Oscillation Criteria for Second－Order Semi－Linear Neutral Difference Equations

KANG Guo－lian
（Academy of Mathematics and Systems Science，C．A．S．，Beijing 100080，China ）
（E－mail：glkang＠amss．ac．cn）

Abstract：Consider the second－order semi－linear neutral difference equation

$$
\begin{equation*}
\Delta\left[a_{n}\left|\Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right|^{\alpha-1} \Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right]+\sum_{i=1}^{k} q_{i}(n)\left|x_{n-\sigma_{i}}\right|^{\alpha-1} x_{n-\sigma_{i}}=0 \tag{1}
\end{equation*}
$$

The sufficient conditions are established for oscillation of the solutions of（1）．These results generalize and improve some known results about both neutral and delay difference equation．

Key words：Semi－linear；neutral difference equation；oscillation．
MSC（2000）：39A11
CLC number：O175

1．Introduction

In the paper，we consider the semi－linear second－order neutral difference equation

$$
\begin{equation*}
\Delta\left[a_{n}\left|\Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right|^{\alpha-1} \Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right]+\sum_{i=1}^{k} q_{i}(n)\left|x_{n-\sigma_{i}}\right|^{\alpha-1} x_{n-\sigma_{i}}=0 \tag{1}
\end{equation*}
$$

where $n=1,2,3, \cdots, \alpha$ is a positive constant，and τ and $\left\{\sigma_{i}\right\}_{i=1}^{k}$ are nonnegative integers．Δ is the usual forward difference operator．Throughout this paper，we assume that
$\left(\mathrm{h}_{1}\right) \quad \alpha \geq 1, \quad 0 \leq p_{n}<1$ for $n=0,1,2, \cdots$.
$\left(\mathrm{h}_{2}\right)\left\{q_{n}\right\}$ is a nonnegative sequence with infinitely many positive terms．
$\left(\mathrm{h}_{3}\right) a_{n}>0, n=0,1,2, \cdots$ ，and $\sum^{\infty} 1 / a_{n}^{1 / \alpha}=\infty$ ．
A solution $\left\{x_{n}\right\}$ of（1）is defined for $n \geq-\max \left\{\tau, \sigma_{i}, i=1,2, \cdots, k\right\}$ and satisfies（1）for $n=1,2,3, \cdots$ ．A solution $\left\{x_{n}\right\}$ of（1）is said to be oscillatory if for every $N>0$ ，there exists an $n \geq N$ such that $x_{n} x_{n+1} \leq 0$ ．Otherwise，it is nonoscillatory．

Most of the previous studies on the oscillation theory of（1）have been restricted to the case in which $\alpha=1, p_{n}=0$ and $a_{n}=1^{[1-4]}$ ．

We note that the following equation is related to the continuous version of（1）

$$
\left[a(t)\left|(x(t)+p(t) x(t-\tau))^{\prime}\right|^{\alpha-1}(x(t)+p(t) x(t-\tau))^{\prime}\right]^{\prime}+q(t)|x(t-\sigma)|^{\alpha-1} x(t-\sigma)=0
$$

Received date：2004－07－05
Foundation item：the National Natural Science Foundation of China（60274021）．
where $a(t)>0, q(t)>0$ has been the subject matter of many recent investigations, e.g. ${ }^{[5]}$. Our results not only extend the known theorems for semi-linear differential equation to a discrete case, but also include and improve several other known criteria discussed in [1].

Throughout this paper, unless otherwise specified, we always follow a convention that all the difference inequalities hold for all sufficiently large positive integers n, and for convenience we adopt the notation $z_{n}=x_{n}+p_{n} x_{n-\tau}$.

2. Lemmas and main results

In order to prove our theorems, we need the following lemmas.
Lemma 1 Assume that $\left(h_{1}\right)-\left(h_{3}\right)$ hold. If $\left\{x_{n}\right\}$ is a nonoscillatory solution of (1), then

$$
\Delta\left(a_{n}\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}\right) \leq 0, \quad \Delta z_{n} \geq 0, \quad z_{n}>0, \quad \text { and } \quad z_{n} \geq x_{n}>0
$$

or

$$
\Delta\left(a_{n}\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}\right) \geq 0, \quad \Delta z_{n} \leq 0, \quad z_{n}<0, \quad \text { and } \quad z_{n} \leq x_{n}<0
$$

Proof Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of (1). Without lost of generality, we assume that $x_{n}>0, x_{n-\tau}>0, x_{n-\sigma}>0$ for $n \geq n_{0} \in N$. It follows from $\left(\mathrm{h}_{1}\right)$ and $\left(\mathrm{h}_{2}\right)$ that $z_{n} \geq x_{n}>0$ for $n \geq n_{0}$ and

$$
\begin{equation*}
\Delta\left(a_{n}\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}\right) \leq 0, \text { for } n \geq n_{0} \tag{2}
\end{equation*}
$$

Hence, $\left\{a_{n}\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}\right\}$ is a decreasing sequence. We claim that $\Delta z_{n} \geq 0$ for $n \geq n_{0}$. Otherwise there is an $n_{1} \geq n_{0}$ such that $\Delta z_{n_{1}}<0$. It follows from (2) and (h_{3}) that

$$
z_{n} \leq z_{n_{1}}-\sum_{s=n_{1}}^{n-1}\left(-\zeta / a_{s}\right)^{1 / \alpha} \rightarrow-\infty
$$

which contradicts the fact that $z_{n}>0$ for all $n \geq n_{0}$. This completes the proof.
Lemma 2 Assume that $\left(h_{1}\right)-\left(h_{3}\right)$ hold and $\left\{x_{n}\right\}$ is a nonoscillatory solution of (1). Let $\sigma=\max _{1 \leq i \leq k}\left\{\sigma_{i}\right\}$, then

$$
\begin{equation*}
w_{n}=a_{n} \frac{\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}}{\left|z_{n-\sigma}\right|^{\alpha-1} z_{n-\sigma}} \tag{4}
\end{equation*}
$$

satisfies the following Riccati inequality:

$$
\begin{equation*}
\Delta w_{n}+\frac{\alpha}{a_{n-\sigma}^{1 / \alpha}} w_{n+1}^{1+1 / \alpha}+\sum_{i=1}^{k} q_{i}(n)\left(1-p_{n-\sigma_{i}}\right)^{\alpha} \leq 0 \tag{4}
\end{equation*}
$$

Proof Without lost of generality, let $\left\{x_{n}\right\}$ be an eventually positive solution of (1), then there exists n_{1} sufficiently large such that $x_{n-\tau}>0, x_{n-\sigma_{i}}>0,1 \leq i \leq k$. By (1) and Lemma 1 , we obtain

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+\sum_{i=1}^{k} q_{i}(n)\left(z_{n-\sigma_{i}}-p_{n-\sigma_{i}} x_{n-\tau-\sigma_{i}}\right)^{\alpha}=0 \tag{5}
\end{equation*}
$$

which, in view of the fact that $z_{n} \geq x_{n}$ and z_{n} is increasing, implies

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+\sum_{i=1}^{k} q_{i}(n)\left(1-p_{n-\sigma_{i}}\right)^{\alpha} z_{n-\sigma_{i}}^{\alpha} \leq 0 \tag{6}
\end{equation*}
$$

From $\sigma=\max _{1 \leq i \leq k} \sigma_{i}$, we know

$$
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)+\sum_{i=1}^{k} q_{i}(n)\left(1-p_{n-\sigma_{i}}\right)^{\alpha} z_{n-\sigma}^{\alpha} \leq 0
$$

By (3) and the differential mean value theorem we can easily show that

$$
\begin{equation*}
\Delta w_{n}=\frac{\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\alpha}\right)}{z_{n-\sigma}^{\alpha}}-\frac{\alpha a_{n+1}\left(\Delta z_{n+1}\right)^{\alpha} \xi^{\alpha-1} \Delta z_{n-\sigma}}{z_{n-\sigma}^{\alpha} z_{n+1-\sigma}^{\alpha}}, \quad\left(z_{n-\sigma} \leq \xi \leq z_{n+1-\sigma}\right) \tag{7}
\end{equation*}
$$

Using the fact that $\left\{a_{n}\left(\Delta z_{n}\right)^{\alpha}\right\}$ is decreasing and noting (6) and (7), we have

$$
\begin{equation*}
\Delta w_{n} \leq-\sum_{i=1}^{k} q_{i}(n)\left(1-p_{n-\sigma_{i}}\right)^{\alpha}-\frac{\alpha a_{n+1}^{1+1 / \alpha}}{a_{n-\sigma}^{1 / \alpha}}\left(\frac{\Delta z_{n+1}}{z_{n+1-\sigma}}\right)^{1+\alpha} \tag{8}
\end{equation*}
$$

By (3) and (8), we get that (4) holds.
Lemma 3 Assume that $\alpha>0$ and $k \geq \frac{\alpha}{(1+\alpha)^{1+1 / \alpha}}$. Then

$$
k(1+x)^{1+1 / \alpha} \geq x \text { for } x \geq-1
$$

where the equality holds if and only if $k=\frac{\alpha}{(1+\alpha)^{1+1 / \alpha}}$.
The proof of this lemma can be done by an elementary mathematical analysis.
Theorem 1 Assume that conditions $\left(h_{1}\right)-\left(h_{3}\right)$ hold and that
(i) $\sum^{\infty} \sum_{i=1}^{k} q_{i}(n)\left(1-p_{n-\sigma_{i}}\right)^{\alpha}=+\infty$, or
(ii) $\sum^{\infty} \sum_{i=1}^{k} q_{i}(n)\left(1-p_{n-\sigma_{i}}\right)^{\alpha}<+\infty$ and there exists a positive constant $\rho>\frac{1}{(1+\alpha)^{1+1 / \alpha}}$, such that

$$
\begin{equation*}
\sum_{s=n}^{\infty} \frac{1}{a_{s-\sigma}^{1 / \alpha}}\left[\sum_{m=s+1}^{\infty} \sum_{i=1}^{k} q_{i}(m)\left(1-p_{m-\sigma_{i}}\right)^{\alpha}\right]^{1+1 / \alpha} \geq \rho \sum_{m=n+1}^{\infty} \sum_{i=1}^{k} q_{i}(m)\left(1-p_{m-\sigma_{i}}\right)^{\alpha} . \tag{10}
\end{equation*}
$$

Then every solution of (1) is oscillatory.
Proof Assume, for the sake of contradiction, that Eq.(1) has an eventually positive solution $\left\{x_{n}\right\}$. By Lemma 2, we obtain

$$
\begin{equation*}
\sum_{s=n+1}^{l} \frac{\alpha}{a_{s-\sigma}^{1 / \alpha}} w_{s+1}^{1+1 / \alpha}+\sum_{s=n+1}^{l} \sum_{i=1}^{k} q_{i}(s)\left(1-p_{s-\sigma_{i}}\right)^{\alpha} \leq w_{n+1}-w_{l} \tag{11}
\end{equation*}
$$

If (i) holds, then $w_{l} \rightarrow-\infty$ as $l \rightarrow+\infty$. This contradicts the fact that $w_{n}>0$. If (ii) holds, by (11), we have

$$
\begin{equation*}
\sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1 / \alpha}} w_{s+1}^{1+1 / \alpha}+\sum_{s=n+1}^{\infty} \sum_{i=1}^{k} q_{i}(s)\left(1-p_{s-\sigma_{i}}\right)^{\alpha} \leq w_{n+1} \tag{12}
\end{equation*}
$$

Let $C_{n}=\sum_{s=n}^{\infty} \sum_{i=1}^{k} q_{i}(s)\left(1-p_{s-\sigma_{i}}\right)^{\alpha}$. We define a sequence as follows

$$
\begin{gather*}
u^{(1)}(n)=\sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1 / \alpha}} C_{s+1}^{1+1 / \alpha}, u^{(2)}(n)=\sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1 / \alpha}}\left[C_{s+1}+u^{(1)}(s)\right]^{1+1 / \alpha}, \cdots, \\
 \tag{13}\\
u^{(m+1)}(n)=\sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1 / \alpha}}\left[C_{s+1}+u^{(m)}(s)\right]^{1+1 / \alpha}, \quad m=1,2,
\end{gather*}
$$

It is obvious that $0<u^{(1)}(n) \leq u^{(2)}(n) \leq \cdots u^{(m)}(n) \leq u^{(m+1)}(n) \leq \cdots$. By (12), we have

$$
\begin{equation*}
u^{(1)}(n)+C_{n+1} \leq w_{n+1} \tag{14}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
u^{(m)}(n)+C_{n+1} \leq w_{n+1} \tag{15}
\end{equation*}
$$

From (12), (14) and (15), we obtain

$$
u^{(m+1)}(n)+C_{n+1} \leq \sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1 / \alpha}} w_{s+1}^{1+1 / \alpha}+C_{n+1} \leq w_{n+1}
$$

So by induction (15) holds for any positive integer m. It follows from Lebesgue's dominated convergence theorem that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} u^{(m)}(n)=u(n) \text { exists and } u(n) \leq w_{n+1} \tag{16}
\end{equation*}
$$

On the other hand, by (10) we have

$$
u^{(1)}(n)=\sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1 / \alpha}} C_{s+1}^{1+1 / \alpha} \geq k C_{n+1}
$$

where $k=\alpha \rho$ and

$$
u^{(2)}(n)=\sum_{s=n+1}^{\infty} \frac{\alpha}{a_{s-\sigma}^{1 / \alpha}}\left[C_{s+1}+u^{(1)}(s)\right]^{1+1 / \alpha} \geq k(1+k)^{1+1 / \alpha} C_{n+1}
$$

Let $d_{1}=k(1+k)^{1+1 / \alpha}$. By induction, we easily see that

$$
\begin{equation*}
u^{(m+1)}(n) \geq d_{m} C_{n+1} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{m}=k\left(1+d_{m}\right)^{1+1 / \alpha}, \quad m=2,3, \cdots . \tag{18}
\end{equation*}
$$

By Lemma 3, it is easy see that the sequence $\left\{d_{m}\right\}$ is increasing. Now we prove that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} d_{m}=+\infty \tag{19}
\end{equation*}
$$

Otherwise, $\lim _{m \rightarrow \infty} d_{m}=c$ would imply that

$$
\begin{equation*}
c=k(1+c)^{1+1 / \alpha} . \tag{20}
\end{equation*}
$$

By Lemma 3 we know that (20) does not hold if $k=\alpha \rho>\frac{\alpha}{(\alpha+1)^{1+1 / \alpha}}$. Thus the assumption that $\lim _{m \rightarrow \infty} d_{m}=c$ is impossible. By (17) and (19) the sequence $\left\{u^{(m)}(n)\right\}$ can not be convergent. This contradicts (16) and so the proof is completed.

Corollary 1 Assume that conditions $\left(h_{1}\right)-\left(h_{3}\right)$ and $i=1$ hold and that
(i) $\sum^{\infty} q_{n}\left(1-p_{n-\sigma}\right)^{\alpha}=+\infty$, or
(ii) $\sum^{\infty} q_{n}\left(1-p_{n-\sigma}\right)^{\alpha}<+\infty$ and there exists a positive constant $\rho>\frac{1}{(1+\alpha)^{1+1 / \alpha}}$, such that

$$
\sum_{s=n}^{\infty} \frac{1}{a_{s-\sigma}^{1 / \alpha}}\left[\sum_{m=s+1}^{\infty} q_{m}\left(1-p_{m-\sigma}\right)^{\alpha}\right]^{1+1 / \alpha} \geq \rho \sum_{m=n+1}^{\infty} q_{m}\left(1-p_{m-\sigma}\right)^{\alpha}
$$

Then every solution of (1) is oscillatory.
By taking $\alpha=1, a_{n}=1$ in Corollary 1 we obtain
Corollary 2 Assume that $\left(h_{1}\right)-\left(h_{3}\right)$ hold and that
(i) $\sum^{\infty} q_{s}\left(1-p_{s-\sigma}\right)=\infty$, or
(ii) $\sum^{\infty} q_{s}\left(1-p_{s-\sigma}\right)<\infty$ and there exists a positive constant $\rho>1 / 4$ such that

$$
\sum_{s=n}^{\infty}\left[\sum_{m=s+1}^{\infty} q_{m}\left(1-p_{m-\sigma}\right)\right]^{2} \geq \rho \sum_{m=n+1}^{\infty} q_{m}\left(1-p_{m-\sigma}\right)
$$

Then, every solution of Equation (1) is oscillatory.
Remark 1 Corollary 1 can be considered as discrete analogues of Theorem 1 given in [5] for the neutral delay equation

$$
\left[a(t)\left|(x(t)+p(t) x(t-\tau))^{\prime}\right|^{\alpha-1}(x(t)+p(t) x(t-\tau))^{\prime}\right]^{\prime}+q(t)|x(t-\sigma)|^{\alpha-1} x(t-\sigma)=0
$$

Remark 2 When $k=1, \alpha=1$ and $a_{n}=1$, Equation (1) reduces to

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p_{n} x_{n-\tau}\right)+q_{n} x_{n-\sigma}=0 . \tag{21}
\end{equation*}
$$

Hence Corollary 2 is an extension of Theorem 2.5 in [1]. But we weakened the conditions $0 \leq p_{n} \leq p<1$ and $\sum^{\infty} q_{n}=+\infty$. To author's knowledge, the results are even new for Equation (21).

4. Some applications

In this section, we indicate some applications of our results. These applications are given as examples.

Example 1 Consider the neutral difference equation

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\left(1-\frac{1}{8 n}\right) x_{n-\tau}\right)+2 n x_{n-\sigma}=0 \tag{22}
\end{equation*}
$$

where $\alpha=1, a_{n}=1, p_{n}=1-1 / 8 n, q_{n}=2 n$, then all conditions of Corollary 2 are satisfied. Hence, all solutions of (22) are oscillatory.

Example 2 Consider the neutral difference equation

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p x_{n-\tau}\right)+\frac{\delta}{n^{2}} x_{n-\sigma}=0, \tag{23}
\end{equation*}
$$

where $\tau, \sigma>0,0 \leq p<1$ and $\delta>\frac{1}{3(1-p)}$ ．It is easy to verify that

$$
\begin{gathered}
\sum_{s=n+1}^{\infty} \frac{\delta}{s^{2}}(1-p)=\delta(1-p) \sum_{s=n+1}^{\infty} \frac{1}{s^{2}} \geq \sum_{s=n+1}^{\infty} \frac{\delta(1-p)}{s(s+1)}=\delta(1-p) \frac{1}{n+1}, \\
\sum_{s=n}^{\infty}\left[\sum_{m=s+1}^{\infty} q_{m}\left(1-p_{m-\sigma}\right)\right]^{2} \geq[\delta(1-p)]^{2} \sum_{s=n}^{\infty} \frac{1}{(s+1)^{2}}>C_{n+1} / 3 .
\end{gathered}
$$

Choose a constant $\rho=(1 / 4,1 / 3)$ ．Then，the conditions of Corollary 2 are satisfied and therefore every solution of Equation（23）is oscillatory．But in Equation（23），the condition $\sum^{\infty} q_{n}=\infty$ does not justify the oscillation of Equation（23）．

References：

［1］LUO J W，BAINOV D D．Oscillatory and asymptotic behavior of second order neutral difference equations with maxima［J］．J．Comput．Appl．Math．，2001，131：333－341．
［2］Jiang Jian－chu，Oscillatory criteria for second－order quasilinear neutral delay difference equations［J］．Appl． Math．Comput．，2002，125：287－293．
［3］KANG Guo－lian，ZHANG Hui．Oscillation criteria of solutions of nonlinear difference equations of second order［J］．Ann．Differential Equations，2004，20（1）：41－48．
［4］KANG Guo－lian．Oscillation criteria for second－order nonlinear difference equations with＂Summation Small＂ coefficient［J］．Bulletin of K．M．S．，2005，42（2）：245－256．
［5］LI Xiao－ping，JIANG Jian－chu．Oscillation of second order nonlinear neutral delay differential equations［J］． Chinese Quart．J．Math．，2001，16（4）：43－48．

二阶半线性中立型差分方程的振动性准则

康国莲
（中国科学院数学与系统科学研究院，北京 100080）

摘要：考虑二阶半线性中立型差分方程

$$
\begin{equation*}
\Delta\left[a_{n}\left|\Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right|^{\alpha-1} \Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right]+\sum_{i=1}^{k} q_{i}(n)\left|x_{n-\sigma_{i}}\right|^{\alpha-1} x_{n-\sigma_{i}}=0 . \tag{1}
\end{equation*}
$$

给出了方程（1）的解的振动性的充分条件．所有结果推广和改进了关于中立和时滞差分方程已有结果。
关键词：半线性；中立型差分方程；振动性．

