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ABSTRACT

The equation governing the passage of linear monochromatic, long waves over variable topography can be
transformed into a Schrödinger equation. There are several transformations accomplishing this. First, a ‘‘naive’’
transformation (in which only the horizontal coordinate is stretched) yields a potential energy function (‘‘po-
tential’’) that is nonvanishing, even if the slope in topography vanishes. Second, a transformation in which also
the surface elevation field is stretched leads to a potential that does vanish outside the sloping region. The latter
has the property that it displays scattering against a background of adiabatic variations.

For smooth bottom profiles, typical for the continental slope, it is shown that the potential has a positive lobe,
the top of which acts as a ‘‘topographic cutoff frequency.’’ This lobe is missed by piecewise-linear topographies.

Despite that the topography, in general, acts as a high-pass filter it is shown that some particular, smooth
bottom profiles exist for which long waves, obeying certain conditions, can pass reflectionless.

1. Introduction

The study of waves on water of variable depth is a
classical topic (see, e.g., Lamb 1932; Stoker 1953; Prov-
is and Radok 1977; Mei 1989) that has been studied at
several scales, levels of complexity, and incorporating
different physical mechanisms.

The topic is relevant for the description of small-scale
wind waves climbing a shore, as well as for interme-
diate-scale tsunamis (Kajiura 1963) and large-scale tidal
waves (Hendershott 1980) propagating across subsur-
face ridges and trenches onto the continental shelves.

The level of complexity at which the topic has been
addressed ranges from the linearized long wave equa-
tions (Meyer 1979; Zhang and Zhu 1994) and linearized
potential theory (Roseau 1952), through nonlinear, ap-
proximate descriptions of solitary (Shen and Keller
1973; Cai and Shen 1985; Goring and Raichlen 1992)
and periodic (Svendsen and Buhr Hansen 1978) waves
over variable depth, to a consideration of the exact,
nonlinear, shallow-water equations for wave propaga-
tion on a linearly sloping beach (Carrier and Greenspan
1957). Depending on the scale of the phenomenon and
the physics incorporated, each of these descriptions has
its merits.

Waves over variable depth have generally been stud-
ied in homogeneous water and in nonrotating frames of
reference, for which gravity is the sole restoring force.
The depth dependence of phase and group velocity lead
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to refraction and diffraction, which, over variable to-
pography, imply the existence of trapped wave motions
(e.g., edge waves) and caustics (Shen et al. 1968). Short,
irrotational surface waves are described in terms of a
velocity potential, from which the long-wave equations
follow when the wavelength greatly exceeds depth (Ro-
seau 1952). Depth changes in the latter description are
required to extend over still greater scales, where the
topography, in a traditional long-wave context, is slowly
varying. An important trait in the literature on potential
theory of the past decades, however, has been to employ
a conformal mapping of the fluid domain over variable
depth to a strip with a more complicated free-surface
condition (Kreisel 1949; Roseau 1952; Fitz-Gerald
1976). Hamilton (1977) noticed that, on employing this
method, he was able to give a much wider applicability
to the long-wave equations, since they could be reder-
ived—but now with a smoothed version of the topog-
raphy replacing true depth—even in cases in which the
water depth would vary abruptly in comparison to the
wavelength.

Inclusion of inhomogeneities in the density of water
leads to a consideration of interfacial and internal
waves, as when the stratification is either layered or
continuous. The interfacial waves are (apart from a re-
scaling) akin to surface waves and show similar phe-
nomena when considered over variable depth. Internal
waves in uniformly stratified media, however, behave
quite differently. They propagate along characteristics
that have a fixed angle with respect to the vertical, set
by the ratio of wave frequency to stability frequency
(Phillips 1977). In particular, this angle is retained upon
reflection from boundaries, leading to focusing of in-
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ternal waves. The waves can either get focused into the
corner of a fluid domain, such as in the case of a strat-
ified wedge (Wunsch 1969) and stratified canyon
(Hotchkiss and Wunsch 1982), or onto a limit set of
characteristics, located in the interior of an enclosed
stratified fluid domain (Maas and Lam 1995).

The restoring force of gravity, relevant for the wave
motions discussed above, can, for long waves, be sup-
plemented by an additional restoring force due to the
conservation of potential vorticity. This occurs when
there is a gradient in the background vorticity field. Such
background vorticity can, for instance, be supplied by
current shear, or, as is more commonly addressed, by
the earth rotation (planetary vorticity). Besides a natural
latitudinal variability in background planetary vorticity
(leading to planetary Rossby waves), changes in vor-
ticity are also produced by variations in water depth.
The topographic Rossby waves (shelf waves) that result
due to this variation are necessarily confined to the slop-
ing regions where this restoring force is operating (My-
sak 1978; Hendershott 1980). By assuming the transport
of the shelf waves to be nondivergent, the conformal
mapping technique has been successfully exploited in
this context too (Johnson 1985).

The topic of waves on water of variable depth in itself
belongs to the far broader class of problems that studies
waves in inhomogeneous media (Tolstoy 1973; Brek-
hovskikh 1980). Consequently, approaches that have
been developed in a particular area of wave propagation
usually find their way into different wave propagation
contexts. One example is offered by the wave ray, or
geometric optics approach, applicable for waves in
slowly varying media. This approach, introduced in op-
tics, has successfully been formulated, applied, and ex-
tended in a variety of water wave problems (Keller
1958; Shen et al. 1968; Shen and Keller 1975; Chris-
tiansen 1977). One should recognize its limitations,
however, as it neglects reflection, which can be better
addressed with the long-wave equation. Another ex-
ample is the conceptual framework of the Schrödinger
equation, developed in quantum mechanics (e.g., Merz-
bacher 1970; Bender and Orszag 1978), which enables
the qualitative and quantitative study of wave scattering
(see section 2). In an oceanographic context this equa-
tion has, for instance, been discussed in the description
of the scattering of Rossby waves (LeBlond and Mysak
1978, p. 205), internal waves (Eckart 1951), and gravity
waves (Mei and Lo 1984), where changes in the ‘‘me-
dium’’ are presented by depth changes, (vertical) density
gradient changes, and current changes respectively.

We will follow this second example in section 3,
where we will apply it to the scattering of linear long
waves by smooth topography, such as is relevant to the
propagation of tides and tsunamis over sedimentary
slopes. Although this will be done at a very elementary
level, three inferences can be drawn from this approach.
First, it will be shown that there exists a transformation
of variables that leads to a frame of reference in which

adiabatic variations, such as determined by the Liou-
ville-Green (WKB) approach, are contained in the trans-
formation. Variations that nevertheless appear in this
frame of reference are thus truly reflecting scattering
properties of the topography. Second, it is argued that
a variation in depth in general acts as a filter such that
for any given shape of the topography a single frequency
can be identified that acts as spectral cutoff. This cutoff
frequency is directly related to the existence of a positive
maximum of the ‘‘potential energy function’’ (potential)
in the time-independent Schrödinger equation: a max-
imum that itself depends on the existence of convex
(upward) curvature of the topography. This frequency
should be an observable when comparing energy spectra
obtained at neighboring locations in regions of variable
depth. Third, it is obvious that such an estimate of the
cutoff frequency is absent in a piecewise-linear model
of the topography, which lacks such a positive maximum
of the potential because of vanishing curvature.

Even though the topography acts as a filter, some
particular smooth topographies will be presented that
may be transparent for waves of particular frequencies
and coming from particular directions (section 4). It is
relevant to recognize the existence of this phenomenon,
albeit for a particular shape of the bottom, as it may
well be a generic property dominating the filtering prop-
erties of arbitrarily shaped topographies. Reflectionless
transmission of water waves is generally held to be an
unphysical feature (Mei 1989, p. 140), a consequence
of modeling an inhomogeneity in water depth to extend
over a finite width. Two specific smooth, infinitely wide
topographies will, however, be discussed here. The first
is a trench, reflectionless for normally incident waves.
The second is a shelf-edge type of topography, which
is reflectionless for obliquely incident waves coming
from a direction determined by the depth contrast be-
tween shelf and deep sea. Reflection properties of
obliquely incident waves have usually been discussed
for beaches (Ryrie and Peregrine 1982; Carrier and Noi-
seaux 1983). An exception is the passage of waves
obliquely incident on a partially immersed vertical bar-
rier (Evans and Morris 1972). No reflectionless trans-
mission was obtained in this case however.

2. Schrödinger equation

It is often instructive to consider scattering problems
in terms of a Schrödinger equation, because it allows
one to qualitatively assess the local nature of the wave
field under consideration. The relevance of this equation
for the long-wave equations will be discussed more ex-
tensively in the next section. The Schrödinger equation,

2d C
1 [E 2 V(x)]C 5 0, (1)

2dx

describes the shape of the state variable C(x), related
to the wave field, c(x, t) 5 C(x)e2ist, (with t denoting
time and s the frequency), due to inhomogeneities of
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FIG. 1. Sketch of a typical potential V(x) and four levels of the
energy, E1 to E4. Solid (dashed) parts of the energy levels refer to
sinusoidal (exponential) behavior of the wave field.

the ‘‘medium’’ through which the wave propagates as
a function of the coordinate x. The variations of the
medium are here represented by the ‘‘potential’’ V(x),
related to variations in depth for the long waves to be
considered. For localized variations of the medium it is
natural to expect the potential to vanish outside the x
region for which these variations occur. For values of
the ‘‘energy’’ E greater than the maximum value of the
potential Vmax (like E1 in Fig. 1), the quantity within
square brackets in (1) is everywhere positive, and hence
the solution is locally sinusoidal. It is therefore expected
that the wave will not be greatly attenuated by the scat-
tering potential. If E drops below this maximum, but is
otherwise positive (E2 in Fig. 1), this quantity is negative
over some x interval and hence the wave field will be
exponentially decaying over this range, leading to at-
tenuation of an incoming wave field: waves can pass
only through ‘‘tunneling’’ (Smith 1975; Bender and Ors-
zag 1978, p. 528). For negative values of the energy,
Vmin , E , 0 (like E3 in Fig. 1), trapped waves can
exist. Finally, for still lower values, like E4, wave so-
lutions no longer exist. Here we will consider only pos-
itive values of the energy parameter E. This quantity E
actually is usually not related to the true energy of the
wave field, but rather is to be regarded as a metaphor
for the frequency of the wave involved (E } s2 in the
long-wave context, see section 3). Therefore, for an in-
coming spectrum of waves, the existence of a maximum
in the potential Vmax can directly be interpreted as a (soft)
cutoff frequency. For waves with energy (frequency)
well above Vmax, waves can pass unimpeded, while for
waves with energy (frequency) below Vmax waves are
attenuated. The cutoff frequency is soft, however, since
no rigorous cutoff (zero transmission) of the incoming
wave field below this frequency is implied. A potential
like the one shown in Fig. 1 thus acts as a high-pass
filter.

3. Topographic filtering

Consider a linear, long plane wave propagating on an
f plane at the surface of a homogeneous fluid incident
on a smoothly varying topography H*(x*), where an as-

terisk denotes a dimensional variable. Let the surface
elevation take the form z (x ) exp(il*y* 2 is*t*). Here∗ ∗
l* indicates the wavenumber in the alongslope direction
y*. We nondimensionalize with length (L) and depth (H0)
scales appropriate to the shelf edge and with the inertial
frequency f such that the relevant nondimensional quan-
tities (without asterisks) are obtained from

x 5 Lx, l 5 l/L,* *

H (x) 5 H h(x), s 5 fs.* 0 *

Here h(x) is a nondimensional shape function modeling
the shelf edge. The cross-isobath structure of the ele-
vation field z(x) is then determined by (LeBlond and
Mysak 1978)

d dz l dh
2 2 2h 1 e (s 2 1) 2 l h 2 z 5 0. (2)1 2 [ ]dx dx s dx

Here e 5 L/R is the ratio of the external scale L and
the Rossby deformation scale, R 5 gH0/f. The squareÏ
of e is known as the divergence parameter. In general,
this is a small quantity. For instance, taking scales
relevant for the shelf edge, H0 5 1 km, L 5 100 km,
g 5 10 m2 s21, f 5 1024 s21, one obtains e 5 1021.
However, since the theory may equally be applied to
interfacial waves (with rigid-lid surface), this quantity
may be of order one. For instance, in the two-layer
case [with upper- and lower-layer depths h1 and h2(x),
respectively] depth is replaced by equivalent depth,
he(x) 5 h1h2(x)/(h1 1 h2(x)) and gravity g, by reduced
gravity g9, being gravity multiplied by the relative den-
sity difference of the two layers (LeBlond and Mysak
1978). Typical values of these lead to a phase speed
of about one-hundredth of its value in the barotropic
case, or e 5 O(1). The latter quantity being relatively
large may raise some questions about the validity of
the long-wave model. As argued in the introduction,
Hamilton (1977) has shown (for normally incident
waves, l 5 0), however, that (2) still applies in case
the horizontal length scale of the topography variations
is much shorter than a typical wavelength, provided
h(x) represents a properly smoothed version of the ac-
tual topography.

Equation (2) can be ‘‘naively’’ transformed to a
Schrödinger equation by multiplying it with h and iden-
tifying hd/dx with d/dj, which amounts to a stretching
of the horizontal coordinate

x 1
j 5 dx9, (3a)E h(x9)0

in inverse proportion to water depth, or, inversely to

j

x 5 h(j9) dj9. (3b)E
0

The equation then takes the form
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2d z l dh
2 2 2 21 e (s 2 1)h(j) 2 l h (j) 2 z 5 0, (4)

2 [ ]dj s dj

where h(j) 5 h(x(j)). This equation was employed by
Saint-Guily (1976) for the depth profile

h(j) 5 1 1 l tanh j, (5)

with l ∈ (21, 1) the ‘‘depth-contrast’’ parameter. To-
gether with (3b) this gives a parametrically defined
depth profile h(x). This shape of the topography enabled
him to calculate the spectrum of trapped modes exactly.
These topographic Rossby waves are trapped, however,
only in cross-slope direction but may freely propagate
along the slope. Equation (4), with (5) substituted, can
be viewed as a Schrödinger equation if we identify the
constant and spatially varying parts with the energy E
and potential V(j) respectively. For the case of freely
propagating waves, however, this potential is not
‘‘physically realistic’’ in the sense that it does not vanish
at infinity and therefore does not satisfy the requirement
that the scattering be localized. For instance, for nor-
mally incident waves (l 5 0), (4) simplifies to

2d z
2 21 e (s 2 1)h(j)z 5 0,

2dj

which, for the tanh-shaped topography (5) considered,
leads to a potential that is nonvanishing at infinity. For
this reason a transformation is employed that stretches
not only the horizontal but also the vertical coordinate
(the elevation)

x 1
1/4j 5 dx9, Z 5 zh (6)E Ïh(x9)0

(see Morse and Feshbach 1953, p.730 and, in a planetary
wave context, Krauss 1973). Discussion is for the sake
of simplicity here again limited to waves of normal
incidence (l 5 0), for which (2) takes the form

d dz
2 2h 1 e (s 2 1)z 5 0. (7)1 2dx dx

The general case of obliquely incident waves can be
treated likewise. With (6) this equation takes the form

2 2 1/4d Z 1 d h
2 21 e (s 2 1) 2 Z 5 0,

2 1/4 2[ ]dj h dj

which is a Schrödinger equation once we identify energy
and potential as E 5 e2(s2 2 1) and V(j) 5 h21/4d2h1/4/
dj2 respectively. This shows that energy E is indeed related
to frequency s. This expression for E identifies positive
values with freely propagating, superinertial (s . 1) waves
and negative values with subinertial (s , 1) waves
(trapped in the cross-slope direction). Since the second j
derivative of h1/4 is related to first and second x derivatives
of the topography h(x) (see below), which vanish away
from the sloping region, it is evident that this form of the

potential does vanish outside that region and hence is of
the expected localized form.

Without actually solving the resulting equation, a
number of inferences can be drawn from the form it
has.

First, assume that we are dealing with energy values
(frequencies) much greater than the maximum value of
the potential E k Vmax, such as occurs when the depth
varies only weakly in terms of the stretched horizontal
distance j. Then, we can approximate the potential by
assuming that it vanishes identically, V(j) [ 0. Depth
variations exist but have a negligible impact on the scat-
tering process. In this case, the solutions in the trans-
formed plane consist, of course, of plane waves of the
form Z 5 Z0 exp(6i E j). In the original frame thisÏ
solution reduces to the adiabatic variations presented by
the Liouville-Green (WKB) approximation

xZ 10z 5 exp 6iÏE dx9 2 ist .E1/4 1 2h Ïh(x9)0

This contains wavenumber variations (the x derivative
of the phase factor) inversely proportional to h (con-Ï
sistent with group velocity, cg, and phase velocity pro-
portional to h) and amplitude variations inversely pro-Ï
portional to h1/4 (consistent with the conservation of
energy flux, proportional to zzz2cg). Since amplitude (and
wavenumber) variations associated with adiabatic
changes do not form part of the scattering process, the
physically appropriate frame of reference in which to
consider scattering is that based on (7). Any amplitude
and wavenumber variations obtained in that frame are
truly associated with scattering.

Second, consider a typical monotonic shelf edge like
h1/4 5 1 1 l tanh j, which is similar to the topography
employed by Saint-Guily (1976) except that it now ap-
plies to the quarter power of the topography. Then the
potential takes the form

2T(1 2 T )
V(j) 5 22l ,

1 1 lT

where T [ tanh j (see Figs. 2 and 3a). The potential is
observed to have the typical two-lobed shape adopted
in the discussion of Fig. 1, the positive lobe extending
over the top of the shelf edge. The position of the max-
imum value of the potential Tmax, as well as its value at
this position, Vmax, can be determined analytically as a
function of the depth-contrast parameter l. Their ex-
pressions are rather cumbersome and are therefore just
shown graphically (Fig. 3b). Now, since the topology
of the problem would not change when we vary the
shape of the monotonically sloping topography, we may
expect the occurrence of a positive lobe [V(j) . 0 for
some range of j] to be a generic feature of this scattering
problem. Therefore, following the discussion in the in-
troduction, one may infer that there exists a topographic
cutoff frequency sT [ (1 1 e22Vmax(l))1/2, for any mono-
tonically sloping topography, which is a function of the
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FIG. 2. Sketches of the topography h(j) 5 (1 1 l tanhj)4 for l 5 1/2 as a function of j (a) and, parametrically, of x (b). The potential
V(j) 5 h21/4d2h1/4/dj2 can be obtained from these, both in the transformed (c) as well as, again parametrically, in the original frame (d). Here
the x dependence on j is given by x 5 h(j)xdj 5 j(1 1 l2) 1 2l ln[coshj] 2 l2tanhj; see (e).j∫ Ï0

FIG. 3. (a) Potential V as a function of T for l 5 0.9. Since T [ tanh j is a monotonic function of j, this
is a compact way of representing the j-dependence of the potential. In this figure the position, Tmax, and
value of the peak of the potential, Vmax, have been indicated, which are shown as a function of l in (b).
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geometrical parameters (the divergence parameter e2 and
the depth-contrast parameter l). For the parameters con-
sidered previously e 5 1021, and for l 5 1/2, which
has Vmax ø 1/2, we obtain sT ø 7. For interfacial waves,
with e ø 1, sT approaches the inertial frequency even
closer (sT ↓ 1). It is likely that this quantity sT, which
is easily computed for any given shape of a depth profile,
must be observable as a dividing frequency when com-
paring adjacent (directional) deep-sea and shelf spectra,
such that for s . sT, waves can pass the sloping region
fairly easy (and vice versa).

Third, expanding the expression of the potential we
find

2 22 21 d h 3 1 dh 1 d h 1 dh
V 5 2 5 2 .

2 21 2 1 24h dj 16 h dj 4 dx 16h dx

Since h . 0 for all x, the second term in the last ex-
pression at the right is always negative. Hence the po-
tential is positive only because of the existence of the
first term in that expression, which is related to the
(convex upward) curvature of the topography at the top
of the shelf slope (Meyer 1979). It is clear that this term
would be absent in piecewise-linear topographies, which
would therefore exclude the phenomenon of tunneling
and, to some extent, topographic filtering.

4. Reflectionless transmission

Another artifact would actually be introduced when
approximating a smooth, monotonic topography by a
piecewise-linear topography. This is the phenomenon of
reflectionless transmission at certain discrete wave fre-
quencies that have an integral number of half-waves
fitting over a linearly sloping region (LeBlond and My-
sak 1978, p. 209). This, in fact, also applies for more
generally shaped slopes (Kajiura 1963) as well as for
(long) symmetrical hills (Newman 1965; Fitz-Gerald
1976) as long as they are of finite width. It is generally
regarded that the occurrence of these reflectionless fre-
quencies is a spurious feature, which is a consequence
of the piecewise approximation of the topography em-
ployed (Kajiura 1963; Meyer 1979; Mei 1989). It is
expected that such complete transmission would be ab-
sent for smooth depth profiles. Indeed, for some partic-
ular, smooth monotonic profiles Kajiura (1963) showed
that the reflection coefficient is a steadily decreasing
function of frequency for normally incident waves. Re-
flectionless transmission of normally incident long
waves over smooth topographies of infinite extent is
found only for symmetrical ridges (Fitz-Gerald 1976),
a result obtained semianalytically, without restriction on
wavelength, by an iterative scheme (see also Roseau
1952).

Surprisingly, reflectionless transmission may also oc-
cur over a smooth trench for normally incident long
waves, as well as over a monotonically increasing depth
profile for obliquely incident long waves that come from

a particular direction related to the depth contrast be-
tween deep sea and shelf. Ironically, this can be dem-
onstrated most easily by employing the naive transfor-
mation (3).

Kay and Moses (1956) showed that the Schrödinger
equation

2d z
21 [E9 1 n(n 1 1)sech j]z 5 0, (8)

2dj

is reflectionless, for n 5 0, 1, 2, . . . , for any value of
E9 . 0. Now consider a ridge (m , 0), or trench (m .
0) topography

h(j ) 5 1 1 m sech2j,

that, with (3b), is parametrically related to the spatial
coordinate

x 5 j 1 m tanh j.

Then, for normally incident waves (l 5 0), a substitution
of this topography in (4) yields equation (8) for the
discrete set of frequencies determined by

E9 [ e2(s2 2 1) 5 n(n 1 1)/m.

This leads to propagating gravity waves (s2 . 1) pro-
vided n . 0 and m . 0, that is, provided the topography
is a trench. Expressions for transmission and reflection
coefficients for incoming waves of arbitrary frequency
and approximate expressions for the surface elevation
field can be found in Lamb (1980).

Using, alternatively, the Saint-Guily (1976) topog-
raphy (5), Eq. (4) reads

2d z
2 2 21 E 2 l (1 1 l ) 1 l(E 2 2l )tanh j

2 [dj

1
22 ll 2 ll sech j z 5 0.1 2 ]s

This tells us that long waves are able to pass the tanh-
shaped shelf edge without reflection provided this again
reduces to (8). Identifying coefficients between these
equations we find that this requires

E 5 2l2, (9a)

and

1
ll 2 ll 5 2n(n 1 1). (9b)1 2s

Because E9 5 E 2 l2(1 1 l2), we verify from (9a) that
E9 satisfies the positivity constraint: E9 5 l2(1 2 l2).
Since, by definition,

E 5 e2(s2 2 1), (10)

which from the dispersion relation applied in the far
field equals h(l2 1 k2), we find, assuming the waves to
enter from the deep region where h 5 1 1 l,
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FIG. 4. Plot of b/ 1 1 a2b2 2b2 and 2n(n11) (solid lines) as a function of b [ ll for two values of a [ 2/l2e2Ï
and integer n ∈ {0, 1, 2}. Heavy dots indicate values of b (i.e., scaled along-isobath wavenumber l) for which waves,
coming from a direction a* given by (11), are able to pass the tanh-shaped shelf edge reflectionless. Dashed lines
indicate the two asymptotes 61/a 2 b2.

2l
E 5 (1 1 l) .

2sin a

Here the absolute value k of the wavenumber vector k
5 (k, l) 5 k(cos a, sin a)—that makes an angle a with
the x direction—has been replaced in terms of l and a.
Hence, inserting this expression for E in (9a) and elim-
inating l2, we find that waves coming from directions
a* determined by

1 1 l
2sin a 5 (11)* 2

are able to pass this shelf edge reflectionless, provided
they satisfy also the second constraint (9b). From (10)
and (9a) we obtain s as a function of b [ l1l:

s 5 1 1 a2b2,Ï (12)

where a2 5 2/l2e2. Inserting this into (9b) and plotting
both the left- and right-hand sides of this equation as a
function of b (Fig. 4), we find at their intersections the
wavenumbers for which waves, coming from directions
determined by (11), are able to pass the shelf edge with-
out any reflection. From (12) their frequencies can be
obtained. For a . 1, these are approximately determined
by the two asymptotic (dashed) curves in Fig. 4, which
leads to

l
2 2s ø 1 1 a 1 a n(n 1 1), n ∈ N.n zlz

For n 5 0, only one physically realistic solution ( .2sn

0) is obtained, having the coast at its left (in the Northern
Hemisphere), seen from the alongshelf propagation di-
rection (l . 0). The expression of the frequency for
general values of a is slightly more involved. Note that
the same result applies to the reflectionless transmission
of interfacial waves, provided gravity and depth (both
depth scale and shape function) are replaced by their
internal equivalents (see section 3). In a continuously
stratified fluid, reflectionless transmission of internal

waves propagating over a shelf edge has been addressed
in Sandstrom (1976).

5. Conclusions

It is shown qualitatively that a monotonically sloping
shelf edge generally acts as a topographic filter for in-
coming, long superinertial waves. This filter can be
characterized by a (soft) cutoff frequency above (below)
which waves can pass the topography without (with)
much attenuation. This frequency is solely dependent
on parameters characterizing the geometry of the prob-
lem (topographic scales, latitude, and earth rotation
rate). The filtering properties are crucially dependent on
the existence of a convex (upward) part of the bottom
shape at the top of the shelf edge. It provides the positive
lobe of the localized potential in the Schrödinger equa-
tion to which the scattering problem can be transformed.
It is attractive to view this positive lobe of the potential
of a shelf edge as providing a natural shield by which
the shelf region is ‘‘protected’’ against incoming waves.
Each shelf edge may, however, also have an Achilles’
heel. It is suggested by the study of a particular, con-
tinuous topography that a shelf edge may be completely
transparent for waves of particular discrete frequencies,
coming from two directions determined by the ‘‘depth-
contrast parameter.’’ The shelf edge under consideration
is particularly ‘‘vulnerable’’ to waves propagating from
these two directions. (It was noted that a particular form
of a trenchlike topography is transparent for normally
incident waves.) Although no parameter sensitivity anal-
ysis of these results has been made yet, it is conjectured
that a true shelf edge (susceptible to depth-dependent
frictional and nonlinear effects) should show its vul-
nerability over some range of directions and frequencies
around those calculated. Within the limits of an inviscid
and linear analysis it might be useful, therefore, to make
a catalog for shelf edges around the world identifying
these reflectionless angles and frequencies at each lo-
cation.
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