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Abstract

Using the Perov’s fixed point theorem and the theorem of fiber generalized con-
tractions, we obtain the smooth dependence by lag of the positive periodic solution
of a neutral delay integro-differential equation which arise in epidemiology. The
smooth dependence is obtained also for the derivative of the solution.
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1. Introduction

The use of the Perov’s fixed point theorem (see [9], [1], [6] and [13]) generates an
efficient technique to approach systems of operatorial equations (see [15] and [13]) and
operatorial (differential and integro-differential) equations of neutral type (see [1], [2],
[3] and [4]). In the study of the smooth dependence by parameters of the solution of
an operatorial equation is very useful the notion of Picard and weakly Picard operator
(see [10] and [14]) and the theorem of fiber generalized contractions (see [11], [12]
and [13]). Applications of the technique of Picard and weakly Picard operators can
be viewed in [6] and [16]. Some applications of the fiber generalized contractions can
be found in [11], [13], [8], [3], and [4]. In [2] we have obtained the existence and
uniqueness of the positive periodic solution of equation (1.1) and in [3] we consider
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the initial value problem corresponding to this equation and obtain the conditions for
existence, uniqueness and smooth dependence by parameter of the positive and smooth
solution of this initial value problem. In [3] we obtain the Lipschitz property of the
derivative of the solution and in the same conditions we construct a numerical method
to approximate the solution and his derivative. In [4] we apply the technique generated
by the Perov’s fixed point theorem to the neutral delay differential equation,

x′(t) = f(t, x(t), x′(t− τ)), t ∈ [0, T ].

Here, we continue the work from [2], in the study of the following neutral delay
integro-differential equation:

x(t) =

t∫

t−τ

f(s, x(s), x′(s))ds, (1.1)

which is a model for the spread of certain infectious diseases with a contact rate that
varies seasonally, generalizing the model governed by the delay integral equation

x(t) =

t∫

t−τ

f(s, x(s))ds. (1.2)

The equation (1.2) was studied in [5], [7] and [17]. In the equations (1.1) and (1.2)
x(t) is the proportion of infectives in the population at time momentt andτ > 0 is the
averaged length of time in which an individual remains infectious. In equation (1.1),
x′(t) is the speed of infection spreading at momentt. In this paper we will study the
dependence by the lagτ, of the periodic positive solution of equation (1.1). We will use
the following notions and results:

Definition 1.1 ([10], [13] and [14]): Let (X, d) be a metric space. An operatorA :
X → X is Picard operator if there existsx∗ ∈ X such that:
(a)x∗ is the unique fixed point ofA,
(b) the sequence(An(x0))n∈N converges tox∗, for all x0 ∈ X, whereA0 = Id(X), and
An+1 = A ◦ An, ∀n ∈ N.

Definition 1.2 ([10], [13] and [14]): Let (X, d) be a metric space. An operatorA :
X → X is weakly Picard operator if the sequence(An(x0))n∈N converges for allx0 ∈
X and the limit (which may depend onx0 ) is a fixed point ofA.

Theorem 1.3 (A. I. Perov, [9], [1]): Let (X, d) a complete generalized metric space
such thatd (x, y) ∈ Rn. Suppose thatA : X → X is a map for which exists a matrix
Q ∈Mn (R) such that:

d (A (x) , A (y)) ≤ Qd (x, y) ,∀x, y ∈ X.
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If all the eigenvalues ofQ lies in the open unit disc ofR2, thenA is a Q-contraction
( that is lim

m→∞
Qm = 0 ), has an unique fixed pointx∗ and the sequence of successive

approximations,xm = Am (x0) , converges tox∗ for any x0 ∈ X. Moreover, for any
m ∈ N∗ the following estimation holds

d (xm, x∗) ≤ Qm (In −Q)−1 d (x0, x1) .

Theorem 1.4 (I. A. Rus, [11], [12] and [13]): Let (X, d) be a metric space (gener-
alized or not) and(Y, ρ) be a complete generalized metric space (ρ(x, y) ∈ Rn

+). Let
A : X × Y → X × Y be a continuous operator andC : X × Y → Y an operator.
Suppose that:

(i) the operatorB : X → X has an unique fixed pointx∗ and for anyx0 ∈ X the
sequence given byxn+1 = B(xn) converges inX to x∗

(ii) A(x, y) = (B(x), C(x, y)), for all x ∈ X, y ∈ Y

(iii) there exists a matrixQ ∈ Mn(R+), with Qm → 0 asm →∞, such that

ρ(C(x, y1), C(x, y2)) ≤ Q · ρ(y1, y2),

for all x ∈ X, andy1 , y2 ∈ Y.

Then, the operatorA has an unique fixed point(x∗, y∗) and for any(x0, y0) ∈ X × Y
the sequence given by(xn+1, yn+1) = A((xn, yn)) converge to(x∗, y∗) in X × Y .

2. Main Result

Consider the integro-differential equation,

x(t, τ) =

t∫

t−τ

f(s, x(s, τ), x′s(s, τ), τ)ds, t ∈ R, τ ∈ [a, b] (2.1)

wherea > 0.
We will consider the conditions:

(i) (continuity): f ∈ C(R × R+ × R × [a, b]) and f(·, u, v, ·) ∈ C1(R × [a, b]),
∀(u, v) ∈ R+ × R, .

(ii) (boundedness): existsm,M ≥ 0 such that

m ≤ f(t, u, v, τ) ≤ M, ∀(t, u, v, τ) ∈ R× R+ × R× [a, b]

(iii) (Lipschitz property) : existsα, β > 0 such that

|f(t, u1, v1, τ)− f(t, u2, v2, τ)| ≤ α |u1 − u2|+ β |v1 − v2| ,
∀t ∈ R, ∀u1, u2 ∈ R+, ∀v1, v2 ∈ R,∀τ ∈ [a, b]
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(iv) (periodicity):∃$ > 0 such that

f(t + $, u, v, τ) = f(t, u, v, τ), ∀(t, u, v, τ) ∈ R× R+ × R× [a, b]

(v) (smoothness):f ∈ C1(R× R+ × R× [a, b]), and

∂f

∂t
(t + $, u, v, τ) =

∂f

∂t
(t, u, v, τ)

∂f

∂τ
(t + $, u, v, τ) =

∂f

∂τ
(t, u, v, τ)

∂f

∂x
(t + $, u, v, τ) =

∂f

∂x
(t, u, v, τ)

∂f

∂y
(t + $, u, v, τ) =

∂f

∂y
(t, u, v, τ), ∀(t, u, v, τ) ∈ R× R+ × R× [a, b].

If we derive the equation (2.1) byt and denotingy(t, τ) = x′t(t, τ), we obtain,

y(t, τ) = f(t, x(t, τ), y(t, τ), τ)− f(t− τ, x(t− τ, τ), y(t− τ, τ), τ). (2.2)

Consider the following spaces,

X($) = {x ∈ C(R× [a, b]) | x(t + $, τ) = x(t, τ), ∀t ∈ R, ∀τ ∈ [a, b]}

X+($) = {x ∈ X($) | x(t, τ) ≥ 0, ∀t ∈ R, ∀τ ∈ [a, b]}
and denoteX = X+($)×X($), Y = X($)×X($). OnY define the generalized
metric,ρ : Y × Y −→ R2

ρ((x1, y1), (x2, y2)) =
(

max
t∈[0,$],τ∈[a,b]

|x1(t, τ)− x2(t, τ)| , max
t∈[0,$],τ∈[a,b]

|y1(t, τ)− y2(t, τ)|
)

and considerd : X ×X −→ R2, d = ρ |X×X .
It is clear that(Y, ρ) and(X, d) are complete generalized metric spaces.
SinceC1(R× [a, b]) is not complete with the metric of uniform convergence we will

study the equation (2.1) as in [2] and [4], considering the systems

(
x(t, τ)
y(t, τ)

)
=




t∫

t−τ

f (s, x (s, τ) , y (s, τ) , τ) ds

f(t, x(t, τ), y(t, τ), τ)− f(t− τ, x(t− τ, τ), y(t− τ, τ), τ),
t ∈ R, τ ∈ [a, b],




(2.3)



68 Alexandru Mihai Bica and Sorin Muresan

and
(

u(t, τ)
v(t, τ)

)

=




t∫

t−τ

[
∂f

∂ τ
(s, x (s, τ) , y (s, τ) , τ) +

∂f

∂ x
(s, x (s, τ) , y (s, τ) , τ) · u(s, τ)

+
∂f

∂ y
(s, x (s, τ) , y (s, τ) , τ) · v(s, τ)

]
ds,

∂f

∂ τ
(t, x(t, τ), y(t, τ), τ) +

∂f

∂ x
(t, x(t, τ), y(t, τ), τ) · u(t, τ)

+
∂f

∂ y
(t, x(t, τ), y(t, τ), τ) · v(t, τ) +

∂f

∂ t
(t− τ, x(t− τ, τ), y(t− τ, τ), τ)

− ∂f

∂ τ
(t− τ, x(t− τ, τ), y(t− τ, τ), τ)− ∂f

∂ x
(t− τ, x(t− τ, τ),

y(t− τ, τ), τ) · [−y(t− τ, τ) + u(t− τ, τ)]

−∂f

∂ y
(t− τ, x(t− τ, τ), y(t− τ, τ), τ)·

·
[
− ∂

∂ t
y(t− τ, τ) + (v(t− τ, τ))

]
, t ∈ R, τ ∈ [a, b].




(2.4)

where we have denoted

u(t, τ) =
d

dτ
x(t, τ), v(t, τ) =

d

dτ
y(t, τ)

according to the condition (i). Define the operators,B : X −→ X, C : X × Y −→ Y,
A : X × Y −→ X × Y by,

B(x, y)(t, τ) = (B1(x, y)(t, τ), B2(x, y)(t, τ))

=




t∫

t−τ

f (s, x (s, τ) , y (s, τ) , τ) ds

f(t, x(t, τ), y(t, τ), τ)− f(t− τ, x(t− τ, τ), y(t− τ, τ), τ),
, t ∈ R, τ ∈ [a, b],




(2.5)
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C((x, y), (u, v))(t, τ) = (C1((x, y), (u, v))(t, τ), C2((x, y), (u, v))(t, τ))

=




t∫

t−τ

[
∂f

∂ τ
(s, x (s, τ) , y (s, τ) , τ) +

∂f

∂ x
(s, x (s, τ) , y (s, τ) , τ) · u(s, τ)

+
∂f

∂ y
(s, x (s, τ) , y (s, τ) , τ) · v(s, τ)

]
ds,

∂f

∂ τ
(t, x(t, τ), y(t, τ), τ) +

∂f

∂ x
(t, x(t, τ), y(t, τ), τ) · u(t, τ)

+
∂f

∂ y
(t, x(t, τ), y(t, τ), τ) · v(t, τ) +

∂f

∂ t
(t− τ, x(t− τ, τ),

y(t− τ, τ), τ)− ∂f

∂ τ
(t− τ, x(t− τ, τ), y(t− τ, τ), τ)

− ∂f

∂ x
(t− τ, x(t− τ, τ), y(t− τ, τ), τ)

·[−y(t− τ, τ) + u(t− τ, τ)]− ∂f

∂ y
(t− τ, x(t− τ, τ), y(t− τ, τ), τ)·

·
[
− ∂

∂ t
y(t− τ, τ) + (v(t− τ, τ))

]
, t ∈ R, τ ∈ [a, b].




(2.6)

A((x, y), (u, v)) = (B(x, y), C((x, y), (u, v))), ∀x, y ∈ X, ∀u, v ∈ Y. (2.7)

In the relation (2.6), the existence of
∂

∂ t
y(t− τ, τ) is ensured by the condition (i).

Remark: We can see that anyz ∈ X($) is bounded onR, because of the continuity
and periodicity of the elements ofX($). Therefore, existsL1 ≥ 0 andL2 ≥ 0 such
that,∣∣∣∣

∂f

∂x
(s, u(t, τ), v(t, τ), τ)

∣∣∣∣ ≤ L1, ∀t ∈ R,∀u ∈ X+($), v ∈ X($),∀τ ∈ [a, b]

and∣∣∣∣
∂f

∂y
(s, u(t, τ), v(t, τ), τ)

∣∣∣∣ ≤ L2, ∀t ∈ R,∀u ∈ X+($), v ∈ X($),∀τ ∈ [a, b].

Theorem 2.1: a) In the conditions (i)-(iv) ifαb + 2β < 1 then the equation (2.3)
has inX an unique solution(x∗, y∗). Moreover, for any(x0, y0) ∈ X, the sequence
((xn, yn))n∈N defined by

xn+1(t, τ) =

t∫

t−τ

f (s, xn (s, τ) , yn (s, τ) , τ) ds
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yn+1(t, τ) = f(t, xn(t, τ), yn(t, τ), τ)− f(t− τ, xn(t− τ, τ), yn(t− τ, τ), τ)

uniformly converges onR× [a, b] to (x∗, y∗) andx∗ ∈ C1(R× [a, b]),

y∗(t, τ) =
d

dt
x∗(t, τ), ∀t ∈ R, ∀τ ∈ [a, b].

b) In the conditions (i)-(v), ifbL1 + 2L2 < 1 then y∗(t, ·) ∈ C1[a, b] and the pair(
∂x∗

∂λ
,
∂y∗

∂λ

)
∈ Y is the unique solution of the equation (2.4).

Proof: a) The condition (ii) imply that

B1(x, y)(t, τ) ≥ 0, ∀(t, τ) ∈ R× [a, b]
B1(x, y)(t, τ) ≤ Mτ ≤ Mb, ∀(t, τ) ∈ R× [a, b].

Using the transformation of variableu = s + $, we have,

B1(x, y)(t + $, τ) =

t+$∫

t+$−τ

f (s, x (s, τ) , y (s, τ) , τ) ds

=

t∫

t−τ

f (u−$, x (u−$, τ) , y (u−$, τ) , τ) du =

=

t∫

t−τ

f (u−$ + $, x (u−$ + $, τ) , y (u−$ + $, τ) , τ) du

= B1(x, y)(t, τ), ∀(t, τ) ∈ R× [a, b], ∀(x, y) ∈ X,

Analogous,

B2(x, y)(t + $, τ) = B2(x, y)(t, τ), ∀(t, τ) ∈ R× [a, b],∀(x, y) ∈ X.

Then,B(X) ⊂ X.
Let (x1, y1), (x2, y2) ∈ X. It is easy to prove the inequalities:

|B1(x1, y1)(t, τ)−B1(x2, y2)(t, τ)| ≤ ατ‖x1 − x2‖+ βτ‖y1 − y2‖

≤ αb‖x1 − x2‖+ βb‖y1 − y2‖, ∀(t, τ) ∈ R× [a, b]

and
|B2(x1, y1)(t, τ)−B2(x2, y2)(t, τ)| ≤

≤ 2α‖x1 − x2‖+ 2β‖y1 − y2‖, ∀(t, τ) ∈ R× [a, b].
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Then,

d(B(x1, y1), B(x2, y2)) ≤
(

αb βb
2α 2β

)
d((x1, y1), (x2, y2)),

∀(x1, y1), (x2, y2) ∈ X. The eigenvalues of the matrix

Q =

(
αb βb
2α 2β

)

areλ1 = 0 andλ2 = 2β + αb. The conditionαb + 2β < 1 imply thatQm → 0 as
m → ∞ and according to the Perov’s fixed point theorem, the operatorB has inX
an unique fixed point(x∗, y∗) and the sequence((xn, yn))n∈N uniformly converges to
(x∗, y∗) onR× [a, b]. Consequently,

x∗(t, τ) =

t∫

t−τ

f (s, x∗ (s, τ) , y∗ (s, τ) , τ) ds

and if we derive this equality with respect byt, we obtain thatx∗ ∈ C1(R× [a, b]) and

y∗(t, τ) =
d

dt
x∗(t, τ), ∀t ∈ R, ∀τ ∈ [a, b].

Moreover, since,Qn = λn−1
2 ·Q, ∀n ∈ N∗ and

(I −Q)−1 =
1

1− λ2

(
1− 2β βb
2α 1− αb

)

applying the Perov’s theorem we obtain form ∈ N∗, the estimation:

d ((xm, ym), (x∗, y∗)) ≤ λm−1
2

1− λ2

(
αb βb
2α 2β

)
d ((x1, y1), (x0, y0)) .

b) The condition (v) imply thatxm, ym ∈ C1(R × [a, b]), ∀m ∈ N∗. For (x, y) ∈ X
arbitrary we considerC((x, y), ·) : Y −→ Y . After elementary calculus, using the
condition (iv) and (v), we obtain,

C1((x, y), (u, v))(t + $, τ) = C1((x, y), (u, v))(t, τ), ∀(t, τ) ∈ R× [a, b]

and

C2((x, y), (u, v))(t + $, τ) = C2((x, y), (u, v))(t, τ), ∀(t, τ) ∈ R× [a, b].
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Consequently,C((x, y), Y ) ⊂ Y, ∀(x, y) ∈ X. For any(u1, v1), (u2, v2) ∈ Y we have
∣∣∣∣∣∣

t∫

t−τ

[
∂f

∂ τ
(s, x (s, τ) , y (s, τ) , τ) +

∂f

∂ x
(s, x (s, τ) , y (s, τ) , τ) · u1(s, τ)

+
∂f

∂ y
(s, x (s, τ) , y (s, τ) , τ) · v1(s, τ)

]
ds−

t∫

t−τ

[
∂f

∂ τ
(s, x (s, τ) , y (s, τ) , τ)

+
∂f

∂ x
(s, x (s, τ) , y (s, τ) , τ) · u2(s, τ)

+
∂f

∂ y
(s, x (s, τ) , y (s, τ) , τ) · v2(s, τ)]ds

∣∣∣∣

≤
t∫

t−τ

∣∣∣∣
∂f

∂ x
(s, x (s, τ) , y (s, τ) , τ)

∣∣∣∣ · |u1(s, τ)− u2(s, τ)| ds

+

t∫

t−τ

∣∣∣∣
∂f

∂ y
(s, x (s, τ) , y (s, τ) , τ)

∣∣∣∣ · |v1(s, τ)− v2(s, τ)| ds

≤ L1τ ‖u1 − u2‖+ L2τ ‖v1 − v2‖
≤ b · [L1 ‖u1 − u2‖+ L2 ‖v1 − v2‖], ∀(t, τ) ∈ R× [a, b].

and then,

|C1((x, y), (u1, v1))(t, τ)− C1((x, y), (u2, v2))(t, τ)|
≤ b · [L1 ‖u1 − u2‖+ L2 ‖v1 − v2‖], ∀(t, τ) ∈ R× [a, b].

Analogous, we obtain,

|C2((x, y), (u1, v1))(t, τ)− C2((x, y), (u2, v2))(t, τ)|
≤ 2L1 ‖u1 − u2‖+ 2L2 ‖v1 − v2‖ , ∀(t, τ) ∈ R× [a, b].

We infer that,
ρ(C((x, y), (u1, v1)), C((x, y), (u2, v2))) ≤

≤
(

L1b L2b
2L1 2L2

)
· ρ((u1, v1), (u2, v2)),

∀(x, y) ∈ X, ∀(u1, v1), (u2, v2) ∈ Y. Since,bL1 + 2L2 < 1, we infer thatC((x∗, y∗), ·)
has an unique fixed point(u∗, v∗) ∈ Y, and therefore((x∗, y∗), (u∗, v∗)) ∈ X × Y is
the unique fixed point of the operatorA. From Theorem 1 follows that for anyx0 ∈
X+($) ∩ C2(R× [a, b]), if we choose

y0 =
∂x0

∂t
, u0 =

∂x0

∂τ
, v0 =

∂y0

∂τ
,
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then the sequence

(An((x0, y0), (u0, v0)))n = ((xn, yn), (un, vn))

converges onX × Y to ((x∗, y∗), (u∗, v∗)). So, y∗(t, ·) ∈ C1[a, b], ∀t ∈ R and

xn ⇒ x∗ , yn =
∂xn

∂t
⇒ y∗

un =
∂xn

∂τ
⇒ u∗ , vn =

∂yn

∂τ
⇒ v∗.

Then,

y∗ =
∂x∗

∂t
, u∗ =

∂x∗

∂τ
, v∗ =

∂y∗

∂τ
.

and the pair(
∂x∗

∂τ
,
∂y∗

∂τ
) ∈ Y is the unique solution of the equation (2.4). ¥

Remark 3.2: From the above theorem we infer that the equation (2.1) has an unique
positive, periodic and smooth solution which is smooth dependent by the lagτ together
with his derivative (in respect byt). These means that the proportion of infectives in the
population and the speed of infection spreading are smooth dependent by the length of
time in which the individuals remain infectious.
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