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Abstract

Using the Perov’s fixed point theorem and the theorem of fiber generalized con-
tractions, we obtain the smooth dependence by lag of the positive periodic solution
of a neutral delay integro-differential equation which arise in epidemiology. The
smooth dependence is obtained also for the derivative of the solution.
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1. Introduction

The use of the Perov’s fixed point theorem (see [9], [1], [6] and [13]) generates an
efficient technique to approach systems of operatorial equations (see [15] and [13]) and
operatorial (differential and integro-differential) equations of neutral type (see [1], [2],
[3] and [4]). In the study of the smooth dependence by parameters of the solution of
an operatorial equation is very useful the notion of Picard and weakly Picard operator
(see [10] and [14]) and the theorem of fiber generalized contractions (see [11], [12]
and [13]). Applications of the technique of Picard and weakly Picard operators can
be viewed in [6] and [16]. Some applications of the fiber generalized contractions can
be found in [11], [13], [8], [3], and [4]. In [2] we have obtained the existence and
uniqueness of the positive periodic solution of equation (1.1) and in [3] we consider
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the initial value problem corresponding to this equation and obtain the conditions for
existence, unigueness and smooth dependence by parameter of the positive and smooth
solution of this initial value problem. In [3] we obtain the Lipschitz property of the
derivative of the solution and in the same conditions we construct a numerical method
to approximate the solution and his derivative. In [4] we apply the technique generated
by the Perov’s fixed point theorem to the neutral delay differential equation,

2(t) = f(t,x(t),a'(t— 7)), te[0,T].

Here, we continue the work from [2], in the study of the following neutral delay
integro-differential equation:

x(t):/f(s,x(s),x’(s))ds, (1.1)

which is a model for the spread of certain infectious diseases with a contact rate that
varies seasonally, generalizing the model governed by the delay integral equation

x@:/j@mm@. (1.2)

The equation (1.2) was studied in [5], [7] and [17]. In the equations (1.1) and (1.2)
x(t) is the proportion of infectives in the population at time momeandr > 0 is the
averaged length of time in which an individual remains infectious. In equation (1.1),
2'(t) is the speed of infection spreading at momentn this paper we will study the
dependence by the lagof the periodic positive solution of equation (1.1). We will use
the following notions and results:

Definition 1.1 ([10], [13] and [14]): Let (X,d) be a metric space. An operatdr:
X — X is Picard operator if there exists € X such that:

(a) z* is the unique fixed point ofl,

(b) the sequenceA™(z¢)).en CONverges ta*, for all z, € X, whereA® = Id(X), and
A" = Ao A" Vn € N.

Definition 1.2 ([10], [13] and [14]): Let (X,d) be a metric space. An operatdr:
X — X is weakly Picard operator if the sequeric€ (xy)).cn converges for alk, €
X and the limit (which may depend an ) is a fixed point ofA.

Theorem 1.3 (A. I. Perov, [9], [1]): Let (X,d) a complete generalized metric space
such thatl (z,y) € R". Suppose thatl : X — X is a map for which exists a matrix
Q € M,, (R) such that:

d(A(r),Ay)) < Qd(z,y),Vr,y € X.
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If all the eigenvalues of) lies in the open unit disc dR?, then A is a Q-contraction
(thatis lim Q™ = 0), has an unique fixed point* and the sequence of successive

approximationsg,, = A™ (zo), converges ta* for anyz, € X. Moreover, for any
m € N* the following estimation holds

d (@, %) < Q™ (I, — Q)" d (x0, 1) -

Theorem 1.4 (I. A. Rus, [11], [12] and [13]): Let (X, d) be a metric space (gener-
alized or not) andY,, p) be a complete generalized metric spager(y) € R’). Let
A: X xY — X xY be a continuous operator and : X x Y — Y an operator.
Suppose that:

(i) the operatoB : X — X has an unique fixed point" and for anyz, € X the
sequence given hy, ., = B(z,) converges inX to z*

(i) A(z,y) = (B(z),C(z,y)),forallz € X,y €Y
(iii) there exists a matrig) € M, (R, ), with Q™ — 0 asm — oo, such that
p(C(z,y1), C(z,y2)) < Q- p(y1,y2),
forallz € X, andy; ,y, € Y.

Then, the operatod has an unique fixed poirit:*, y*) and for any(zg,yo) € X x Y
the sequence given By, 1, yn+1) = A((xn, y,)) CcOnverge tqz*, y*) in X x Y.

2. Main Result

Consider the integro-differential equation,

x(t,T) = / f(s,x(s,7),2%(s,7), 7)ds, teR, 7€lab] (2.1)

wherea > 0.
We will consider the conditions:

(i) (continuity): f € C(R x Ry x R x [a,b]) and f(-,u,v,-) € C*(R x [a,b]),
V(u,v) € Ry x R,.

(i) (boundedness): exists, M > 0 such that
m < f(t,u,v,7) < M, ¥(t,u,v,7) € R x Ry xR x [a,b]
(iii) (Lipschitz property) : exists, 3 > 0 such that

|f(t,U1,U17T) - f(tau277)277-)| S OZlUl —U2| —|—ﬁ|1)1 — Vg,

Vt € R,Vuy,us € Ry, Yoy, v € RVT € [a, b
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(iv) (periodicity): 9w > 0 such that
f(t‘i"@,U,U,T) = f(t,u,U,T), v<t7uava7—) € R x R+ xR x [aab]

(v) (smoothness)f € C*(R x R, x R x [a,b]), and
of

E(t + w,u,v,T) = E(t,u,vﬂ')
of
E(t +w,u,v,7) = E(t,u,vﬂ')
of B
8_x<t + w,u,v,T) = %(t,u,vﬂ')
v munn = Liwon), v erx R xR x o),

If we derive the equation (2.1) biyand denoting/(¢, 7) = z;(¢, 7), we obtain,
y(t,7) = f(t,z(t,7),y(t,7),7) — f(t — T, 2(t —7,7),y(t —7,7), 7). (2.2)
Consider the following spaces,
X(w)={x € CR x [a,b]) | x(t +w,T) = x(t,7), Vt € R, VT € [a,b]}

Xi(w)={r e X(w)| =(t,7) >0, Vt € R, V7 € [a,b]}

and denoteX = X, (w) x X(w), ¥ = X(w) x X(w). OnY define the generalized
metric,p: Y x Y — R?
p((z1,91), (T2, 92)) =

t — t . B .
(te[o,rlgﬁ}ém] |21 (t, 7) — xo(t, )| e B 1 (£, 7) — ya( 7T>|>

and considetl : X x X — R* d=p |xxx -
Itis clear thatY, p) and (X, d) are complete generalized metric spaces.
SinceC' (R x [a, b]) is not complete with the metric of uniform convergence we will

study the equation (2.1) as in [2] and [4], considering the systems

t

/f(s,x(s,T),y(s,T),T)ds

( x(t,7) ) _ J
y(t,7) f,x(t,7),yt,7),7)— f(t —1,2(t —7,7),y(t —7,7),7),
teR, 7€ la,b],
(2.3)



68 Alexandru Mihai Bica and Sorin Muresan

/{g<s,x<s,7>7y<s,7>,7>+%s,x(sm),ywm-u(sm)
—i—a—‘Z(s,x (.7) 5 (5,7) . 7) - v(s,7)| ds,
L b2t ), 9(0,7),7) + 9 (1, 0(0,7), (0, 7). 7) - ult, )

B +g—£(t,x(t,7),y(t,r),7)-v(t,T)—i—%(t—ﬂx(t_TaT)>y(t—T>T)aT)
—%(t—T,x(t—T,T),y(t—T,T),T)—%(t—T,x(t—T,T),

y(t —7,7),7) [yt —7,7) +u(t — 7, 7)]

_g_.i(t - Tax<t - T, T)ay(t - 7—77—)77-)'

. —%y(t—7‘,7)+(u(t—7‘,7‘)) , teR, T€]la,bl.

(2.4)

where we have denoted

u(t,7) = %x(tﬂ'), v(t,T) = %y(tﬂ')

according to the condition (i). Define the operatdss, X — X, C': X xY — Y,
A: X XY — X xY by,

B($7y)(t,7') = (Bl(xvy)(t’T)a B2(x7y)(tv7_))

t

/f(s,x(s,T),y(s,T),T)ds
f(t,:L‘(t,T),y(t,_;),T) —ft—mx(t—7,7),y(t —7,7),7),
,teR, 7€ [a,b),
(2.5)
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C((xay)v (uav))(t’ 7_) = (Cl((xvy)v (uv U))(t77_)v 02((I7 y)? (uv U))(t7 T))
/ [%(s,x (s,7),y(s,7),7)+ g—i(s,x (s,7),y(s,7),7)u(s, )

_ +§—£(s,x(s,f),y(s,7),7).U<s,7) ds,
%(t, o(t,7),y(t,7),7) + %(t,x(t, ), y(t,7),7) - ult, )
_ gj;(t o(t,7),y(t,7),7) ~v(t,7)+%(t—¢,x(t—7,7),
y(t—7,7),7) — %(t —ra(t =7, 7),y(t —7,7),7)
—%(t—Tx(t 7,7)y(t —7,7),7)

J=y(t —7,7)+ult —7,7)] — g—‘;(t —rz(t—7,7),y(t —7,7),7)

. _%y( T,7) 4+ (v(t — T, 7'))} , teR, 7€ ab].

(2.6)
A((z,y), (u,v)) = (B(z,y),C((z,y), (u,v))), Yo,y € X,Vu,v €Y. (2.7)

In the relation (2.6), the existence gfgy(t — 7, 7) is ensured by the condition (i).
Remark: We can see that any< X (w) is bounded orR, because of the continuity

and periodicity of the elements df (). Therefore, existd,; > 0 and L, > 0 such
that,

of
‘%(s, u(t,7),v(t,T),T)

and

<Ly, VteRVue X,(w),ve€ X(w),VT € |a,b]

of

9 ——(s,u(t,7),v(t,7),7)| < Lg, VtER,Vu€e X, (w),ve X(w),VT € [a,b].

Theorem 2.1: a) In the conditions (i)-(iv) ifab + 25 < 1 then the equation (2.3)
has in X an unique solutioriz*, y*). Moreover, for any(zq,v,) € X, the sequence
((Zn, Yn) Jnen defined by

Tpr1(t,7) = /t_ f(s,2n(s,7),yn(s,7),7)ds
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ynJrl(t? T) = f(ta $n<t7 7—)7 yn(t> T)a 7—) - f(t - T, mn(t -7, T)> yn<t - T, 7—)7 7_)
uniformly converges ofR x [a, b] to (z*, y*) and2* € C*(R x [a, b]),

Yy (t, ) = ax*(t,ﬂ, vVt € R, V7 € [a,b].

b) In the conditions (i)-(v), ifbL; + 2L, < 1 theny*(t,-) € C'[a,b] and the pair
((% oy*

I DN > € Y is the unique solution of the equation (2.4).

Proof: a) The condition (ii) imply that

By(z,y)(t,7) >0, V(t,7) € R X [a,]
Bi(z,y)(t,7) < M1 < Mb, V(t,7) € R X [a,].

Using the transformation of variable= s + w, we have,

t+w

By(z,y)(t+w, 1) = /fsxST y(s,7),7)ds

t+w—1

:/f(u—w—i—w,x(u—w—l—w,T),y(u—w+w,7),7)du

= Bi(z,y)(t,7), V(t,7)€R X [a,b],¥(z,y) € X,

Analogous,
By(z,y)(t + @, ) = Bo(z,y)(t,7), Y(t,7) € R X [a,b],V(z,y) € X.

Then,B(X) C X.
Let (z1,11), (z2,72) € X. Itis easy to prove the inequalities:

|Bi(21,y1)(t, 7) — Bi(w2,y2)(t, 7)| < ar||oy — zaf| + BTy — 12|

< abllwy = xof| + Bbllyy — well,  V(E,7) € R x [a,b]

and
’B2($1;yl)(t77) - Bz(xmyz)(tﬂ')’ <

< 20|y — x| + 28||lyr — vol|, V(t,7) € R X [a,b].
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Then,

B o), Bz e)) < (o 5y ) donn). (o)

V(x1,y1), (z2,y2) € X. The eigenvalues of the matrix

[ ab B
@= ( 200 203 >
are)\; = 0 and); = 206 + ab. The conditionab + 23 < 1 imply thatQ™ — 0 as
m — oo and according to the Perov’s fixed point theorem, the operdtbas in X

an unique fixed pointz*, y*) and the sequencgzx,,, y,)).en Uniformly converges to
(z*,y*) onR x [a, b]. Consequently,

z*(t,T) = /f (s,x* (s,7),y" (s,7),7)ds

and if we derive this equality with respect bywe obtain that:* € C*(R x [a,b]) and

Yy (t, ) = iﬂf*(t,T), Vt € R, V7 € [a,b].

dt

Moreover, since)” = A7~ ' - @, Vn € N* and

1 1—25 fb
(]_Q)l_l—)\2<2a 1—ab>

applying the Perov’s theorem we obtain fare N*, the estimation:

Uo7 < 25 (5 50y ) donn). (o).

b) The condition (v) imply that,,, 3., € C*(R x [a,b]), Vm € N*. For (z,y) € X
arbitrary we conside€'((z,y),-) : ¥ — Y . After elementary calculus, using the
condition (iv) and (v), we obtain,

Ci((z,y), (u, )t + @, 7) = Ci((x,9), (u,0))(t,7),  V(t,7) €R x [a,b]

and

OQ«CC’:U): (U,U))(t + W,T) - 02(($7y)7 (uav))(th)v V(t,T) €R X [avb]'
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Consequently('((z,y),Y) C Y,V(x,y) € X. Forany(uy, v,), (ug,v2) € Y we have

t

/{%(S,x(s,T%y(s,T),T)Jr%(S,x(sﬁ)aﬂsﬁ)ﬁ)'“1(537)
+ %(S,I(S,T)ﬂy(S,T)ﬂ')'UI(S,T):| dS_/ [%@’x(sﬁ),y(sﬁ)?ﬂ

t—1

0
+ 6—£(S,x(s,7’),y(8,7) ,T) - uz(s,7)
0

f
+8_y(87x (s,7),y(s,7),7T) va(s,7)]ds

up (s, T) — us(s, )| ds

< / ‘%(S,JZ(S,T),y(S,T),T)

vi(s, T) — vo(s, T)| ds

¢ of
+/‘8—y(s,x(s,r),y(s,7),7)

L7 [Jur = uzl| 4 Lo7 [lur — ve]
b- [Ll HU1 - U2|| + LQ HUl - ’UQH], \V/(t,T) € R x {(l,b].

|Cl(($7 y)? (uhvl))(t?T) - Ol((xa y)> (u27 UQ))(t7T)|
<b-[Ly|lur —us|| + Lo |y — vall], V(¢ 7)€R X [a,b.

Analogous, we obtain,

|Ca((, ), (ur, 01))(t,7) = Co (2, ), (uz, 02)) (2, 7)]
< 2Ly ||uy — ugl| + 2Ls ||vg — v, V(t,7) € R x [a,b].

We infer that,
p(C((z,y), (u1,v1)), C((z, ), (uz,12))) <

Lib Lsb
S ( 211-11 222 ) 'p((ulavl)y(ug,vg>>’

V(z,y) € X, V(ug,v1), (ug,v2) € Y. Since,bL; + 2Ly < 1, we infer thatC'((z*, y*), -)
has an unique fixed poirft.*, v*) € Y, and thereford (z*,y*), (u*,v")) € X x Y is
the unique fixed point of the operatar. From Theorem 1 follows that for any, <
X, (@) NC*R x [a, b)), if we choose

oxg 0z Yo

[— Uy = —— Vg = —
yO at7 0 87_7 0 67_7
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then the sequence
(A™((z0,Y0), (10:v0)))n = ((Tns Yn); (Un, vn))
converges oiX x Y to ((z*,4*), (u*,v*)). So, y*(t,-) € C'[a,b], ¥t € R and
oz,

Uy = Oz, =u", v, = Oy =0
" 87 ' "o 87’ ’
Then,
Yo Y T e U T o
_0x" Oy* . . . .
and the pau(a—, 8_) € Y is the unique solution of the equation (2.4). [
T T

Remark 3.2: From the above theorem we infer that the equation (2.1) has an unique
positive, periodic and smooth solution which is smooth dependent by thettagether

with his derivative (in respect by). These means that the proportion of infectives in the
population and the speed of infection spreading are smooth dependent by the length of
time in which the individuals remain infectious.
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