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Abstract

We consider a steady mixed strategy for computing the evolution of a viscous
incompressible fluid inside an elastic Koiter shell in bending dominated state. We pro-
pose mixed finite element formulations of the different subproblems which we couple
by mortar technics. The Koiter shell is approximated by a locking free finite element
inspired by [1]. We deduce from the local discrete infsup conditions and the mortar
coupling a global infsup condition in the same way that [2]. We derive then a con-
vergence result and indicate that the different schemes preserve their accuracy and
stability after coupling.
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1 Introduction

Because of its many applications to industrial [3], [4], and biological problems [5], [6],
fluid structure interaction models have been extensively studied over the past few years.
Many challenging applications involve an incompressible three dimensional fluid lying in-
side flexible thin shell as faced for example when studying medical flows in flexible pipes.
In such situations, each component of the system has its own model and discretization re-
quirements. Moreover, the structure can be very stiff along certain deformation modes. And
when the finite element is used, the calculation faces major difficulties and the convergence
is manifestly deteriorate as the shell thickness becomes small. This phenomena, referred to
as locking is usually overcome by using mixed finite elements formulations treating some
components of the strain tensor as independent variables [1], [7]. The challenge is then to
match the different local finite elements while preserving their stability and robustness.
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In the present work, the model involves a time-dependent linearized interaction prob-
lem where an incompressible viscous fluid flows inside a flexible Koiter shell in bending
dominated state. For simplicity, all change of configurations is neglected. Our space dis-
cretization is standard in the fluid part and is locking free in the shell part. The paper
is organized as follows. In section 2, we introduce the shell Koiter dynamic model, we
present a mixed formulation and define the interaction problem. In section3, we present our
space discretization strategies. In section4, our attention is focused on the space discretiza-
tion convergence. By using the local discrete infsup conditions, we prove a convergence
result with constants independent of the shell thickness under some restrictive geometrical
assumption.

2 Problem definition

We consider a system which occupies a fixed domainΩ made of a viscous incompressible
fluid in motion in a fixed partΩ f and a deformable Koiter shell on the complementΩs. We
suppose thatΩ f is delimited by the fluid structure interfaceΓ and by external boundaryΓ f .

2.1 The Koiter shell model

Greek indices take their values in the set{1,2} and the Latin indices take their values in
{1,2,3}. Products containing repeated indices are summed.
We consider a shell with a thicknessε and a midsurfaceS=−→ϕ (ω̄) whereω is a domain of
R2 and−→ϕ ∈W2,∞(ω,R3) is an injective mapping. Let−→a α = −→ϕ ,α and−→a 3 =

−→a 1∧−→a 2
‖−→a 1∧−→a 2‖ be

the covariant basis vectors,a = ‖−→a 1∧−→a 2‖2 andE = (Eαβλµ)αβλµ be the elasticity tensor

assumed to be elliptic. For a displacement field−→us, we define the linearized change of
curvature tensorϒ = (ϒαβ)α,β and the linearized membrane strain tensorΛ = (Λαβ)α,β by

ϒαβ(
−→us) = (−→us,αβ−Γρ

αβ
−→us,ρ).−→a 3,

Λαβ(
−→u ) =

−→us,α.−→a β +−→us,β.
−→a α

2
.

We suppose the shell clamped on a part∂ωd of its boundary and set

H1
∂ωd

(ω) = {u∈ H1(ω),u = 0 on∂ωd},
H2

∂ωd
(ω) = {u∈ H2(ω),u = ∂u

∂n = 0 on∂ωd}
Vs = {−→v = viai ,vα ∈ H1

∂ωd
(ω),v3 ∈ H2

∂ωd
(ω)},

Note thatVs is a Hilbert space when endowed with the norm

||−→v ||Vs = (∑α ||vα||2H1 + ||v3||2H2)1/2.

Consider the dynamic bending dominated Koiter shell problem [1], [7], [8]

find−→us ∈ L2(0,T;Vs)
m̃s(

−→̈
u s;

−→v )+ Ãs(−→us;−→v ) = L̃s(−→v ) ∀−→v ∈Vs a.e.in time,
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wherem̃s is the inertia term,̃Ls corresponds to the external energy andÃs is the bilinear
form associated to the internal energy given respectively by

m̃s(
−→̈
us;
−→̂
v ) = ε3R

ω ρs
−→̈
us.
−→̂
v
√

adx:= ε3ms(
−→̈
u ;
−→̂
v ),

L̃s(
−→̂
v ) = ε3R

ω
−→
fs.
−→̂
v
√

adx:= ε3Ls(
−→̂
v ),

Ãs(−→u ;
−→̂
v ) =

R
ω Eασλµ( ε3

12ϒασ(−→u )ϒλµ(
−→̂
v )+ ε

2Λασ(−→u )Λλµ(
−→̂
v ))

√
adx.

To overcome the locking phenomena, we introduce in the same way that [1] a new variable
λ by setting for a realc0 ∈]0,ε−2[

λ = (λαγ)αγ , λαγ = ( 1
ε2 −co)EαγσµΛσµ(−→us),

and seek pairs

(−→us,λ) ∈ L2(0,T;Vs)×L∞(0,T;Ws) such that

ms(
−→̈
u s(t);

−→̂
v )+As(−→u s(t);

−→̂
v )+Bs(

−→̂
v ;λ(t)) = Ls(

−→̂
v ) ∀−→̂v ∈Vs a.e in t

Bs(−→u s(t); λ̂)− ε2

1−coε2Cs(λ(t); λ̂) = 0,∀λ̂ ∈Ws = {ϕ/ϕαβ ∈ L2(ω)} a.e in t

where

As(−→u ;
−→̂
v ) =

R
ω Eασλµ( 1

12ϒασ(−→u )ϒλµ(
−→̂
v )+c0Λασ(−→u )Λλµ(

−→̂
v ))

√
adx,

Bs(−→v ;ξ) =
R

ω Λασ(−→v )ξασ√adx, Cs(λ;ξ) =
R

ω(E−1)ασδµλδµξασ√adx.

Note that the bilinear formsAs, Bs Cs are continuous respectively onVs×Vs, Vs×Ws and
Ws×Ws, thatAs is Vs-elliptic andCs is Ws-elliptic [1], [8].

2.2 The fluid-structure problem

We suppose that the fluid is viscous governed by the Stokes equations. Its evolution problem
determines

−→v f ∈ L2(0,T,H1
Γ f ), p(t) ∈ L0(Ω f ) such that

mf (
−→̇
v f ,

−→̂
v f )+Af (−→vf ,

−→̂
vf )+Bf (

−→̂
vf , p) = L f (

−→̂
v f ), ∀−→̂vf ∈ H1

Γ f a.e. in t,
Bf (−→vf (t),q) =

R
Ω f qdiv−→vf (t)dx= 0 ∀q∈W f = L0(Ω f ) a.e. in t.

where
H1

Γ f =
{−→v ∈ H1(Ω f ,R3), −→v = 0 on Γ f

}
,

mf (
−→̇
vf ,
−→̂
v f ) =

R
Ω f ρ f

−→̇
vf .
−→̂
vf dx,

Af (−→vf ,
−→̂
vf ) =

1
4

R
Ω f µ(∇−→vf +∇t−→vf ) : (∇

−→̂
vf +∇t−→̂vf )dx,

µ> 0 denotes the fluid viscosity,L f is the resultant of the applied forces andρ f denotes the
mass density of the fluid.
We suppose thatΓ corresponds to the upper face of a partωΓ ⊂ ω :

Γ =
{−→x =−→ϕ (ξ1,ξ2)+ ε−→a3(ξ1,ξ2), (ξ1,ξ2) ∈ ωΓ

}
. (2.1)
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The global displacement field must be continuous at this interfaceΓ

−→u s(ξ1,ξ2; t) =−→u f (x, t),∀−→x ∈ Γ,a.e. in t, (2.2)

where−→u f (., t) =−→u f (.,0)+
Z t

0

−→v f (.,τ)dτ is the fluid displacement field.

We define the global Hilbert space of stresses test functions byW = Ws×W f , the global
kinematically admissible velocity test functions space by

V =
{
(−→v s,

−→v f ) ∈Vs×H1
Γ f ,

−→v f =−→v s on Γ
}

(2.3)

and the space for unknown velocity fields by :

U =





(−→v s,
−→v f ) ∈ L2(0,T;L2(ωs,R3)×L2(Ω f ,R3)) ;−→v f ∈ L2(0,T;H1

Γ f ),
(−→u s,

−→u f )(0)+
R t

0(
−→v s,

−→v f )(τ)dτ ∈ L2(0,T;V)



 .

The mixed formulation describing the evolution of the global system is

(MF)





Find−→v = (−→v s,
−→v f ) ∈U, (λ, pf ) ∈W such that

m(
−→̇
v ;
−→̂
v )+As(−→u s;

−→̂
v s)+Af (−→v f ,

−→̂
v f )

+Bs(
−→̂
v s;λ)+Bf (

−→̂
v f ; pf )

= L(
−→̂
v s,

−→̂
v f ), ∀ (

−→̂
v s,

−→̂
v f ) ∈V, a.e in time,

Bs(−→u s(t); λ̂)− ε2

1−coε2Cs(λ(t); λ̂) = 0,∀λ̂ ∈Ws, a.e in time,

Bf (−→v f ;qf ) = 0, ∀qf ∈W f , a.e in time,

−→u s(t) =−→u s(0)+
R t

0
−→v s(τ)dτ,

(−→v s,
−→v f )(0) is given inV;

wherem(
−→̇
v ;
−→̂
v ) = ms(

−→̇
v s;

−→̂
v s)+mf (

−→̇
v f ,

−→̂
v f ) andL(

−→̂
v s,

−→̂
v f ) = Ls(

−→̂
v s)+L f (

−→̂
v f ).

Remark : The continuity requirement (2.2) between fluid and shell displacement is not
completely exact. The displacement of the Koiter shell at its upper surface is not identical
to the midsurface displacement−→u s. The true displacement is−→u s+ εδ−→a3. The Kirchhoff
kinematical assumption (i.e. zero shear strain) should be used to calculate the implicit
rotationsδ−→a3 and gives [9]

δ−→a3 = (−→a 3.
−→us,α )−→a α.

Assuming that the thickness is small, the simplification (2.2) is accepted as approximation
at first order of the true continuity requirement.
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3 Discretizations

We will concentrate hereafter on the space discretization and its convergence.The key issues
for the time stepping is present in [10] for a similar interaction problem. The main differ-
ence compared to the earlier work [10] is that the convergence result should be independent
of the small parameterε. The shell discretisation strategy is then fundamentally different.

3.1 Shell discretization

We henceforth assume that the domainω is a polygon triangulated by a regular triangulation
τh

s and introduce the spaces

L1
h = {v∈ H1

∂ωd
(ω) , v/T ∈ P3(T) ∀T ∈ τh

s}, (3.1)

B1
h = {v∈ H1(ω) , v/T = λ1λ2λ3p, p∈ P1(T) ∀T ∈ τh

s},
H1

h = {v = v1 +v2 such thatv1 ∈ L1
h,v2 ∈ B1

h}= L1
h⊕B1

h,

L2
h = {v∈ H2

∂ωd
(ω) , v/T ∈ P5(T) ∀T ∈ τh

s}, (3.2)

B2
h = {v∈ H2∩H1

0 (ω) , v/T = λ2
1λ2

2λ3
3p, p∈ P1(T) ∀T ∈ τh

s},
H2

h = {v = v1 +v2 such thatv1 ∈ L2
h,v2 ∈ B2

h}= L2
h⊕B2

h. (3.3)

Above,λ1, λ2 andλ3 denote the barycentric coordinates for each triangleT. We note that
the spaceL2

h consists of the Argyris element andBα
h are bubble function spaces that will

be used for the local adjustment to achieve discrete stability. We introduce the discrete
displacement and stress spaces by

Vs
h =

{−→v h ∈Vs,−→v h.
−→a α ∈ H1

h , −→v h.
−→a 3 ∈ H2

h

}
,

Ws
h = {λ, λαβ/T ∈ P1(T) ∀T}

To prove uniform convergence with respect to the shell thickness, we need as in [1] an inf
sup stability hypothesis where we assume that there exists a constantC̃ > 0 for which we
have

inf
06=λ∈Ws

h

sup
06=−→v ∈Vs

h

Bs(−→v ;λ)
||−→v ||.|||λ||| ≥ C̃. (3.4)

Below, |||.||| is a semi norm onWs defined by

|||λ|||= sup06=−→v ∈Vh

Bs(−→v ;λ)
||−→v || .

Lemma 1 : If the first and second fundamental forms associated to he shell midsurface
are piecewise constant then (3.4) is verified.

Proof : The proof is based on the construction of an adequate projection operatorπ :
Vs→Vs

h satisfying

i)Bs(π−→v ;λ) = Bs(−→v ;λ) ∀−→v ∈Vs,∀λ ∈Ws
h , (3.5)

ii)‖π−→v ‖Vs ≤ Co‖−→v ‖Vs ∀−→v ∈Vs. (3.6)



6 Saloua Mani Aouadi

We consider the projectionπ1 : H1 → H1
h constructed in [1] which satisfies

∥∥π1v
∥∥

H1(T) ≤ C‖v‖H1(T̃) ;∀T ∈ τh
s, (3.7)

Z

e
(v−π1v)p = 0 ∀p∈ P1(T), ∀e∈ ∂T, T ∈ τh

s, (3.8)
Z

T
(v−π1v)p = 0 ∀p∈ P1(T), ∀T ∈ τh

s, (3.9)

whereT̃ is the union of triangles inτh
s which meetT.

What then remains is to construct a projectionπ2 : H2 → H2
h satisfying

Z

T
(v−π1v)p = 0 ∀p∈ P1(T) ∀T ∈ τh

s, (3.10)
∥∥π2v

∥∥
H2(T) ≤ C‖v‖H2(T̃) . (3.11)

A constructive way to define a mapπ2
0 : H2 → L2

h satisfying for anyT ∈ τh
s∥∥v−π2

0v
∥∥

0,T +h
∥∥v−π2

0v
∥∥

1,T +h2
∥∥v−π2

0v
∥∥

2,T ≤Ch2‖v‖2,T̃ ∀v∈ H2

can be found in [11]. We defineπ2
1 : H2

∂ω → B2
h by the conditions

Z

T
(v−π2

1v)p = 0 ∀p∈ P1(T), ∀T ∈ τh
s (3.12)

and obtain by a scaling argument
∥∥v−π2

1v
∥∥

0,T +h
∥∥v−π2

1v
∥∥

1,T +h2
∥∥v−π2

1v
∥∥

2,T ≤C(h2 |v|2,T +‖v‖0,T).

Finally we set
π2v = π2

0v+π2
1(v−π2

0v),

and obtain an operatorπ2 which verifies (3.10-3.11)and an operatorπ = (π1,π1,π2) which
verifies (3.5-3.6). Then givenλ ∈Ws

h , we may choose−→v ∈Vs for which

Bs(π−→v ;λ)
||−→v || ≥ 1

2
|||λ|||

and then the lemma holds after writing

Bs(π−→v ;λ)
||π−→v ||Vs

=
Bs(−→v ;λ)
||π−→v ||Vs

≥ Bs(−→v ;λ)
Co||−→v ||Vs

≥ 1
2Co

|||λ|||.

In this framework, we use the following theorem proved in [1] in an abstract cadre which
proves an uniform convergence with respect to the thickness.

Theorem 1 : If (3.4) is satisfied, there exists unique pairs(us,λ) ∈Vs×Ws, (ush,λh
) ∈

Vs
h ×Ws

h solutions respectively of the continuous and discrete static mixed shell problems.
Moreover, the errors are bounded by

‖−→u s−−→u sh‖Vs + |||λ−λ
h
|||+ ε2

1−coε2

∥∥∥λ−λ
h

∥∥∥
Ws

≤C infv̂∈Vs
h ,λ̂∈Ws

h
{
∥∥∥−→u s−−→̂v

∥∥∥
Vs

+ |||λ− λ̂|||+ ε2

1−coε2

∥∥∥λ− λ̂
∥∥∥

Ws
}

≤Ch2{‖−→u s‖H3 +‖−→u s.
−→a 3‖H4 +

∥∥∥λ
∥∥∥

H2
}.

whereC is a constant independent ofh andε
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3.2 Fluid and interface discretizations

Let τh
f be a regular triangulation of the three dimensional fluid domain, Ω f = ∪T∈τh

f
T. We

approximate the velocity and the pressure fields by [12] :

H f
h = {−→v h ∈ H1(Ω f ,R3),vh/T ∈ (P1(T)⊕{λ1λ2λ3λ4})3,−→v h = 0 on Γ f }, (3.13)

W f
h = {qh ∈ H1(

Ω f ) ;qh/T ∈ P1(T)},
V f

h = {−→v h ∈ H f
h ;
Z

Ω f
div−→v h.qhdx= 0∀qhW

f
h },

(λi)i=1,4 denote the barycentric coordinates for the tetrahedronT. This choice of spaces
yields a convergence inO(h) and a compatibility condition in the following sense [12]

In fqh∈W f
h ∩L2

0
Sup−→v h∈H f

h

R
Ω f qhdiv−→v h

‖qh‖L2 .‖−→v h‖H1
≥ α > 0. (3.14)

The triangulations used for the structure and for the fluid are incompatible. This prevents
the discrete test functions from satisfying the continuity condition at the interface and we
haveVh * V. A strategy for defining compatible traces on incompatible grids consists in
introducing a mortar spaceGh ⊂ L2(Γ) and imposing the continuity in the following weak
sense

R
Γ(−→v sh−−→v f h).−→g h = 0,∀−→g h ∈Gh,∀(−→v sh,

−→v f h) ∈Vs
h ×H f

h .

A lot of flexibility can be introduced in the mortar spaceGh, nevertheless we expect it to
satisfy the compatibility condition [13]

inf
gh∈Gh

sup
vh∈H f

h

R
Γ
−→v h.

−→g h

‖−→v h‖L2(Γ) ‖−→g h‖L2(Γ)
≥C > 0, (3.15)

and refer to [2] and [13] for examples of such finite elements spaces. We noteπg the best
approximation on the multiplier spaceGh. WhenGh uses finite element of orderq, direct
interpolation yields

inf−→gh∈Gh

‖−→g −−→g h‖(H1/2(Γ))′ ≤Chq‖−→g ‖Hq−1/2(Γ) ,∀−→g ∈ H1/2(Γ). (3.16)

We define the global spacesWh andVh respectively byWh = Ws
h ×W f

h and

Vh = {(−→v sh,
−→v f h

) ∈Vs
h ×H f

h ;
R

Γ
−→g h(−→v f h−−→v sh) = 0 , ∀−→g h ∈Gh}.

The semi discrete problem is then
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(MFh)





Find−→v h = (−→v sh,
−→v f h) : t ∈ [0,T]→Vh,

(λ
h
, pf h) : t ∈ [0,T]→Wh such that

m(
−→̇
v h;

−→̂
v h)+As(−→u sh;

−→̂
v sh)+Af (−→v f h,

−→̂
v f h)

+Bs(
−→̂
v sh;λ

h
)+Bf (

−→̂
v f h; pf h)

= L(
−→̂
v sh,

−→̂
v f h), ∀ (

−→̂
v sh,

−→̂
v f h) ∈Vh, a.e in time,

Bs(−→u sh; λ̂
h
)− ε2

1−coε2Cs(λh
; λ̂

h
) = 0,∀λ̂

h
∈Ws

h , a.e in time,

Bf (−→v f h;qf h) = 0, ∀qf h ∈W f
h , a.e in time,−→u sh(t) =−→u sh(0)+

R t
0
−→v sh(τ)dτ,

(−→v sh,
−→v f h)(0) is given inVh.

(MFh) can be written on the compact form





For a.e.t ∈ [0,T], find−→v h(t) = (−→v sh,
−→v f h)(t) ∈Vh,

andµh(t) = (λ
h
, pf h)(t) ∈Wh such that

m(
−→̇
v h,

−→̂
v h)+a(−→v h,

−→̂
v h)+b(

−→̂
vh;µh)

= L(
−→̂
v h) ∀ −→̂v h = (

−→̂
v sh,

−→̂
v f h) ∈Vh,

b(−→v h, µ̂h)− ε2c(µh; µ̂h) = 0,∀µ̂h ∈Wh,

where

a(−→v h,
−→̂
v h) = Af (−→v f h,

−→̂
v f h)+As(−→u sh,

−→̂
v sh),

b(
−→̂
vh;µh) = Bf (

−→̂
vf h; pf h)+Bs(

−→̂
u sh;λ

h
),

c(µh, µ̂h) = Cs(λh
; λ̂

h
), ε2 = ε2

1−coε2 .

4 Convergence

4.1 Truncation error and global inf sup condition

The following lemma proves that the truncation error onVh is bounded by the interpolation
error on the product spaceVs

h ×H f
h .

Lemma 2 : For any
−→̂
v = (

−→̂
v s,

−→̂
v f ) ∈V, we noteIh

−→̂
v the finite element interpolate of−→̂

v on the product spaceVs
h ×H f

h . We have
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inf−→̃
v h∈Vh

∥∥∥−→̂v −−→̃v h

∥∥∥≤C
∥∥∥−→̂v − Ih

−→̂
v

∥∥∥
V

.

Proof. Let
−→̂
v = (

−→̂
v s,

−→̂
v f ) ∈V and let

−→̂
v h = (Ihs

−→̂
v s, Ih f

−→̂
v f )

the finite element interpolate of
−→̂
v in the product spaceVs

h ×H f
h . We will build

−→̃
v h ∈Vh by

correcting the interface jump

[[
−→̂
v h]] =

−→̂
v hs/Γ−

−→̂
v h f/Γ

of
−→̂
v h on the slave side which is the fluid domain. Since (3.15) is verified, we can construct

[13] a lifting operatorRf
h : H

1
2 (Γ)→ H f

h which verifies for any−→u in H
1
2 (Γ)

∥∥∥Rf
h
−→u

∥∥∥
H1

≤ C‖−→u ‖
H

1
2 (Γ)

,

Trh(R
f
h
−→u ) = Trh(−→u ).

Above,Trh is defined in the following weak sense

R
Γ Trh(−→u ).−→g h =

R
Γ
−→u .−→g h;∀−→g h ∈Gh;∀−→u ∈ L2.

We set

−→̃
v h = (Ihs

−→̂
v s, Ih f

−→̂
v f +Rf

h([[
−→̂
v h]])

and obtain thenTrh(
−→̃
v f h) = Trh(Ihs

−→̂
v s) and

∥∥∥−→̂v f −
−→̃
v f h

∥∥∥
H1
≤

∥∥∥−→̂v f − Ih f
−→̂
v f

∥∥∥
H1

+
∥∥∥Trh(Ihs

−→̂
v s− Ih f

−→̂
v f )

∥∥∥
H

1
2 (Γ)

≤
∥∥∥−→̂v f − Ih f

−→̂
v f

∥∥∥
H1

+
∥∥∥Trh(Ihs

−→̂
v s)− Ihs

−→̂
v s)

∥∥∥
H

1
2 (Γ)

+
∥∥∥Ihs

−→̂
v s−−→̂v s

∥∥∥
H

1
2 (Γ)

+
∥∥∥Ih f

−→̂
v s−−→̂v f

∥∥∥
H

1
2 (Γ)

which concludes our proof.

We now set|||χh||| = |||λ
h
|||+ ||qh||L2 for χh = (λ

h
,qh) ∈Wh and have the following

theorem.

Theorem 2The local inf sup conditions 3.4,3.14,3.15 imply the global condition

sup
06=v∈Vh

b(−→v h;χh)
||−→v h||V |||χh|||W ≥ C̃. (4.1)

Proof : Let χh= (λ
h
,q

h
) ∈Wh be given, we associate−→v sh ∈ Vs

h with bounded norm

such that (3.4) is verified. Since (3.15) is verified, we can introduce an extension insideΩ f

by
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−→v 1
f h = Rf

h ◦ trh(−→v sh).

Since (3.14) is verified, we can construct(−→v f h, ph) ∈H f
h ×W f

h the bounded solution of the
Stokes problem

Af (−→v f h,
−→̂
v f h)+Bf (

−→̂
v f h, ph) =−Af (−→v 1

f h,
−→̂
v f h) ∀−→̂v f h ∈ H f

h ,

Bf (−→v f h,qh) =−Bf (−→v 1
f h,qh)+

R
Ω f

q
h

‖q
h‖L2

qh ∀qh ∈W f
h ,

−→v f h/Γ = 0.
We finally introduce the bounded field−→v h= (−→v sh,

−→v f h +−→v 1
f h). By construction we have

−→v h∈Vh andb(−→v h;χh)≥ γ|||λ
h
|||+ ||q

h
||

L2

which concludes our proof.

4.2 Convergence

Following the steps of [1] and [2] for the shell problem with the additional complexity com-
ing from the weak interface continuity constraint and the time dependence, we can extend
the discrete stability and convergence result to our fluid structure interaction problem.

Theorem 3 : We suppose that the solution(−→v ,χ), −→v = (−→v s,
−→v f ), χ = (λ, pf ) of the con-

tinuous problem(MF) verifies−→v ∈C1(0,T,V). Let−→v h = (−→v sh,
−→v f h), χh = (λ

h
, pf h) be

the solution of the semi discrete problem(MFh). The errors are bounded by

‖−→v h−−→v ‖L∞(0,T,L2) +
∥∥−→v f h−−→v f

∥∥
L2(0,T,V f ) +‖−→u sh−−→u s‖L∞(0,T,Vs)

+ε
∥∥∥λ

h
−λ

∥∥∥
L2(0,T,Ws)

+ |||χh−χ|||L2(0,T)

≤C{inf−→̃g h∈Gh

∥∥∥−→g −−→̃g h

∥∥∥
L2(0,T,(H1/2(Γ))′)

+ inf−→̃
v h∈Vh

∥∥∥∥
−→̃
v̇ h−−→̇v

∥∥∥∥
L2(0,T,L2)

+ inf−→̃
v h∈Vh

∥∥∥−→v −−→̃v h

∥∥∥
L2(0,T,V)

+ infχ̃h∈Wh ‖χ− χ̃h‖L2(0,T,W) + infχ̃h∈Wh |||χ− χ̃h|||L2(0,T)

+‖(−→v h−−→v )(0)‖0 +
∥∥∥(−→v −−→̃v h)(0)

∥∥∥
0

+
∥∥∥(−→u s−

−→̃
u sh)(0)

∥∥∥
1
+‖(−→u s−−→u sh)(0)‖1}

Proof : By substracting the continuous problem(MF) written with the multiplier la-
grange−→g in L2(Γ) and the discrete problem(MFh) we get

m(
−→̇
v h−−→̇v ,

−→̂
v h)+a(−→v h−−→v ,

−→̂
v h)+b(χh−χ,

−→̂
v h)+

R
Γ(−→g −−→̃g h)[[

−→̂
v h]]dΓ = 0

∀−→̃g h ∈Gh, ∀−→̂v h ∈Vh,
b(χ̂h,

−→v h−−→v )− ε2c(χh−χ, χ̂h) = 0, ∀χ̂h = (λ̂
h
, p̂f h) ∈Wh.

Using as test function
−→̂
v h =−→v h−−→̃v h, χ̂h = χh− χ̃h and substracting the second line from

the first line yields



Global Discrete Inf Sup Condition for an Unsteady Interaction Problem 11

m(
−→̂
v̇ h,

−→̂
v h)+Af (

−→̂
v f h,

−→̂
v f h)+As(

−→̂
u sh,

−→̂
v sh)+ ε2Cs(λ̂h

, λ̂
h
)

=
R

Γ(−→g −−→̃g h)[[
−→̂
v h]]dΓ+m(

−→̇
v −

−→̃
v̇ h,

−→̂
v h)+Af (−→v f −−→̃v f h,

−→̂
v f h)

+As(−→u s−−→̃u sh,
−→̂
v sh)+b(χ− χ̃h,

−→̂
v h)−b(χ̂h,

−→v −−→̃v h)
+ε2Cs(λ− λ̃

h
, λ̂

h
) ∀−→̃v h ∈Vh, χ̃h = (λ̃

h
, p̃f h) ∈Wh,

−→̃
g ∈Gh.

Using the continuity ofa, b, c and the definition of the semi norm|||.|||, we get by Cauchy
Schwartz inequality

m(
−→̂
v̇ h,

−→̂
v h)+Af (

−→̂
v f h,

−→̂
v f h)+As(

−→̂
u sh,

−→̂
v sh)+ ε2Cs(λ̂h

, λ̂
h
)

≤C
∥∥∥−→̂v h

∥∥∥
V
{
∥∥∥−→g −−→̃g h

∥∥∥
(H1/2(Γ))′

+
∥∥∥∥
−→̇
v −

−→̃
v̇ h

∥∥∥∥
0
+

∥∥∥−→v f −−→̃v f h

∥∥∥
V f

+
∥∥∥−→u s−

−→̃
u sh

∥∥∥
Vs

+‖χ− χ̃h‖W}
+|||χ̂h|||(

∥∥∥−→v f −−→̃v f h

∥∥∥
V f

+
∥∥∥−→u s−−→̃u sh

∥∥∥
Vs

)+ ε2
∥∥∥λ− λ̃

h

∥∥∥
Ws

∥∥∥λ̂
h

∥∥∥
Ws

.

By integrating in time from0 to t we observe that we have

1
2

m(
−→̂
v h,

−→̂
v h)+

1
2

As(
−→̂
u sh,

−→̂
u sh)(t)+

Z t

0
Af (

−→̂
v f h,

−→̂
v f h)(s)ds (4.2)

+ε2R t
0Cs(λ̂h

, λ̂
h
)ds≤C

∥∥∥−→̂v h

∥∥∥
L2(0,T,V)

{
∥∥∥−→g −−→̃g h

∥∥∥
L2(0,T,(H1/2(Γ))′ )

+
∥∥∥∥
−→̇
v −

−→̃
v̇ h

∥∥∥∥
L2(0,T,L2)

+
∥∥∥−→vf −−→̃v f h

∥∥∥
L2(0,T,V f )

+
∥∥∥−→us−

−→̃
u sh

∥∥∥
L2(0,T,Vs)

+‖χ− χ̃h‖L2(0,T,W)}+ |||χ̂h|||L2(0,T)(
∥∥∥−→v f −−→̃v f h

∥∥∥
L2(0,T,V)

+
∥∥∥−→u s−−→̃u sh

∥∥∥
L2(0,T,Vs)

)+ ε2
∥∥∥λ− λ̃

h

∥∥∥
L2(0,T,Ws)

∥∥∥λ̂
h

∥∥∥
L2(0,T,Ws)

+
1
2

m(
−→̂
v h,

−→̂
v h)(0)+

1
2

As(
−→̂
u sh,

−→̂
u sh)(0).

From the global inf sup condition (4.1) we have

|||χ̂h||| ≤ |||χ− χ̃h|||+ |||χ−χh||| ≤ |||χ− χ̃h|||+Csup06=−→̄v h∈Vh
b(−→̄v h;χ−χh)
||−→̄v h||V

≤ |||χ− χ̃h|||+Csup06=−→̄v h∈Vh
m(
−→̇
v h−−→̇v ,

−→̄
v h)+a(−→v h−−→v ;

−→̄
v h)−

R
Γ(−→g−−→̃g h)[[

−→̂
v h]]dΓ

||−→̄v h||V
≤ |||χ− χ̃h|||+C{∥∥−→vf −−→v f h

∥∥
V f +‖−→us−−→u sh‖Vs +

∥∥∥−→g −−→̃g h

∥∥∥
(H1/2(Γ))′

}

+Csup06=−→̃v h∈Vh
m(
−→̇
v h−

−→̃
v̇ h,~vh−−→̃v h)+m(

−→̃
v̇ h−−→̇v ,~vh−−→̃v h)

||~vh−−→̃v h||V
.

We deduce after intergrating that

|||χ̂h|||L2(0,T) ≤ |||χ− χ̃h|||L2(0,T)
+C{∥∥−→vf −−→v f h

∥∥
L2(0,T,V f ) (4.3)

+‖−→us−−→u sh‖L2(0,T,Vs) +
∥∥∥−→g −−→̃g h

∥∥∥
L2(0,T,(H1/2(Γ))′ )

+
∥∥∥∥
−→̃
v̇ h−−→̇v

∥∥∥∥
L2(0,T,L2)

+
∥∥∥−→̂v h

∥∥∥
L2(0,T,L2)

+
∥∥∥−→̂v h(0)

∥∥∥
0
.
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Combining the estimates (4.2-4.3), and sinceAs, Af andCs are coercive, we get for each−→̃
v h ∈Vh, χ̃h ∈Wh −→̃g ∈Gh

∥∥∥−→̂v h

∥∥∥
2

L∞(0,T,L2)
+

∥∥∥−→̂v f h

∥∥∥
2

L2(0,T,V f )
+

∥∥∥−→̂u sh

∥∥∥
2

L∞(0,T,Vs)
+ ε2

∥∥∥λ̂
h

∥∥∥
2

L2(0,T,Ws)

≤C
∥∥∥−→̂v h

∥∥∥
L2(0,T,V)

{
∥∥∥−→g −−→̃g h

∥∥∥
L2(0,T,(H1/2(Γ))′ )

+
∥∥∥∥
−→̃
v̇ h−−→̇v

∥∥∥∥
L2(0,T,L2)

+
∥∥∥−→v f −−→̃v f h

∥∥∥
L2(0,T,V f )

+
∥∥∥−→us−

−→̃
u sh

∥∥∥
L2(0,T,Vs)

+‖χ− χ̃h‖L2(0,T,W)}
+ε2

∥∥∥λ− λ̃
h

∥∥∥
L2(0,T,Ws)

∥∥∥λ̂
h

∥∥∥
L2(0,T)

+
∥∥∥−→v −−→̃v h

∥∥∥
L2(0,T,V)

{|||χ− χ̃h|||L2(0,T)

+
∥∥−→vf −−→v f h

∥∥
L2(0,T,V f ) +‖−→us−−→u sh‖L2(0,T,Vs) +

∥∥∥∥
−→̇
v −

−→̃
v̇ h

∥∥∥∥
L2(0,T,L2)

+
∥∥∥−→̂v h

∥∥∥
L2(0,T,V)

+
∥∥∥−→g −−→̃g h

∥∥∥
L2(0,T,(H1/2(Γ))′ )

+
∥∥∥−→̂v h(0)

∥∥∥
0
}

+
1
2

m(
−→̂
v h,

−→̂
v h)(0)+

1
2

As(
−→̂
u sh,

−→̂
u sh)(0).

Writing this inequality asx2−2Kx−K2 ≤ 0 with

x =
∥∥∥−→̂v f h

∥∥∥
L2(0,T,V f )

+
∥∥∥−→̂u sh

∥∥∥
L∞(0,T,Vs)

+ ε2
∥∥∥λ̂

h

∥∥∥
L2(0,T,Ws)

implies thatx is bounded by(1+
√

2K), which gives
∥∥∥−→̂v f h

∥∥∥
L2(0,T,V f )

+
∥∥∥−→̂u sh

∥∥∥
L∞(0,T,Vs)

+ ε2
∥∥∥λ̂

h

∥∥∥
L2(0,T,Ws)

≤C{
∥∥∥−→g −−→̃g h

∥∥∥
L2(0,T,(H1/2(Γ))′ )

+
∥∥∥∥
−→̃
v̇ h−−→̇v

∥∥∥∥
L2(0,T,L2)

+
∥∥∥−→v f −−→̃v f h

∥∥∥
L2(0,T,V f )

+
∥∥∥−→us−

−→̃
u sh

∥∥∥
L2(0,T,Vs)

+‖χ− χ̃h‖L2(0,T,W)

+|||χ− χ̃h|||L2(0,T) +
∥∥∥λ− λ̃

h

∥∥∥
L2(0,T,Ws)

+
∥∥∥−→̂v h(0)

∥∥∥
0
+

∥∥∥−→̂u sh(0)
∥∥∥

1
}.

Taking into account the estimate (4.3), we finally get
∥∥∥−→̂v f h

∥∥∥
L2(0,T,V f )

+
∥∥∥−→̂u sh

∥∥∥
L∞(0,T,Vs)

+ ε2
∥∥∥λ̂

h

∥∥∥
L2(0,T,Ws)

+ |||χ̂h|||L2(0,T)

≤C{
∥∥∥−→g −−→̃g h

∥∥∥
L2(0,T,(H1/2(Γ))′ )

+
∥∥∥∥
−→̃
v̇ h−−→̇v

∥∥∥∥
L2(0,T,L2)

+
∥∥∥−→v f −−→̃v f h

∥∥∥
L2(0,T,V f )

+
∥∥∥−→us−

−→̃
u sh

∥∥∥
L2(0,T,Vs)

+‖χ− χ̃h‖L2(0,T,W) + |||χ− χ̃h|||L2(0,T) +
∥∥∥λ− λ̃

h

∥∥∥
L2(0,T,Ws)

+
∥∥∥−→̂v h(0)

∥∥∥
0
+

∥∥∥−→̂u sh(0)
∥∥∥

1
}.

from which the theorem follows.

Remark. Because of the lemma2 and the time regularity required on the continuous
solution, we have
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inf−→̃
v h∈Vh

∥∥∥−→v −−→̃v h

∥∥∥
V

= ‖−→v − Ih
−→v ‖V

and

inf−→̃
v h∈Vh

∥∥∥∥
−→̃
v̇ h−−→̇v

∥∥∥∥
0
=

∥∥∥−→̇v − Ih
−→̇
v

∥∥∥
0
.

Theorem3 shows then well a uniform convergence of our schemes with respect to the shell
thickness. In view of the theorem1, the choice of the space approximation in the fluid part
(3.13), the interface approximation hypothesis (3.16) and the lemma2, this convergence is
of orderh2

s +hf +hq.

5 Conclusion

We have shown herein how to efficiently couple discretization schemes while preserving
the accuracy and the stability of the original elements. In other words, by combining lock-
ing free finite element approximation of the Koiter shell, the incompressibility of the Stokes
fluid and the weak mortar coupling yield a locking free approximation of the coupled prob-
lem. Nevertheless, the problem studied is just an idealization of practical situations in-
volving elastic shells interacting with viscous fluids. The system studied is linear and all
changes of configurations are neglected which guarantees the ellipticity of the associated
operators. On the other hand, the theory presented on the shell side is restricted to the
bending dominated case and is subjected to the same geometrical restrictions of [1].
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