Article ID: 1000-341X(2006)02-0247-06

Document code: A

Oscillation Criteria for Second-Order Semi-Linear Neutral Difference Equations

KANG Guo-lian

(Academy of Mathematics and Systems Science, C.A.S., Beijing 100080, China) (E-mail: glkang@amss.ac.cn)

Abstract: Consider the second-order semi-linear neutral difference equation

$$\Delta[a_n|\Delta(x_n + p_n x_{n-\tau})|^{\alpha - 1} \Delta(x_n + p_n x_{n-\tau})] + \sum_{i=1}^k q_i(n) |x_{n-\sigma_i}|^{\alpha - 1} x_{n-\sigma_i} = 0.$$
(1)

The sufficient conditions are established for oscillation of the solutions of (1). These results generalize and improve some known results about both neutral and delay difference equation.

Key words: Semi-linear; neutral difference equation; oscillation. MSC(2000): 39A11 CLC number: 0175

1. Introduction

In the paper, we consider the semi-linear second-order neutral difference equation

$$\Delta[a_n | \Delta(x_n + p_n x_{n-\tau})|^{\alpha - 1} \Delta(x_n + p_n x_{n-\tau})] + \sum_{i=1}^k q_i(n) |x_{n-\sigma_i}|^{\alpha - 1} x_{n-\sigma_i} = 0, \quad (1)$$

where $n = 1, 2, 3, \dots, \alpha$ is a positive constant, and τ and $\{\sigma_i\}_{i=1}^k$ are nonnegative integers. Δ is the usual forward difference operator. Throughout this paper, we assume that

- (h₁) $\alpha \ge 1$, $0 \le p_n < 1$ for $n = 0, 1, 2, \cdots$.
- (h₂) $\{q_n\}$ is a nonnegative sequence with infinitely many positive terms.
- (h₃) $a_n > 0, n = 0, 1, 2, \dots, \text{ and } \sum_{n=1}^{\infty} 1/a_n^{1/\alpha} = \infty.$

A solution $\{x_n\}$ of (1) is defined for $n \ge -\max\{\tau, \sigma_i, i = 1, 2, \dots, k\}$ and satisfies (1) for $n = 1, 2, 3, \dots$. A solution $\{x_n\}$ of (1) is said to be oscillatory if for every N > 0, there exists an $n \ge N$ such that $x_n x_{n+1} \le 0$. Otherwise, it is nonoscillatory.

Most of the previous studies on the oscillation theory of (1) have been restricted to the case in which $\alpha = 1$, $p_n = 0$ and $a_n = 1^{[1-4]}$.

We note that the following equation is related to the continuous version of (1)

 $[a(t)|(x(t) + p(t)x(t-\tau))'|^{\alpha-1}(x(t) + p(t)x(t-\tau))']' + q(t)|x(t-\sigma)|^{\alpha-1}x(t-\sigma) = 0.$

Received date: 2004-07-05

Foundation item: the National Natural Science Foundation of China (60274021).

where a(t) > 0, q(t) > 0 has been the subject matter of many recent investigations, e.g.^[5]. Our results not only extend the known theorems for semi-linear differential equation to a discrete case, but also include and improve several other known criteria discussed in [1].

Throughout this paper, unless otherwise specified, we always follow a convention that all the difference inequalities hold for all sufficiently large positive integers n, and for convenience we adopt the notation $z_n = x_n + p_n x_{n-\tau}$.

2. Lemmas and main results

In order to prove our theorems, we need the following lemmas.

Lemma 1 Assume that $(h_1) - (h_3)$ hold. If $\{x_n\}$ is a nonoscillatory solution of (1), then

$$\Delta(a_n | \Delta z_n |^{\alpha - 1} \Delta z_n) \le 0, \quad \Delta z_n \ge 0, \quad z_n > 0, \quad \text{and} \quad z_n \ge x_n > 0,$$

or

$$\Delta(a_n | \Delta z_n |^{\alpha - 1} \Delta z_n) \ge 0, \quad \Delta z_n \le 0, \quad z_n < 0, \quad \text{and} \quad z_n \le x_n < 0.$$

Proof Let $\{x_n\}$ be a nonoscillatory solution of (1). Without lost of generality, we assume that $x_n > 0, x_{n-\tau} > 0, x_{n-\sigma} > 0$ for $n \ge n_0 \in N$. It follows from (h₁) and (h₂) that $z_n \ge x_n > 0$ for $n \ge n_0$ and

$$\Delta(a_n |\Delta z_n|^{\alpha - 1} \Delta z_n) \le 0, \quad \text{for} \quad n \ge n_0.$$
⁽²⁾

Hence, $\{a_n | \Delta z_n |^{\alpha-1} \Delta z_n\}$ is a decreasing sequence. We claim that $\Delta z_n \ge 0$ for $n \ge n_0$. Otherwise there is an $n_1 \ge n_0$ such that $\Delta z_{n_1} < 0$. It follows from (2) and (h₃) that

$$z_n \le z_{n_1} - \sum_{s=n_1}^{n-1} (-\zeta/a_s)^{1/\alpha} \to -\infty,$$

which contradicts the fact that $z_n > 0$ for all $n \ge n_0$. This completes the proof.

Lemma 2 Assume that $(h_1)-(h_3)$ hold and $\{x_n\}$ is a nonoscillatory solution of (1). Let $\sigma = \max_{1 \le i \le k} \{\sigma_i\}$, then

$$w_n = a_n \frac{|\Delta z_n|^{\alpha - 1} \Delta z_n}{|z_{n-\sigma}|^{\alpha - 1} z_{n-\sigma}}$$

$$\tag{4}$$

satisfies the following Riccati inequality:

$$\Delta w_n + \frac{\alpha}{a_{n-\sigma}^{1/\alpha}} w_{n+1}^{1+1/\alpha} + \sum_{i=1}^k q_i(n)(1 - p_{n-\sigma_i})^{\alpha} \le 0.$$
(4)

Proof Without lost of generality, let $\{x_n\}$ be an eventually positive solution of (1), then there exists n_1 sufficiently large such that $x_{n-\tau} > 0$, $x_{n-\sigma_i} > 0$, $1 \le i \le k$. By (1) and Lemma 1, we obtain

$$\Delta(a_n(\Delta z_n)^{\alpha}) + \sum_{i=1}^k q_i(n)(z_{n-\sigma_i} - p_{n-\sigma_i}x_{n-\tau-\sigma_i})^{\alpha} = 0,$$
(5)

which, in view of the fact that $z_n \ge x_n$ and z_n is increasing, implies

$$\Delta(a_n(\Delta z_n)^{\alpha}) + \sum_{i=1}^k q_i(n)(1 - p_{n-\sigma_i})^{\alpha} z_{n-\sigma_i}^{\alpha} \le 0.$$
(6)

From $\sigma = \max_{1 \le i \le k} \sigma_i$, we know

No.2

$$\Delta(a_n(\Delta z_n)^{\alpha}) + \sum_{i=1}^k q_i(n)(1 - p_{n-\sigma_i})^{\alpha} z_{n-\sigma}^{\alpha} \le 0$$

By (3) and the differential mean value theorem we can easily show that

$$\Delta w_n = \frac{\Delta (a_n (\Delta z_n)^{\alpha})}{z_{n-\sigma}^{\alpha}} - \frac{\alpha a_{n+1} (\Delta z_{n+1})^{\alpha} \xi^{\alpha-1} \Delta z_{n-\sigma}}{z_{n-\sigma}^{\alpha} z_{n+1-\sigma}^{\alpha}}, \quad (z_{n-\sigma} \le \xi \le z_{n+1-\sigma}).$$
(7)

Using the fact that $\{a_n(\Delta z_n)^{\alpha}\}$ is decreasing and noting (6) and (7), we have

$$\Delta w_n \le -\sum_{i=1}^k q_i(n)(1-p_{n-\sigma_i})^{\alpha} - \frac{\alpha a_{n+1}^{1+1/\alpha}}{a_{n-\sigma}^{1/\alpha}} (\frac{\Delta z_{n+1}}{z_{n+1-\sigma}})^{1+\alpha}.$$
(8)

By (3) and (8), we get that (4) holds.

Lemma 3 Assume that $\alpha > 0$ and $k \ge \frac{\alpha}{(1+\alpha)^{1+1/\alpha}}$. Then

$$k(1+x)^{1+1/\alpha} \ge x \text{ for } x \ge -1,$$

where the equality holds if and only if $k = \frac{\alpha}{(1+\alpha)^{1+1/\alpha}}$.

The proof of this lemma can be done by an elementary mathematical analysis.

Theorem 1 Assume that conditions $(h_1)-(h_3)$ hold and that

(i) $\sum_{i=1}^{\infty} \sum_{i=1}^{k} q_i(n)(1-p_{n-\sigma_i})^{\alpha} = +\infty$, or (ii) $\sum_{i=1}^{\infty} \sum_{i=1}^{k} q_i(n)(1-p_{n-\sigma_i})^{\alpha} < +\infty$ and there exists a positive constant $\rho > \frac{1}{(1+\alpha)^{1+1/\alpha}}$, such that

$$\sum_{s=n}^{\infty} \frac{1}{a_{s-\sigma}^{1/\alpha}} \left[\sum_{m=s+1}^{\infty} \sum_{i=1}^{k} q_i(m)(1-p_{m-\sigma_i})^{\alpha}\right]^{1+1/\alpha} \ge \rho \sum_{m=n+1}^{\infty} \sum_{i=1}^{k} q_i(m)(1-p_{m-\sigma_i})^{\alpha}.$$
 (10)

Then every solution of (1) is oscillatory.

s

Proof Assume, for the sake of contradiction, that Eq.(1) has an eventually positive solution $\{x_n\}$. By Lemma 2, we obtain

$$\sum_{n=+1}^{l} \frac{\alpha}{a_{s-\sigma}^{1/\alpha}} w_{s+1}^{1+1/\alpha} + \sum_{s=n+1}^{l} \sum_{i=1}^{k} q_i(s) (1-p_{s-\sigma_i})^{\alpha} \le w_{n+1} - w_l.$$
(11)

If (i) holds, then $w_l \to -\infty$ as $l \to +\infty$. This contradicts the fact that $w_n > 0$. If (ii) holds, by (11), we have

$$\sum_{n=+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1/\alpha}} w_{s+1}^{1+1/\alpha} + \sum_{s=n+1}^{\infty} \sum_{i=1}^{k} q_i(s) (1 - p_{s-\sigma_i})^{\alpha} \le w_{n+1}.$$
 (12)

Let $C_n = \sum_{s=n}^{\infty} \sum_{i=1}^{k} q_i(s) (1 - p_{s-\sigma_i})^{\alpha}$. We define a sequence as follows

$$u^{(1)}(n) = \sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1/\alpha}} C_{s+1}^{1+1/\alpha}, \quad u^{(2)}(n) = \sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1/\alpha}} [C_{s+1} + u^{(1)}(s)]^{1+1/\alpha}, \dots,$$
$$u^{(m+1)}(n) = \sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1/\alpha}} [C_{s+1} + u^{(m)}(s)]^{1+1/\alpha}, \quad m = 1, 2, \dots$$
(13)

It is obvious that $0 < u^{(1)}(n) \le u^{(2)}(n) \le \cdots u^{(m)}(n) \le u^{(m+1)}(n) \le \cdots$. By (12), we have

$$u^{(1)}(n) + C_{n+1} \le w_{n+1}.$$
(14)

Suppose that

$$u^{(m)}(n) + C_{n+1} \le w_{n+1}.$$
(15)

From (12), (14) and (15), we obtain

$$u^{(m+1)}(n) + C_{n+1} \le \sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1/\alpha}} w_{s+1}^{1+1/\alpha} + C_{n+1} \le w_{n+1}.$$

So by induction (15) holds for any positive integer m. It follows from Lebesgue's dominated convergence theorem that

$$\lim_{m \to \infty} u^{(m)}(n) = u(n) \quad \text{exists} \quad \text{and} \quad u(n) \le w_{n+1}.$$
(16)

On the other hand, by (10) we have

$$u^{(1)}(n) = \sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1/\alpha}} C_{s+1}^{1+1/\alpha} \ge k C_{n+1},$$

where $k = \alpha \rho$ and

$$u^{(2)}(n) = \sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1/\alpha}} [C_{s+1} + u^{(1)}(s)]^{1+1/\alpha} \ge k(1+k)^{1+1/\alpha} C_{n+1}$$

Let $d_1 = k(1+k)^{1+1/\alpha}$. By induction, we easily see that

$$u^{(m+1)}(n) \ge d_m C_{n+1},\tag{17}$$

where

$$d_m = k(1+d_m)^{1+1/\alpha}, \quad m = 2, 3, \cdots.$$
 (18)

By Lemma 3, it is easy see that the sequence $\{d_m\}$ is increasing. Now we prove that

$$\lim_{m \to \infty} d_m = +\infty. \tag{19}$$

Otherwise, $\lim_{m\to\infty} d_m = c$ would imply that

$$c = k(1+c)^{1+1/\alpha}.$$
 (20)

By Lemma 3 we know that (20) does not hold if $k = \alpha \rho > \frac{\alpha}{(\alpha+1)^{1+1/\alpha}}$. Thus the assumption that $\lim_{m\to\infty} d_m = c$ is impossible. By (17) and (19) the sequence $\{u^{(m)}(n)\}$ can not be convergent. This contradicts (16) and so the proof is completed.

Corollary 1 Assume that conditions $(h_1)-(h_3)$ and i = 1 hold and that

(i) $\sum_{n=1}^{\infty} q_n (1-p_{n-\sigma})^{\alpha} = +\infty$, or

(ii) $\sum_{n=0}^{\infty} q_n (1-p_{n-\sigma})^{\alpha} < +\infty$ and there exists a positive constant $\rho > \frac{1}{(1+\alpha)^{1+1/\alpha}}$, such at

$$\sum_{s=n}^{\infty} \frac{1}{a_{s-\sigma}^{1/\alpha}} \left[\sum_{m=s+1}^{\infty} q_m (1-p_{m-\sigma})^{\alpha} \right]^{1+1/\alpha} \ge \rho \sum_{m=n+1}^{\infty} q_m (1-p_{m-\sigma})^{\alpha}.$$

Then every solution of (1) is oscillatory.

By taking $\alpha = 1$, $a_n = 1$ in Corollary 1 we obtain

Corollary 2 Assume that $(h_1)-(h_3)$ hold and that

(i) $\sum_{s=n}^{\infty} q_s(1-p_{s-\sigma}) = \infty$, or (ii) $\sum_{s=n}^{\infty} q_s(1-p_{s-\sigma}) < \infty$ and there exists a positive constant $\rho > 1/4$ such that $\sum_{s=n}^{\infty} [\sum_{m=s+1}^{\infty} q_m(1-p_{m-\sigma})]^2 \ge \rho \sum_{m=n+1}^{\infty} q_m(1-p_{m-\sigma}).$

Then, every solution of Equation (1) is oscillatory.

Remark 1 Corollary 1 can be considered as discrete analogues of Theorem 1 given in [5] for the neutral delay equation

$$[a(t)|(x(t) + p(t)x(t - \tau))'|^{\alpha - 1}(x(t) + p(t)x(t - \tau))']' + q(t)|x(t - \sigma)|^{\alpha - 1}x(t - \sigma) = 0.$$

Remark 2 When k = 1, $\alpha = 1$ and $a_n = 1$, Equation (1) reduces to

$$\Delta^2(x_n + p_n x_{n-\tau}) + q_n x_{n-\sigma} = 0.$$
(21)

Hence Corollary 2 is an extension of Theorem 2.5 in [1]. But we weakened the conditions $0 \leq p_n \leq p < 1$ and $\sum_{n=1}^{\infty} q_n = +\infty$. To author's knowledge, the results are even new for Equation (21).

4. Some applications

In this section, we indicate some applications of our results. These applications are given as examples.

Example 1 Consider the neutral difference equation

$$\Delta^2(x_n + (1 - \frac{1}{8n})x_{n-\tau}) + 2nx_{n-\sigma} = 0, \qquad (22)$$

where $\alpha = 1$, $a_n = 1$, $p_n = 1 - 1/8n$, $q_n = 2n$, then all conditions of Corollary 2 are satisfied. Hence, all solutions of (22) are oscillatory. **Example 2** Consider the neutral difference equation

$$\Delta^2(x_n + px_{n-\tau}) + \frac{\delta}{n^2}x_{n-\sigma} = 0, \qquad (23)$$

where $\tau, \sigma > 0, 0 \le p < 1$ and $\delta > \frac{1}{3(1-p)}$. It is easy to verify that

$$\sum_{s=n+1}^{\infty} \frac{\delta}{s^2} (1-p) = \delta(1-p) \sum_{s=n+1}^{\infty} \frac{1}{s^2} \ge \sum_{s=n+1}^{\infty} \frac{\delta(1-p)}{s(s+1)} = \delta(1-p) \frac{1}{n+1}$$
$$\sum_{s=n}^{\infty} [\sum_{m=s+1}^{\infty} q_m (1-p_{m-\sigma})]^2 \ge [\delta(1-p)]^2 \sum_{s=n}^{\infty} \frac{1}{(s+1)^2} > C_{n+1}/3.$$

Choose a constant $\rho = (1/4, 1/3)$. Then, the conditions of Corollary 2 are satisfied and therefore every solution of Equation (23) is oscillatory. But in Equation (23), the condition $\sum_{n=1}^{\infty} q_n = \infty$ does not justify the oscillation of Equation (23).

References:

- LUO J W, BAINOV D D. Oscillatory and asymptotic behavior of second order neutral difference equations with maxima [J]. J. Comput. Appl. Math., 2001, 131: 333–341.
- [2] Jiang Jian-chu, Oscillatory criteria for second-order quasilinear neutral delay difference equations [J]. Appl. Math. Comput., 2002, 125: 287–293.
- KANG Guo-lian, ZHANG Hui. Oscillation criteria of solutions of nonlinear difference equations of second order [J]. Ann. Differential Equations, 2004, 20(1): 41–48.
- [4] KANG Guo-lian. Oscillation criteria for second-order nonlinear difference equations with "Summation Small" coefficient [J]. Bulletin of K. M. S., 2005, 42(2): 245–256.
- [5] LI Xiao-ping, JIANG Jian-chu. Oscillation of second order nonlinear neutral delay differential equations [J]. Chinese Quart. J. Math., 2001, 16(4): 43–48.

二阶半线性中立型差分方程的振动性准则

康国莲

(中国科学院数学与系统科学研究院,北京 100080)

摘要:考虑二阶半线性中立型差分方程

$$\Delta[a_n|\Delta(x_n + p_n x_{n-\tau})|^{\alpha - 1} \Delta(x_n + p_n x_{n-\tau})] + \sum_{i=1}^k q_i(n)|x_{n-\sigma_i}|^{\alpha - 1} x_{n-\sigma_i} = 0.$$
(1)

给出了方程 (1) 的解的振动性的充分条件. 所有结果推广和改进了关于中立和时滞差分方程已 有结果.

关键词:半线性;中立型差分方程;振动性.

,