) x L2(QF,R%)) ;
U=
{ (Ts, T1)(0)+ o(Vs, Vi) (1)dT € L2(0,T;V) }

The mixed formulation describing the evolution of the global system is

(FindV = (Vs, V) €U, (A, pr) € W such that

+Bs(_\7>s;é) + Bf<—\7>f; Pr)
- = - = L
=L(Vs, Vi), V(Vs Vi)eV, aeintime,
(MF)
Bs(Ts(t);A) — 75Cs(A(t);A) = 0,vA € WS, aeintime
Bt (V+;0¢) =0, Vgr € W', a.eintime,
R
Ts(t) = Ts(0)+ o Vs(T)dr,
(V's, V'1)(0) is given inV;
wherem(V; ¥) =my(Vs; Vs)+mi( Vi, Vi) andL( Vs, V) =Ls(Vs)+Ls (7 1).

Remark : The continuity requirement (2.2) between fluid and shell displacement is not
completely exact. The displacement of the Koiter shell at its upper surface is not identical
to the midsurface displacements. The true displacement i§'s+ £daz. The Kirchhoff
kinematical assumption (i.e. zero shear strain) should be used to calculate the implicit
rotationsdaz and gives [9]

5% = (Balow ) B

Assuming that the thickness is small, the simplification (2.2) is accepted as approximation
at first order of the true continuity requirement.
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3 Discretizations

We will concentrate hereafter on the space discretization and its convergence.The key issues
for the time stepping is present in [10] for a similar interaction problem. The main differ-
ence compared to the earlier work [10] is that the convergence result should be independent
of the small parameter The shell discretisation strategy is then fundamentally different.

3.1 Shell discretization

We henceforth assume that the domaiis a polygon triangulated by a regular triangulation
11 and introduce the spaces

Li = {veHg, (w), v ePs(T) VT etl}, (3.1)
Bt = {veHYw), VT =AAAsp, pePy(T) VT e1d},

HY = {v=vit+wysuchthaw; €L}, v € Bt} =LE @B},

Li = {veH&, (), v eRs(T) VT e1l}, (3.2)
B2 = {veH2nH}(w), v/r =A2A3\3p, pe Py(T) VT e1l},

HZ2 = {v=vi+vwsuchthaw; €L v, c B2} =L2® B2 (3.3)

Above, A1, A» andA3 denote the barycentric coordinates for each triafiglé/e note that

the spacd.2 consists of the Argyris element ams are bubble function spaces that will

be used for the local adjustment to achieve discrete stability. We introduce the discrete
displacement and stress spaces by

Ve = {Vh EVS Vi Bq eHL, Vi B3 e Hg},
W = A, Aagr € PU(T) T}

To prove uniform convergence with respect to the shell thickness, we need as in [1] an inf
sup stability hypothesis where we assume that there exists a co@sta@tfor which we

have
" Bs(V;A) LG (3.4)
In Sup P = . *
0AAW oo ey | V [T

Below, |||.||| is @ semi norm olV* defined by

BS(V;A)
Al = supsvev, VT

Lemma 1 : If the first and second fundamental forms associated to he shell midsurface
are piecewise constant then (3.4) is verified.

Proof : The proof is based on the construction of an adequate projection oparator
VS —\ satisfying
)Bs(TTV;A) = Bs(V;A) VV € VS VA e W, (3.5)
i) [TV [lys < Col | V]lys VV €V>. (3.6)
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We consider the projectiont : H! — H? constructed in [1] which satisfies

ZHT[:LVHHl(T) < ClVlle VT ey, (3.7)
e(v—Trlv)p — 0YpePy(T), YeedT, T el (3.8)
Z

(v=mV)p = OVpeR(T) VT ey, (3.9)

whereT is the union of triangles in? which meefT .

What then remains is to construct a projectién H2 — H? satisfying
Z

(v—Ttv)p = OVpePy(T)VT et (3.10)
.
HT[ZVHHZ(T)
A constructive way to define a mag : H? — L? satisfying for anyT € 10
V=8 +hllv— vl P [T < CFE V], e 2
can be found in [11]. We define : H2 — B by the conditions
z

IN

CHVHHZ(-F)- (3.11)

(V—TBV)p=0Vpe P (T), VT e 1! (3.12)
T
and obtain by a scaling argument
[[v—="8V||o +h[[v=T8V|]; x +1?[[v=T8V||,+ < C(W* V1 + IVllor)-

Finally we set
= TRV+TB(V—TRV),

and obtain an operataf which verifies 8.10-3.11)and an operatan= (¢, ¢, 7®) which
verifies (3.5-3.6). Then giveh € W, we may choosé/ ¢ VS for which

Bs(TTV'; )

Idl

and then the lemma holds after writing
BS(T[V;A) Bs(vi)\) BS(V;A)
e~ M lve = Gol[ Ve

In this framework, we use the following theorem proved in [1] in an abstract cadre which
proves an uniform convergence with respect to the thickness.

1
> Sl

HIMH

Theorem 1:1f (3.4) is satisfied, there exists unique paits,A) € V°x WS, (Usn,A, ) €
Vi x W solutions respectively of the continuous and discrete static mixed shell problems.
Moreover, the errors are bounded by

I0s = Tsnllys + A=A, ][]+

< Cinf,

A Ah‘
IR =AY+
<Cr{|w s||Hs+|ms.?3HH4+HQHHZ

1_c.e2
100:»: W

A~

‘us—v

vevs, )\ews{ 1— co.s2

whereC is a constant independent lbfinde
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3.2 Fluid and interface discretizations

Let r’f‘ be a regular triangulation of the three dimensional fluid dom@ih= UT€T¢T. We
approximate the velocity and the pressure fields by [12] :

He = {VheHYQ"R%), w1 € (PUT) @ {MA2AsAa})3, Vin=0o0nT '}, (3.13)
W, = {gheH?! (sz) ;0hyT € Pu(T)},
Vi = {VneHy: _ divVnondx=0vaW, },

Qf

(Ai)i=1,4 denote the barycentric coordinates for the tetrahedromhis choice of spaces
yields a convergence i@(h) and a compatibility condition in the following sense [12]

R
of ghdivvy,

Inf Su Tacll o Tl .
wew > a1 TVl —

a>0. (3.14)

The triangulations used for the structure and for the fluid are incompatible. This prevents
the discrete test functions from satisfying the continuity condition at the interface and we
haveVv" ¢ V. A strategy for defining compatible traces on incompatible grids consists in
introducing a mortar spad@, C L?(I") and imposing the continuity in the following weak
sense

R (Veh—V1h)-Th = 0. € Gn.¥(Ven, V1) € VE x Hy.

A lot of flexibility can be introduced in the mortar spaGg, nevertheless we expect it to
satisfy the compatibility condition [13]

R
inf sup r Vh-Gh

>C>0, (3.15)
<Gy, eh! ||7h|||_2(r) |’§>hHL2(F)

and refer to [2] and [13] for examples of such finite elements spaces. Wetidte best
approximation on the multiplier spa€®,. WhenG;, uses finite element of ordeg direct
interpolation yields

g_!re‘é I'g — GhH(HM(r))’ <Chf H@”Hq—m(r) Vg e H1/2(|—)' (3.16)
h h
We define the global spacé#, andVi, respectively by, = WP x th and

R _, _
Vo= {(Vsh, Vin) €VExHL: - Th(Vin— Vsn) =0,V Gh e Gn}.

The semi discrete problem is then
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Find Vh = (Vsh,vfh) te [O,T] — Vh,

(A, Pth) 1t € [0,T] — W, such that
M(Vh; Th) +As(Tshi sn) +At(V th, ¥ )

= =
+Bs( Vs, ) + Bt (V th; Prn)

—

A~

- = — _—
=L(Vsh Vin), V(Vsh Vin) €W a.eintime,

Bs(ﬁsh;;h) - 1—87czoszcs(§h;ih) =0, v;h eW?, a.eintime

Bf(th th) =0, RVOIfh EWh, a.ein time,
Tsn(t) = Tsh(0) + ¢ Vsh(T)dT
(Vsh, Vn)(0) is given inVh,.

(MFR,) can be written on the compact form

Fora.et € [0,T], find Vh(t) = (Vsh Vin)(t) €Vh,
andpn(t) = (A, , prn)(t) € Wh such that
M(V'n, V) +a(Vh, V) +b(Th; Hn)

- =
h=(Vsh Vtn) € Vh,

b(V'h, fin) — €2C(pn; ) = 0,V € Wh,

where

4 Convergence

4.1 Truncation error and global inf sup condition

The following lemma proves that the truncation erroManis bounded by the interpolation
error on the product spad x Hh

= = = —= - .
Lemma 2: Forany V = ( Vs, V) €V, we notel V the finite element interpolate of
¥ onthe product spacé? x th. We have
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InfthVh

e~ —= -
v—vhchuv—lth .
v

- = =
Proof. Let Vv = ( Vs, V) €V and let
—= —= —=
Vh=(lhsVs,Ini V)

the finite element interpolate of in the product spacé> x Hrf. We will build 7h €W by
correcting the interface jump

— - —
\Y Vgt — Vhi/r

[ V] =

of 7h on the slave side Whilch is the fluid domain. Since (3.15) is VFrified, we can construct
[13] a lifting operaton?ff1 ‘H2(M) — Hrf which verifies for anyt’ in Hz(I")

Rl
T(RIT) = Try(T).

< ClTlyp, -

Above, Try is defined in the following weak sense
R R
rTrh(ﬁ)-ah = rﬁ-@hivﬁh € Gy VU € L2

We set

- R
Vh=(lhsVsInt Vf+Rt:(H
—

and obtain thelTrh(th) =Trm(lhsVs) and

hl])

- = — — — —
H Vi— thHHl < H Vt—lns VfHH1+HTFh(|hsVs—|hf Vf)’ 1

H2(T)
- - - -
< H Vi —lnt VfH + HTrh(lhsVs)—lhsVs) 1
H1 H2 (M)
- = - =
+‘|hsVs— Vsl 1 +H|ths—Vf) 1
H2(T) H2(T)
which concludes our proof.
We now set||xn|| = [[|A, |l +[|anll 2 for Xn = (A,,0n) € Wh and have the following

theorem.

Theorem 2The local inf sup conditions 3.4,3.14,3.15 imply the global condition

sup _b(Viixn) >C. (4.1)
ozvewn || Vv I1Xnllw

Proof : Let xp= ()\h,gh) € W, be given, we associaf® sy € V¢ with bounded norm

such that (3.4) is verified. Since (3.15) is verified, we can introduce an extension@side
by
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V}h = erl otrh(Vsh).

Since (3.14) is verified, we can constrgat ¢n, pn) € th ><Whf the bounded solution of the
Stokes problem

Af(vfm_\?)fh) +B¢(V th, Pn) :R—Af (7}h7—\7>fh) YV the th,

Bt (Vth,0n) = =Bt (V,,0h) + o H(ET!Lz Oh VOh € th,

th/r =0.
We finally introduce the bounded field,= (V'sh, V¢, + V'},). By construction we have

Vhe Vi andb(V i Xn) > VIA, I+ 119, -

which concludes our proof.

4.2 Convergence

Following the steps of [1] and [2] for the shell problem with the additional complexity com-
ing from the weak interface continuity constraint and the time dependence, we can extend
the discrete stability and convergence result to our fluid structure interaction problem.

Theorem 3: We suppose that the solutié',x), V = (Vs, V1), X = (A, pt) of the con-
tinuous problem{MF) verifiesV € C'(0,T,V). Let Vi = (Vsh, V), Xn = (A, Ptn) be
the solution of the semi discrete probléMFR,). The errors are bounded by

IVh=Vleore T 1 Vin= Vil zgryn T 1 Tsh— Tslli=orvs)

4 =2 o+ X0 =Xl lz0T
: - =
= C{mfﬁheGh 9—0n L2(O7T,(H1/2(F))’)
fo — fo Hv_
+n Vh€Wh V=V L2(0,T.L2)+m Vh€Wh Vh L2(0,TV)

+infg, cwn X — )~(hHL2(O,T;W) +infg, cwn [[IX — Xnll \LZ(O,T)
=
(V= V)Oll+ | (V= T )

n H(m_ﬁ’sh)(O)HlJr [(Ts— Tsh) (0]}

Proof : By substracting the continuous probleéMF ) written with the multiplier la-
grangeg in L?(I") and the discrete probletMF,) we get

- -
-V

R =\
m( v v

Tn)+a(Vi— V. Tn) +blxn =X, Tn) + (T~ Gn)ll
VGne€Gn VVneW,
b(Rh, Vih— V') —€%C(Xn— X, Xn) = 0, V&n = (A, , Brn) € Wh

p/]dlr =0

Using as test function7h =Vh— Vh, Xh = Xh — Xn and substracting the second line from
the first line yields
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Sh) + € Cs(zwih

m(Vp, \7>+Af(th,th)+As(ush7 A
R _, — - Y =2 =
= (7~ 6>thngr+m<v—vh,vh>+Af<vf—th,vfh>
As(ﬁ)s— Ush, V sh)+b(x Xhth) b(Xh,V—Vh)
) YVheVhKn= (A, Brn) € Wh, G € Gn.

+€2Cs(A—A, A,
Using the continuity of, b, c and the definition of the semi norfil.|||, we get by Cauchy

Schwartz inequality
= =
m(vh,vh)+Af(vfh,vfh)+As(u Vsh) +€2Cs(A th)
<C 9.7 Vi- ¥
[ 7ol 8= 80 e+ 7 = )+ [ 7= T,
+|[ws- ush] oot IX = Rellw
82’ — A .
Vs)+ = =h||ws

5 = e
FRaI V¢ = T an|, ]| Ts = T

By integrating in time fron0 to t we observe that we have
Z t
(4.2)

1 — 1 - =
SM(Vh, V) + SAs(Ush, Ush)(t) + . At(V th, ¥ 1n)(5)ds
—
A )ds<c7 [o-3
CS( =h h) v L2(0,TV) { gh L2(0,T,(HY2()))
+||V— Vn +HVf—th ) . ’Us—ush )
L2(0,T,L2) L2(0,T V1) L2(0,T,VS)
~ A~ -
X = nllziomn} + Rl o (| V1 = Fonf o
Te— T H)\ A A
Tt Us— Ush L2(0,T,VS))+ = =hilLzo,Tws) [1=01lL2(0,T,Ws)
1 = = 1 = =
+5M(Vn, Vn)(0)+ 5As(Ush, Tan)(0).
From the global inf sup condition (4.1) we have
~ ~ b(V,
[[Xnlll < I1x xh|||+|\|x—xh|||<H|X—xh|||+Csur},¢vhevh%)h‘|TX“)
~ M(Vh—V, Vn)+a(V—ViVn)— (G- Gn) [V h]]dr
< [1X = Xnlll+CSURy g eyn = thH: —
< ISl Il + GO =V anlly o+~ Tenls | G =G| )
o m(V €h7vh—7h)+m(€)h_vvvh )
FCSURT e =Tl '
We deduce after intergrating that
thHLZ 0TV (4.3)

IXnlllzor)y <
- -
+HUS— UshHLZ(o,T.,VS)+ H g - gh L2(0,T,(HY/2(r))")
=¥ = g
+l|vh—V +H Vh H H
L2(0T.L2) L2(0,T,L2)
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Combining the estimates (4.2-4.3), and sigeA; andCs are coercive, we get for each
= h o h =
VheVi XneW" § € Gy

— 2 — 2 — 2 5 ,)\\ 2
v v €
H h L=(0,T,L2) H th |_2(0va H h L®(0,T,VS) =hllL2(0,Tws)
<c = ¥ =
v - Vh— V
- ’ h L2(0,T,V) {H g gh L20T(H1/2(F)))+ " L2(0,T,L2)
- - = ~
V=T g T[T T g T IX—Rblz0m)
2[p-i N y
+ 24, L2(0.T.W5) fATS L2(0.T) + h L2(0.TV) {| ’ ‘X Xh‘ | ’LZ(O,T)
— — - =
+ HVf - vthLz(OT.Vf) + || Us — ﬁShHLZ (0,T,VS) +||V—Vnh
Y L2(0,T,L2)
- =
+H L2(0,T.V) +Hg gn L2(0,T,(HY/2(T +th H }
1 — K 1 =
+§m( Vh, Vh)(0)+ ZAS( sh, U h)(O).
Writing this inequality ax® — 2Kx — K2 < 0 with
= = 2 ’)‘\
X= H Vth L20T V) H h L=(0,T,VS) =hllLz(0,Tws)

implies thatx is bounded by1+ +/2K), which gives

~

v b,

th 82

H—>
~

+ h
L2(0,TV) L= (0,T,V9) L2(0,T,W5)

<C{H§ Gh

+va* V th

h— V

_l’_
L2(0,T,(HY/2(r )) ) L2(0,T,L2)

L2(0TVS) +IX = Xnllzo.1w)
+[[r0] + |G-

==
U *Ush

L2(0,T,VF)
11— Rnlllzom) + [~ A,

hilL2(0,Tws)

Taking into account the estimate (4.3), we finally get

+[11Xnlll20.1)

A~ L

"
2|4,

h h
L2(0T V) L=(0,TV9) L2(0,T,Ws)

—

—
Vh— V

SC{HE_Eh
+va - T LZ(OTVf)+‘

X = Knllcziorw) + 11X = Kolllizor + [A - &,

L2(0.T,(HY(T))") - L2(0.T,L2)

-
Us>—uh

L2(0,TVS)

hilL2(0,T,ws)
+h@ |+ [T
0 1
from which the theorem follows.

Remark. Because of the lemma2 and the time regularity required on the continuous
solution, we have
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inf- HV . VhHV = |V —InV ]y

and

= =
|nf—» e || Vh—V

.
;=¥ =7l

Theorem3 shows then well a uniform convergence of our schemes with respect to the shell
thickness. In view of the theoreml, the choice of the space approximation in the fluid part
(3.13), the interface approximation hypothesis (3.16) and the lemmaz2, this convergence is
of orderh2 + hy + hd.

5 Conclusion

We have shown herein how to efficiently couple discretization schemes while preserving
the accuracy and the stability of the original elements. In other words, by combining lock-
ing free finite element approximation of the Koiter shell, the incompressibility of the Stokes
fluid and the weak mortar coupling yield a locking free approximation of the coupled prob-
lem. Nevertheless, the problem studied is just an idealization of practical situations in-
volving elastic shells interacting with viscous fluids. The system studied is linear and alll
changes of configurations are neglected which guarantees the ellipticity of the associated
operators. On the other hand, the theory presented on the shell side is restricted to the
bending dominated case and is subjected to the same geometrical restrictions of [1].
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