Vol.36 No.11 November 2 0 0 0

(19) [20]~[2⁰4 离子束溅射制备立方 C-N 化合物 *

王天生^{1,2)} 于栋利1] 田永君^{1,2)} 何巨龙¹⁾ 李东春¹⁾ 李 林²⁾ 1) 燕山大学材料科学与化学工程学院, 秦皇岛 066004 2) 中国科学院物理研究所, 北京 100080

摘 要 用氣离子束分别原位澱射 Ti 和石墨靶的方法制备了 CN_x/TiN_y 多层膜 用 X 射线光电子诸分析 CN_x 层中 C 和 N 的键合状态、用透射电镜观察薄膜中的相形貌、用电子衍射和 X 射线衍射的方法分析相的结构。结果表明。 CN_x 层中主要 有 N— sp^2 C 和 N— sp^3 C 两种键合状态, 薄膜中观察到的 C-N 化合物尺寸为 10—60 nm 的晶体颗粒,其衍射数据可用立方 C_3N_4 结构标定、证实了该薄膜中存在立方 C_3N_4 化合物

关键词 C-N 化合物,高子束微射 中图法分类号 TB43, TB321 文献标 - ひ方ゲーム A 文章編号 0412-1961(2000)11-1201-04

CUBIC C-N COMPOUND PREPARED BY ION BEAM SPUTTERING

WANG Tiansheng^{1,2)}, YU Dongli¹⁾, TIAN Yongjun^{1,2)}, HE Julong¹⁾, LI Dongchun¹⁾, LI Lin²⁾
1) College of Materials Science and Chemical Engineering, Yanshan University, Qinhuangdao 086004
2) Institute of Physics, The Chinese Academy of Sciences, Beijing 100080
Correspondent: TIAN Yongjun, professor, Tel: (0335)8054014, 8057047, E-mail: fhcl@ysu.edu.cn
Manuscript received 1999-11-15, in revised form 2000-07-12

ABSTRACT CN_x/TiN_y multilayer films were prepared by a nitrogen ion beam in situ sputtering titanium and graphite targets alternatively. Two C—N bonding states of CN_x layer, $N-sp^2C$ and $N-sp^3C$, have been defined by X-ray photoelectron spectroscopy. The morphology of C-N compounds observed by transmission electron microscopy is particle-like with sizes of 10—60 nm. Electron diffraction and X-ray diffraction show cubic C_3N_4 exists in the film. **KEY WORDS** C-N compound, ion beam sputtering

NET WORDS OF Compound, for beam sputtering

Liu 和 Cohen^[1,2] 采用第一性原理质势总能量计算 方法预言, 假想的共价 β -C₃N₄ 化合物的体模量与已知 的最硬材料金刚石相当. 理想固体的体模量可以很好地描 述硬度, 而作为材料性能的硬度对于其高性能的工程应用 极其重要. 因此, 该理论预言促进了许多研究人员对 C-N 化合物的结构和性能进行理论研究^[3-6] 和实验合成与表 征^[7-16]. 许多研究提出了 β -C₃N₄ 晶体实验合成的透射 电子衍射证据^[9,11,12,15,16]. 计算表明^[2], β -C₃N₄ 有足 够大的内聚能, 以致于会产生亚稳结构的固体. Sjöström 等人^[17] 用反应直流截控入射法制备出具有类富氏球结构 的超硬 C-N 化合物薄膜. Guo 等人^[18,19] 用偏压辅助 热丝化学气相沉积法制备出具有单斜和四方结构的 C-N 化合物. 近来, Teter 等人 ^[20] 用第一性原理计算方法研 究了 C-N 化合物的稳定性、结构及物理性能,并预言, C-N 化合物存在多晶型性,并提出了 5 种结构的 C₃N₄, 即 α -, β -, 立方 -、 顾立方 - 和石墨 -C₃N₄ 化合物. 其中立方 -C₃N₄ 化合物的零压体模量高达 496 GPa, 比 金刚石体模量的实验值 (442 GPa) 和计算值 (468 GPa) 都高. 因此、立方 -C₃N₄ 化合物的合成对基础理论研究 及工程应用有重大的意义.最近, Peng 等人 ^[21] 用对 含少量氮的碳粉进行感应热等离子体处理的方法制备出 了纳米尺度的立方 -C₃N₄ 小颗粒, 但其点阵参数比预言 的值大.

本文用多靶离子束微射仪制备 CN_x/TiN_y 多层膜, 用 X 射线光电子谱 (XPS) 分析 CN_x 层中 C 和 N 的化 学状态,用透射电镜 (TEM) 观察膜中相的形貌,用选区 电子衍射 (SAED) 和 X 射线衍射 (XRD) 分析薄膜中的 相结构,提供了薄膜中可能存在立方 C-N 化合物的实验 证据.

TB32

T1593

 [「]河北省自然科学基金资助项目 566194
 收到初稿日期: 1999-11-15, 收到修改稿日期: 2000-07-12
 作者简介: 王天生, 男, 1963 年生, 副教授, 硕士

1 实验方法

在多靶离子束溅射仪上,用氮离子束分别原位溅射Ti 和石墨靶的方法制备 CN_x/TiN_y 多层膜,即先用氯离子 束濃射 Ti 靶 20 min, 然后换石墨靶再溅射 100 min. 依此进行交替溅射,制出多层膜.溅射系统中离子束、 靶、基片的空间布置如图 1 所示。用 10 mm × 10 mm 的单晶 Si(111) 和 NaCl 作基片,基片放入溅射系统之 前用丙酮和乙醇进行超声清洗. 靶与基片间的距离约为 110 mm. 系统的背底真空约为 5×10⁻⁴ Pa. 溅射前 用高纯氮气清洗真空室、以使真空室中氧含量降至更低 水平.用高纯氮气作为溅射气体, 溅射气压保持在 (4---7)×10⁻² Pa. 离子束能量约为 330 eV. 澱射 Ti 靶所用束 流密度为 60-65 mA/cm², 濃射石墨靶所用束流为 25---30 mA/cm². 濃射过程中基片不加热, 其温度为 70---90 ℃. TiN, 膜的沉积速率约为 60 nm/h, CN, 膜的 沉积速率约为 20 nm/h. 在 NaCl 基片上沉积的 TiN, 单层膜及 CN_x/TiN_y 双层膜用于进行 TEM 分析,而沉 积在 Si 片上的 CN_a/TiN_a 多层膜 (18 层) 则用于进行 XRD 分析. 在对 NaCl 基片上沉积的薄膜进行 TEM 分 析之前,用蒸馏水将 NaCl 基片溶解掉、反复用蒸馏水清 洗几遍, 以保证 NaCl 从膜上彻底溶解干净, 然后用 Cu 网络膜捞起进行 TEM 观察。

图 1 高子束派射系统示意图

实验中所用的 TEM 和 XRD 仪器的型号分别为 H-800 和 D/Max-rB, XRD 分析所用辐射为 Cu K_{α} ,用 VG Scientific ESCALAB 220I-XL 型 X 射线光电子谱 仪 (Mg K_{α} 辐射) 进行 XPS 分析.

2 实验结果与讨论

图 2a 和 b 分别示出了 CN_x/TiN_y 多层膜中 CN_x 层的 XPS C 1s 和 N 1s 诺, 其退卷积处理结果示于表 1 中. 根据对文献 [7, 10, 16, 22] 的 XPS 数据的分析, 可以 确定图 2 中分解的各个峰所对应的化学状态 (见表 1). 可 见, C 1s 谱可以分解成 6 个峰, 分别标记为 A, B, C, D, E 和 F. A 是由 C 中 $\pi - \pi^*$ 键产生的; B, E 和 F 可能 是外来的污染造成的; C 峰 (287.39 eV) 对应于 N $sp^{3}C(C-N)$ 的键合状态; D 峰 (285.69 eV) 反映了 N— $sp^{2}C$ (N==C) 键合状态. 对于 N 1s 谱, 若不考虑 污染造成的 A 和 B 峰,则仅获得两个化学状态: 一个是

图 2 CN_z/TiN_y 多层膜中 CN_z 层的 X 射线光电子谱

Fig.2 XPS C 1s (a) and N 1s (b) spectra of CN_x layer in

 CN_x /TiN_y multilayer

表 1 CN₂/TiN₃ 多层蕨中 CN₂ 层的 XPS C 1a 和 N 1a 谱退 卷积处理结果

Table 1The deconvolution of C 1s and N 1s XPS lines of
 CN_x layer in CN_x/TiN_y multilayers

XPS	Peak	Binding	Bonding	Atomic		
line		energy, eV	type	fraction,%		
C 1a	A	291.36	ππ**	1.791		
	B	289.17	co	5.564		
	С	287.39	CN	21.701		
	D	285.69	C=N	48.585		
	E	284.45	Pure C	15.774		
	F	281.99	Metal carbide	6.585		
N 1.9	A	402.01	NO	3.285		
	B	400.86	N—N	13.947		
	\mathcal{C}	399.56	C—N	52.211		
	D	398.39	CN	30.557		

C峰 (399.56 eV) 对应于 N- $sp^{2}C$ ()C==N—) 键合 状态; 一个是 D 峰 (398.39 eV) 对应于 N- $sp^{3}C$ 键合 状态. 这些结果表明, C 和 N 原子主要以 N- $sp^{2}C$ 和 N- $sp^{3}C$ 两种方式成键, 这是形成 C-N 化合物的一个 基本特征. 而且成 N- $sp^{3}C$ 键的 C 和 N 原子分数也较 大,由此可以推断薄膜中形成了一定数量的具有 4 配位 C-N 共价键化合物.此外, XPS 结果还给出了其它的键 合状态,这主要是由于物理吸附和表面污染所造成的.

 CN_a/TiN_y 双层膜平面试样典型选区电子衍射图及 相应区域的 TEM 暗场像 (用包含 4, 5 和 6 号衍射环上 的衍射斑点来成暗场像) 分别示于图 3a 和 b. 用 NaCl 晶体标定相机常数, 然后测量并估计上述衍射环所对应的 晶面间距值及相对强度. 为了方便起见, 把测定结果及理 论计算的立方 C_3N_4 晶体的 X 射线粉末衍射数据 ^[23] 和 Ti₂N 的 JCPDS 卡片数据一并列入表 2 中 (表中 I/I_0 为相对强度). 可见,本实验结果与 Teter 等人 ^[20] 理论预 言的立方 C_3N_4 晶体及 Ti₂N 的 JCPDS 卡片数据相符 很好.

因此,本文认为该双层膜中含有立方 C_3N_4 晶体及 Ti₂N.利用 4 个立方 C_3N_4 特征衍射环计算该晶体的 晶格常数,得到 $a \approx 0.528$ nm,这比理论预言的数值 (0.53973 nm)小约 2%.在电子衍射图中还出现一个异 常的衍射峰 (d=0.266 nm),不能用立方 C_3N_4 及 Ti₂N 标定,可用 2H 石墨型 C_3N_4 晶体 102 晶面标定.图 3b 示出了立方 C_3N_4 晶体的形貌,可以看到,立方 C_3N_4 晶体的尺寸约为 10—60 nm, 呈颗粒状.

由表 2 还可以看出, Ti₂N 的 3 个衍射环 004, 220 和 107 分别与立方 C₃N₄ 晶体 211, 321 和 420 重合. 这 说明立方 C₃N₄ 晶体与 Ti₂N 之间存在一定关系. 值得注 意的是, Ti₂N 是四方结构、晶格常数为 $a \approx 0.414$ nm, $c \approx 0.8085$ nm. 立方 C₃N₄(001) 晶面上点阵矢量 [100] 和 [010] 与 Ti₂N(001) 晶面上点阵矢量 [110] 和 [110] 间 的点阵错配度约为 8%. 故立方 C₃N₄ 晶体与 Ti₂N 晶格 间有较好的结构匹配, Ti₂N 可能作为结构模板, 使立方 C₃N₄ 晶体在其上形核和生长.

图 4 示出 Si(111) 单晶基片上制备的 CN_x/TiN_y 多 层膜的 X 射线衍射谱. 实验表明, 薄膜中主要存在 β-和 石墨 -C₃N₄ 相的衍射峰. 此外, 还存在强度较低的立方 C₃N₄ 相的 5 个衍射峰分别对应 $d_{211} = 0.21329$ nm, $d_{220} = 0.19028$ nm, $d_{310} = 0.16789$ nm, $d_{321} =$ 0.14196 nm, 和 $d_{332} = 0.1156$ nm. 由此求得立方 C₃N₄ 晶体的晶格常数为 $a \approx 0.5330$ nm, 这与预测值 (0.53973 nm) 很接近.

另外还发现了 Ti₂N 的 101(d = 0.3726 nm) 和 103(d = 0.2385 nm) 衍射峰及 d = 0.4290 nm 的一个未知 峰,不能用 Ti, N, C 可能组成的产物和预测的 CN_x 的结 构来标定.由此进一步提供了该方法制备的 CN_x/TiN_y 多层膜中存在立方 C-N 的化合物的衍射证据.

图 3 CN_z/TiN_y 双层膜平面试样典型选区电子衍射图及相应区域的 TEM 暗场像 Fig.3 SAED pattern (a) and corresponding TEM dark image (b) from CN_z /TiN_y films

表 2 SAED 测定的晶面间距 d 及强度与立方 C₃N₄ 计算值和 Ti₂N 粉末衍射数值比较

Table 2Comparison of measured d-spacings from the SAED with the calculated spacings of cubic C3N4 and datum
of X-ray powder diffraction of Ti2N from the JCPDS (No.23-1455)

No.	Experimental		Calculated values of cubic-C3N4			XRPD datum of Ti ₂ N		
	d, nm	I/I_0	<i>d</i> , nm	I/I_0	hkl	d, nm	I/I0	hkl
1	0.377					0.3740		101
2	0.266	Vs						
3	0.237	w				0.2396	vw	103
4	0.218	m	0.22034	V 8	211	0.2200	m	004
Б	0.207	S				0.2069	s	200
6	0.188	8	0.19082	8	220			
7	0.165	vw	0.17068	w	310			
8	0.153	m				0.1508	m	204
9	0.145	m	0.14425	m	321	0.1464	m	220
10	0.134	m	0.13493	m	400			
11	0.127	vw				0.1277	vw	215
12	0.119	w	0.12069	w	420	0.1204	vw	107
13	0.107	tw	0.11017	m	422			

Note: The vs. s, m, w and vw represent very strong, strong, medium, weak and very weak diffraction intensities

图 4 Si(111) 单晶基片上制备的 CN_a/TiN_y 多层膜的 X 射线 衍射图

Fig.4 XRD pattern of CN_x/TiN_y multilayer film prepared on the substrate of Si(111) single crystal

3 结论

用氨离子束分别原位溅射 Ti 和石墨靶的方法成功地 制备出 CN_x/TiN_y 多层膜. CN_x 层的 XPS 分析表明, CN_x 层中 C 和 N 原子间主要以 N—sp²C 和 N—sp³C 两种形式键合. TEM 和 XRD 分析表明, 薄膜中存在尺 寸为 10—60 nm 的立方 C-N 化合物颗粒, 其与 Ti₂N 间 可能存在某种取向关系. 这些实验证据说明在 CN_x/TiN_y 多层膜中合成了立方 C_3N_4 化合物.

参考文献

- [1] Liu A Y, Cohen M L. Science, 1989; 245: 841
- [2] Liu A Y, Cohen M L. Phys Rev, 1990; B41: 10727

- [3] Corkill J L, Cohen M L. Phys Rev, 1993; B48: 17622
- [4] Yao H, Ching W Y. Phys Rev, 1994; B50: 11231
- [5] Liu A Y, Wentzcovitch R M. Phys Rev, 1994; B50: 10362
- [6] Ortega J, Sankey O F. Phys Rev, 1995; B51: 2624
- [7] Sekine T, Kanda H B, Bando Y, Yokoyama M, Hojou K. J Mater Sci Lett, 1990; 9: 1376
- [8] Maya L, Cole D R, Hagaman E W. J Am Ceram Soc, 1991; 74: 1686
- [9] Niu C, Lu Y Z, Lieber C M. Science, 1993; 261: 334
- [10] Marton D, Boyd K J, Al-Bayati A H, Todorov S S, Rabalais J W. Phys Rev Lett, 1994; 73: 118
- [11] Yu K M, Cohen M L, Haller E E, Hansen W L, Liu A M, Wu I C. Phys Rev, 1994; B49: 5034
- [12] Ren Z M, Du Y C, Qiu Y, Wu J D, Ying Z F, Xiong X X, Li F M. Phys Rev, 1995; B51: 5274
- [13] Yang Y, Nelson K A, Adibi F. J Mater Res, 1995; 10: 41
- [14] Tian Y, Ren X, Yu D, He J, Zheng H, Chen S, Li D, Yu R, Zhang M, Zhang J, Wang W. Chin Sci Bull, 1996; 41: 1038
- [15] He X, Shu L, Li W, Li H. J Mater Res, 1997; 12: 1595
- [16] Li Y A, Xu S, Li H S, Luo W Y. J Mater Sci Lett, 1998; 17: 31
- [17] Sjöström H, Stafström S, Boman M, Sundgren J E. Phys Rev Lett, 1995; 75: 1336
- [18] Guo L P, Chen Y, Wang E G, Li L, Zhao Z X. J Cryst Growth, 1997; 178: 639
- [19] Guo L P, Chen Y, Wang E G, Li L, Zhao Z X. Chem Phys Lett, 1997; 268: 26
- [20] Teter D M, Hemley R J. Science, 1996; 271: 53
- [21] Peng Y, Ishigaki T, Horiuchi S. Appl Phys Lett, 1998; 73: 3671
- [22] Fu Q, Jiu J T, Cai K, Wang H, Cao C B, Zhu H S. Phys Rev, 1999; B59: 1693
- [23] Wang J, Lei J, Wang R. Phys Rev, 1998; B58: 11890