
E-Journal of Reservoir Engineering Petroleum Journals Online

 Page 1 of 5
(page number not for citation purposes)

Research

A Procedural Approach to the Fast Display and Analysis of
Multi-Million Simulation Models in 3-D

Kamran Husain §*, Majid Shehry *

Address: Saudi Aramco Oil Company, Dhahran, Saudi Arabia

Email: Kamran Husain - kamran.husain@aramco.com : Majid Shehry - Majid.shehry@aramco.com
*These authors contributed equally to this work
§Corresponding author

Published: 30 August 2005 Received: 06 August 2005

E- Journal of Reservoir Engineering 2005, ISSN: 1715- 4677. Accepted: 20 August 2005

This article is available from: http://www.petroleumjournals.com/

© 2005 Husain et al; licensee Petroleum Journals Online.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by- nc-
nd/2.0/), which permits unrestricted use for non-commercial purposes, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract

The need to visualize huge geological models demands solutions with in-expensive display hardware since
it is economically impractical to furnish a large number of high-end workstations to all engineers. The
model files in these cases exceed the 2 gigabyte limit on most PC hardware and are harder to handle
without the use of high-end workstations or software solutions. The use of intelligent disk caching, the
object oriented interpretive programming language Python and Open Source software resulted in an
efficient, fast rendering application. The compact code size for the reusable source libraries enabled an in-
house solution while ensuring fewer support issues while providing necessary building blocks for
leveraging more applications.

Introduction
Geological simulation models are getting larger and
there is a need to display these models without the
use of expensive hardware. The files in these cases
exceed the 2 gigabyte limit on most PC hardware
and are difficult to handle; requiring the use of high-
end workstations. It is economically impractical to
furnish a large number of high-end workstations to
all engineers. Therefore resources have to be
allocated on an as-needed basis.

In addition to the hardware cost, user specific
analytical software requirements for displaying
specific attributes within the large data sets take time
to develop. Out-sourcing is not always an alternative
when handling sensitive data and algorithms.

The procedures described in this paper solved both
of these issues. These solutions can offer alternatives

to conventional software development in areas of
3-D visualization and data mining in many industries,
including the petroleum industry.

This paper discuss es the issues in developing
software for both pre-processing and post-
processing multimillion cell models using the same
base code libraries. The paper discusses the use of
scripting languages for rapid prototyping of data-
handling algorithms for retrieval of attributes from
industry standard as well as company specific format
files.

The paper further discusses the methods used to
offer the solution on a cross-platform basis on both
the UNIX® and Windows XP™ platforms. Design
issues are addressed specifically to address issues
with network bandwidth, byte order of data, the
types of data formats, cross platform issues in the
choice of displays and the development environment.

e-journal of reservoir engineering http://petroleumjournals.com

 Page 2 of 5
(page number not for citation purposes)

Hardware was limited to lower end computers
(PCs); however, the solutions were scaled and
tested on higher end special purpose workstations.
The software worked remarkably well in all
situations and was customized to dynamically use the
best solution by automatically detecting the
underlying hardware and operating system.

The problem
Geological models vary in size from several hundred
megabytes for a small model to several gigabytes for
a detailed study. Reservoir enginee rs typically work
with simulating underground oil, water and gas
activity with the use of simulators which require
input from parts of the geological model; since the
entire model has simply too much information for
the simulator to work efficiently.

This partial input to simulators is called a simulation
model, which in this case is derived from a model of
the subterranean geology in a large geological model.
A bulk of the geological model information must be
scaled down to fit as input into a simulator.

The size of geological models for simulation is getting
larger and as a direct result the size of simulation
models is increasing as well. The use of geological
simulation models poses the following problems:

• Displaying data from these geological
models requires heavy weight applications
and hardware.

• The files in these cases exceed the two
gigabyte limit on most PC hardware and are
harder to handle; requiring the use of high-
end workstations or newer versions of
software that are capable of handling these
files. The legacy applications would not
work without a vendor upgrade.

• Output data from the simulators is in big
endian format whereas the reservoir
engineers using the software did analysis on
little endian machine. The elements in the
input arrays had to be byte-swapped for
reading into reservoir simulation 3-D
(RS3D) software.

• The input format into POWERS ™ was
based on a proprietary format developed in
Saudi Aramco. Although other software
vendors had software capable of displaying
models in the moderate size (4-10 million
cell), these programs require modification
to be able to read the POWERS™ Binary
Format (PBF). These modifications were not
a high priority for the software vendors
since it is a solution for only one client,
Saudi Aramco.

• At Saudi Aramco, in addition to
POWERS™, we use other types of
simulators. Each simulator vendor has their
own output variation and more importantly,
different applications are required to show
each type of data. One application does not
handle both the input and output data
formats from all vendors.

There was an additional issue to consider; it is
economically impractical to furnish a large number of
high-end workstations to all engineers.
Consequently, resources have to be allocated on an
as-needed basis. This implied a need to display these
geological simulation models without the use of
expensive display hardware.

The Solution
The development of the RS3D toolkit addressed the
problems efficiently. The resulting code addressed
the problems and offered the following benefits:

• The toolkit handles both input and output
data visualization in one application for both
pre-processing and post-processing data
formats, thus requiring the end user to
learn only one tool.

• The toolkit runs on desktop PCs running
Linux or Windows XP™ as well as
remotely off the Linux Clusters.

• The toolkit handles heterogeneous data
beyond the 2G limit on desktop machines.

• The code libraries are owned by Saudi
Aramco and therefore we own the rights to
the algorithms. In addition, outside vendors
are not involved in the development of the
code.

• The code was developed in-house in a fast,
efficient manner and since we own the
code, we can modify it to meet our specific
requirements.

The development environment. The programs
were developed using Open Source software. Two
significant packages from the Open Source
repository were:

• The Python programming language.
• The Visualization Tool Kit (VTK) from

Kitware systems, Inc.

Python is an interpreted language and was used as
the main tool in developing the user interface and
internal data parsing libraries. The Python language is
object oriented, has a very fast virtual machine and
can dynamically link in modules to adapt to different
data input. It has the ability to link in C++ libraries as
extensions where speed is critical. In most cases, the

e-journal of reservoir engineering http://petroleumjournals.com

 Page 3 of 5
(page number not for citation purposes)

rich set of functions in the language itself sufficed for
our requirements.

Python code runs on Windows XP™, Linux and
Solaris workstations without modification. The
internal interpreter has to be built once for each
platform to take advantage of the underlying
operating system. Once installed, all subsequent
Python programs are run by this internal interpreter.

The VTK leverages existing OpenGL™ libraries to
display 3-D graphics. VTK uses hardware support if
available otherwise it relies on software libraries to
render graphics objects. The VTK libraries provided
highly useable graphic primitives and objects that are
directly created and accessed from Python objects
via an interface layer. See Fig. 1.

Fig. 1 - Interface layer for Python objects to access VTK objects and the OpenGL library

The major risk with using Open Source software
was the apparent danger of not getting support
should we run into a problem with the development
libraries. Although Saudi Aramco has a contract with
vendors that provide a supported commercial
version of Python, there was never really a need to
use the resource. No severe bugs were experienced
with the toolkits. This trouble -free development can
be attributed to the following reasons:

1. The quality of programming in the language and
the toolkit itself were both excellent.

2. The vast library of useable components on the
web.

3. Bugs were few and were fixed almost on a
nightly basis when found by the large user
community behind the VTK and Python tool
kits.

4. An enthusiastic response from the Open
Source community to questions posted by
users on VTK mailing lists.

Handling Multiple Data Formats. The variety of
input and output data formats still presents the
biggest challenge in developing RS3D. The viewer has
to dynamically check the input format to determine
the type of data being rendered. The types of 3-D
data encountered are:

• UNRST – ECLIPSE Unified Restart Files
• INIT – ECLIPSE Initialization Files
• CHEARS – Chevron-Texaco Simulator

Input format
• GOCAD – Surface geometry
• GLK – Saudi Aramco specific format
• GEOVIEW – Saudi Aramco specific format
• PBF – POWERS ™ Binary Format
• ZMAP™

The problem was solved using Python objects for
reading (and writing) each type of data format.
Python is very modular and careful programming
enables one to include all the source code for
handling an object in one file. This file is called a
module. In addition to the source code, the objects
test routines and interfaces can be included in the
module itself. Thus, the modules developed and all

RS3D code for Graphical User Interface

Custom Python libraries for data access

Visualization Toolkit libraries (C++)

Underlying Python libraries OpenGL libraries

e-journal of reservoir engineering http://petroleumjournals.com

 Page 4 of 5
(page number not for citation purposes)

the test routines for each type of input file exist in
their own modules.

Application building became easier with the use of
modules. Handling a new type of input now simply
entails the development of one module to handle the
semantics of that new format. The underlying data
structures in RS3D allow the easy integration of a
new modul e with only a few lines of code. An
example of this is the way CHEARS input format was
added to RS3D in less than one day. The only
changes in the RS3D main screens were cosmetic
changes and the bulk of the changes and additions
were made in a module specifically designed for
CHEARS input files.

Another primary motivation for developing RS3D™
was the limitations of tools that show data in
proprietary input formats for the Saudi Aramco
POWERS™ simulator. As the size of the models
increased by tens of millions of cells, the existing
legacy tools were unable to display the data without
subdividing the files.

The first action was to write the input and output
modules for reading and writing POWERS™ Binary
Format (PBF) files. An additional twist in this was the
ability to handle the big and little byte order (endian)
of the data. Python allows the use of an internal
byte-swapping routine to permit reading data to
accommodate different processor architectures.

The RS3D toolkit tackles the problem of displaying
the data from these huge models with intelligent disk
caching and slicing algorithms. Th e output from
reservoir simulation simulators comes in a verbose,
run length encoded format. This format does not
permit direct access to key portions of data. The
RS3D toolkit uses Python dictionaries and file offsets
to index into the data areas for faster access. The
built-in capability of the Python programming
language to handle slices was a key factor in
extracting data in various levels of detail (LOD).

Speed considerations . The need for speed was
the main driving force behind encoding test routines
within each module. The main algorithms cached
locations on the disk for each sector and layer. Thus,
loading layers in the model simply amounted to a
series of seek-and-read operations per layer.

The way to handle layers depended on the input
model being read. Some models hold the origin on
the lower left corner of the model, whereas some
models define the origin on the top right corner.

The way depth and cell dimensions are defined varies
on the type of model. While most geological formats

stored data in FORTRAN order, the GLK format
defines layers in a transposed manner with respect
to the other types of models and the layers in a
bottom up fashion. Also, some models are stored in
text form, some models store data in pure binary
form while others store indices in text and the
attribute, raw data is stored in binary form.

For all such cases, the Python language permitted
switching handles to parsers with use of dictionaries.
Each entry of the dictionary was populated at the
time of reading a file with the type of file being read.
The rendering program sees only the handlers and is
not involved in the details of how the data is brought
in by the handler. Essentially, this framework involves
only the addition of a new handler for each new type
of data we encounter in the future.

Handling large output files. Output files from the
simulators are written in individual variations of
ECLIPSE format by three simulators in use at Saudi
Aramco. The ECLIPSE format uses variable length
records with a large overhead in the way large
blocks are segregated. This segregation of blocks
renders quick offset jumps (within a record) useless
and forces a slow, sequential search operation. Prior
to RS3D, the important information from a simulator
run was mined by running a special extraction
program and a whole new set of extracted data. This
procedure had the following problems:

• The data was duplicated in another set,
creating a data management headache

• Versions of ECLIPSE simulator output
forced the development of different
versions of the extraction software.

• Not all the information was extracted from
the original output

• Some of the extracted information was
further processed through algorithms in the
extraction utility. This process may
introduce unknown elements in the data.

RS3D solves the above problems with the use of
dynamic modules in Python which load the correct
module in real time based on the type of data being
read. Thus all known variations of the ECLIPSE data
are handled in one version of the program.

The internal libraries handle the byte order for the
data and indexing unbeknownst to the user. Changes
are made to one source tree for all platforms.

Using intelligent indexing, RS3D obviates the need
for a separate extraction run. The data viewed by
the user is taken from the actual simulator output.
An extra data set is not required thereby reducing

e-journal of reservoir engineering http://petroleumjournals.com

 Page 5 of 5
(page number not for citation purposes)

the headache of managing another data set and
reduces the probability of errors.

Well paths are displayed if present in the geological
model. The user can include text files with cell paths
for displaying well trajectories for speculative work.

An equation editor and parser are also included in
the toolkit to allow the user to make their own
attributes based on their own functions. This
function is currently being enhanced and optimized
to allow for more complex mathematical operations.

Additional Benefits. Displaying GOCAD data in
RS3D does not require the use of a GOCAD license.
A small number of concurrent licenses for GOCAD
are currently shared among several users who may
only want to view files rather than edit them.
Viewing a file in GOCAD uses a license as if the user
were editing a file. RS3D permits a user to view the
files without using a valuable GOCAD license.

Another benefit from using Python modules was the
reusable library of input and output routines that
were available to the rest of the members in our
department. Other team mem bers successfully used
the libraries for building streamline applications using
the base libraries from RS3D. The library source
code is self documenting and generates HTML
documents with the use of a simple utility that is a
part of the Python distribution.

Other applications based on the RS3D code libraries
included those for extracting simulated logs from
simulation models for comparison with actual field
log data to perform quality checks as well as the
viewing of summary data from simulator runs. The
XY plotting libraries allowed a user to view data
from MS Excel™, log data and even adding and
viewing of user-specified speculative well-paths with
ease.

Conclusions
The solutions presented here confirm that it is
possible to economically display huge data models on
common machines using rapid prototyping
techniques for specialized software. The resulting
application set is fast, easy to maintain and extend.
The internal libraries are useable in other project
development teams and have proven to be a solid
base for future development.

Acknowledgements
Many thanks are due to the following users who
provided criticism and comments in making this
application a success:

• Mohamed Diamond, RSD.

• Chung Lin, RSD
• Raja Tariq Abbas, RSD
• Bevan Yuen, RSD

References
1. Lutz, Mark. Programming Python. 2nd ed.

Beijing: O'Reilly, 2001.
2. Grayson, John E. Python and Tkinter

programming. Greenwich, CT: Manning, 2000.
3. Schroeder, Will, Ken Martin, Bill Lorensen, with

special contributors Lisa Sobierajski Avila, Rick
Avila, C. Charles Law. The Visualization
Toolkit. 2nd ed. Upper Saddle River, NJ:
Prentice Hall PTR, 1998.

