7411 0766.4

(2) 1127 -1133

六方 Al14.2(Fe, V)3.0Si1.3 准晶近似晶体相的电子衍射分析*

金头男 1.2) 尹志民 》 李斗星 1) 1) 中国科学院金属研究所固体原子像开放研究实验室、沈阳 110015

2) 中南大学材料科学与工程系,长沙 410083

利用选区电子衍射和会聚束衍射研究了喷射沉积 Al-Fe-V-Si 合金中一种六方相的晶体结构、其点阵常数为; 襺 事 a=2.52 nm, c=1.26 nm, 空间群为 P6/mmm. 该六方相与立方相具有固定取向关系. 且 EDS 分析表明, 两相成分相 近,系统对比分析 SAED 花样发现,六方相的某些带轴衍射谱具有立方相的二十面体结构基元表现出的衍射特征,表明六方相也 是一种准晶近似晶体相,其结构构架可能由 (Fe+V) 和 (Al+Si) 双层二十面体结构基元以 3 种不同取向堆砌而成.

→作**嗣** 关键词 六方 Al-(Fe, V)-Si 相、电子衍射、二十面体结构基元 吉力死之 (2000)11-1127-07 中图法分类号 0753.3, 0766.4 文獻标识码 A

ELECTRON DIFFRACTION STUDY OF A HEXAGONAL Al_{14.2}(Fe,V)_{3.0}Si_{1.3} APPROXIMANT

JIN Tounan^{1,2)}, YIN Zhimin²⁾, LI Douxing¹⁾

1) Laboratory of Atomic Imaging of Solids, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110015

2) Department of Material Science and Engineering, Central-South University, Changsha 410083 Correspondent: LI Douxing, Tel: (024)23843531-55243, E-mail: lais@imr.ac.cn Manuscript received 2000-04-25, in revised form 2000-07-24

ABSTRACT The crystal structure of a new hexagonal $Al_{14,2}(Fe, V)_{3,0}Si_{1,3}$ approximant (a=2.52 nm, c=1.26 nm, P6/mmm) in the spray-cast Al-8.5Fe-1.3V-1.7Si alloy has been determined by selected-area electron diffraction and convergent beam electron diffraction. The crystallographic orientation relationship and the potential structural interrelationship between the hexagonal approximant and the bcc α -Al(Fe, V)Si phase are investigated through a systematic study of the electron diffraction behaviour. The similarty between the icosahedral patterns of the hexagonal and bcc phases implies the presence of the double (Fe+V) and (Al+Si) icosahedral clusters in both phases, but with different staking arrangements.

KEY WORDS hexagonal Al-(Fe, V)-Si approximant, electron diffraction, icosahedral cluster

随着准晶的发现^[1],人们重新认识到可以利用二十面 体多面配位体来研究复杂结构 Al-TM(过渡金属) 化合物 的晶体结构 [2-5]. 二十面体及其衍生的复合多面体是三 维二十面体准晶及二维十次准晶的结构基元,它们的准周 期排列给出准晶结构,而它们的周期排列则给出化学成分 及晶体结构都与准晶近似的金属间化合物,即准晶近似晶 体相 (crystalline approximant)^[6]. 由于受三维周期性条 件的约束,在晶体中理想二十面体的对称性将受到破坏、 因而,在近似相中的二十面体结构基元都会有不同程度的 畸变.

立方 α -AlMnSi(Pm3) 或 α -AlFeSi(Im3) 相是 Al-Mn-Si 或 Al-Fe-Si 二十面体准晶的近似相 ^[6-8], 其 主要结构基元是同心双层二十面体、即由 12 个 Mn(Fe) 原子构成大的二十面体, 而 12 个 Al 原子分别占据 12 个 Mn(Fe) 原子位置矢量的一半处, 形成小的二十面体, 在 这种近似相中 (Al 和 Si 原子不区分), 9 个双二十面体按 同一取向占据体心立方点阵位置, 而且 Al 二十面体间还 通过 3 个共享三角面的畸变 Al 八面体链沿 3 次轴方向 连接. 快速凝固 Al-Fe-V-Si 合金中的主要强化相就是这 种结构的化合物,只不过其中的 Fe 原子被 V 原子部分 替代而已.

最近,Koh 等人 ^[9] 在甩带 Al-Fe-V-Si 合金中发现 了一种新的复杂结构六方相 (a=2.514 nm, c=1.257 nm,

^{*} 收到初稿日期: 2000-04-25, 收到修改稿日期: 2000-07-24 作者简介: 金头男、男、 1965 年生,朝鲜族、博士生

空间群为 P6/mmm). 因为无法获取 X 射线衍射样品、 该相的结构尚未完全确定. 本文主要通过电子衍射观察并 结合 EDS 成分分析, 来证明这种六方相与立方 α-Al(Fe, V)Si 相在结构上具有一定的关系、进而提出该相可能的 结构框架.

α-Al(Fe, V)Si 的结构基元与 SAED 谱

一般地、由多个散射体组成的散射物体的结构因子可 表示为

$$S(\vec{q}) = \sum_{j} f_j \, \exp(2\pi \mathrm{i}\vec{q} \cdot \vec{r}_j) \tag{1}$$

其中, qⁱ 是倒易矢量, rⁱ, 是第 j 个散射体的位置矢量, f_j 是第 j 个散射体的形式散射因子. 表达式 (1) 具有普遍 意义、其中的散射体可以是电子、原子、原子簇团以及价 键等. 假设某一种结构由一种原子簇团 (即结构基元) 以 α 种取向堆砌而成, 而且原子簇团之间以同一种价键方式 连接、那么表达式 (1) 可以写成 ^[10]

$$S(\vec{q}) = \sum_{\alpha} \sum_{N_{\alpha}} f_{\alpha} \exp(2\pi i \vec{q} \cdot \vec{r}_{N_{\alpha}}) \pm \sum_{\beta} \sum_{N_{\beta}} f_{\beta} \exp(2\pi i \vec{q} \cdot \vec{r}_{N_{\beta}})$$
(2)

其中 f_{α} 是原子族团在第 α 种取向上的形式散射因子, f_{β} 是原子族团间第 β 个价键的形式散射因子, $\vec{r}_{N_{\alpha}}$ 和 $\vec{r}_{N_{\beta}}$ 分别为第 N_{α} 个原子团和第 N_{β} 个价键中心的位 置矢量. 如果所讨论的是具有周期性的晶体结构,则指数 项 $\exp(2\pi i \vec{q} \cdot \vec{r}_{N})$ 就是 (或正比于)Bravais 点阵阵点的 Bragg 峰位散射,散射峰位位于: $\sum \delta(\vec{q} - \vec{Q})$,其中 \vec{Q}

为倒易 Bravais 点阵. 因此、可以将散射物体 (晶体相) 的 结构因子 S(q) 看成是这种等强度本征结构因子 (倒易点 阵的结构因子) 的 Bragg 反射受到与结构基元有关的形 式散射因子 f_{α} 和 f_{β} 调制的结果. 由于价键的多种取向及 低对称性,可以认为 f_{β} 对结构因子即衍射强度的调制贡 献不大; 而结构基元由于具有较强的局域散射,在其高对 称方向上对衍射强度的调制作用会很显著. 在结构基元的 取向数 α 不太大, 而晶体的单胞较大的条件下, 结构基元 的结构及取向将通过衍射图中强度的分布体现出来 ^[11].

立方 α -Al(Fe, V)Si 相属于 α =1 的最简单情形. 在 α -Al(Fe,V)Si 晶体中, Fe 和 Al 双二十面体原子 簇团均以其 2 次轴平行于立方单胞的轴向.以其 3 次 轴平行于单胞的 (111) 方向,因而其 5 次轴近似平行于 (230) 方向 (理想二十面体的 5 次轴为无理数方向 [1 τ 0], $\tau = (\sqrt{5}+1)/2$). 所以,在立方 α -Al(Fe, V)Si 相的 [001], [111] 和 [230] 带轴电子衍射花样中分别会出现反 映双二十面体结构基元的伪 2 次、伪 3 次以及伪 5 次对 称的衍射特征 ^[6-8],这里各类伪轴次对称是指衍射花样 中那些强衍射斑的分布特征相比于理想二十面体相产生 的衍射对称性而言. 以上只是一种简单的说明, 更精确的 分析需要用 Patterson 函数方法给出倒易空间中强度分 布与实空间原子对矢量之间的关系.

2 实验结果与分析

用喷射沉积加热挤压固结法制取实验用合金,名义成 分 (质量分数、%,下同)为 Al-8.5Fe-1.3V-1.7Si. 透射 电镜观察及能谱分析在 JEM 2010 电镜上完成、操作电 压为 200 kV. 薄膜样品采用离子薄化法制备.

2.1 Al(Fe, V)Si 六方相晶体结构

在喷射沉积 Al-Fe-V-Si 合金中,除了大量尺寸为 几十纳米左右的立方 α -Al(Fe, V)Si 弥散颗粒外,还 可观察到少量的形状近似正六角形的粗大相,如图 1 所 示. EDS 分析表明,这种六角形状的相成分为 Al_{14.2}(Fe, V)_{3.0}Si_{1.3},与立方 α 相的成分 Al_{13.4}(Fe, V)_{3.0}Si_{1.1} + 分接近.

图 1 六方 A⊢(Fe,V)-Si 相的典型形貌 Fig.1 Morphology of hexagonal A⊢(Fe,V)-Si phase

图 2 为六角形相的选区电子衍射 (SAED) 和会聚束 衍射 (CBED) 图. 对 SAED 花样及 CBED 图中高阶 Laue 环进行测算.可知该相属于六方结构,晶格参数为 a=2.52 nm, c=1.26 nm, 轴比 c/a=0.5.由于单胞尺寸 较大导致衍射盘严重重叠, CBED 全图中未能得到明场 及 0 阶衍射的对称信息,但这并不妨碍读取全图 (WP) 的对称性 (因为明场和 0 阶衍射的对称性等于或高于高 阶衍射的对称性). [0001] 带轴 WP 的对称性为 6mm(见 图 2b),对应于 6mm 或 6/mmm 衍射群,由此得出的 点群分别是 6mm 和 6mm1_R. [1120] 和 [1010] 两带轴 的 WP 对称性都是 2mm(见图 2c 和 d),对应 2mm 或 2mm1_R 衍射群,因而导出的点群有: mm2, 6m2 或 mmm, 4/mmm, 6/mmm, m3, m3m. 以上推导过程详 见表 1. 由各带轴 CBED 图的对称性导出的点群中都会 包含所测晶体点群,根据 Steeds 的交叉排除法 ^[12],用几

图 2 六方相的选区电子衍射和会秦束衍射图

Fig.2 SAED along [0001] (a) and CBED patterns along [0001] (b), [1120] (c) and [1010] (d) zone axes of the hexagonal phase

表 1 六方 Al--(Fe, V)−Si 相晶体点群推导

Tabie 1	Possible point groups corresponding to diffraction groups of the hexagonal phase
---------	--

Zone axis	WP symmetry	Diffraction group	Possible point group
[0001]	6mm	6mm	6mm
		$6mm1_{\rm R}$	6/mmm
$[11\overline{2}0], \{10\overline{1}0\}$	2mm	2mm	mm2, 6m2
- •		$2mm1_{\rm R}$	mmm, 4/mmm, 6/mmm, m3, m3m

个有时甚至一个带轴就可唯一确定点群.显然,由表1可 看出该六方相的点群只能是 6/mmm.进一步的倾转实 验没有发现任何系统消光,表明此六方晶体的空间群是 P6/mmm.上述结果说明这种相与 Koh 等人^[9] 新近 在甩带 Al-Fe-V-Si 合金中发现的六方相相同.

2.2 六方相和立方相之间的取向关系

图 3 为六方 Al-(Fe,V)-Si 相和立方 α-Al (Fe, V) Si 相毗邻生长的形貌相. 这里很难判断六方相和立方相 是共生的, 还是六方相属于亚稳相、在合金的后续处理过 程中再辉导致向立方相转变. 图中显示立方相在六方相的 6 个梭柱面上择优长大,表明两相之间存在着一定的晶体 学取向关系.图 4 为两相复合电子衍射诸及其注释图.从 图 4c 中,可直接得出如下取向关系

图 4b 是另一视场的衍射,标定结果表明、与图 4a 反 映的取向关系相同,经大量的观察表明,两相之间具有上

图 3 毗邻生长的六方 Al-(Fe, V)-Si 相和立方 α-Al(Fe, V)Si 相 Fig.3 Adjacent hexagonal Al-(Fe, V)-Si and cubic α-Al(Fe, V)Si phases

述唯一的取向关系. 从 $(020)_{bcc}$ 与 $(2240)_{bex}$ 斑点重合 可知、六方相 a 轴是立方相 a 轴的 2 倍, 从 $(011)_{bcc}$ 与 $(1121)_{bex}$ 斑点相重可知, 六方相的 c 轴与立方相 a 轴 长度相等. 这就再一次证明该六方相的轴比 c/a=0.5, 同 时,也预示着六方相与立方相在结构上存在某种关联.

2.3 六方相的结构基元

通过倾转实验观察大量六方 Al-(Fe, V)-Si 相的电子 衍射谱,发现某些带轴的衍射也表现出在立方 α-Al(Fe, V)Si 相的 [001], [111] 及 [230] 带轴中出现的二十面体结 构的衍射特征,也就是在衍射花样中某些强斑点表现为伪 5 次、3 次以及 2 次对称分布.

图 5 为两相的伪 5 次对称衍射花样比较、可以看出, 六方相 [1210] 带轴 (见图 5b) 和 [1123] 带轴 (见图 5c) 中呈伪 5 次对称的 10 个强衍射斑点 (箭头所示) 与立 方相 [230] 带轴 (见图 5a) 中的伪 5 次对称斑点位置相 近,而且距中心斑点的距离相同. 类似的情形也出现在两 相的 3 次和 2 次对称衍射花样中,如图 6 和 7 所示, 表明六方相中也存在二十面体原子簇团. 如果再考虑到六 方和立方相之间具有固定的取向关系且成分相近,以及六 方相的 c 轴长度几乎与立方相的晶胞常数相等,而且轴比 c/a=0.5,有理由推断六方相具有与立方相相同的或接近 相同的二十面体结构基元.

2.4 六方相的结构构架

在立方相中,二十面体结构基元的取向数 α=1. 然 而,在六方相中,为了与六方晶体的点群相匹配,二十面

图 4 毗邻生长的六方相和立方相的复合衍射谱 Fig.4 Composite SAED patterns of adjacent hexagonal and bcc phases (a, b) and their indexing patterns (c, d)

(a), (c) $[0001]_{hex} \# [001]_{bcc}$ (b), (d) $[11\overline{2}6]_{hex} \# [011]_{bcc}$

B 6 六方相和立方相的伪 5 次对称衍射花样比较

Fig.5 Comparison between psudo-5-fold symmetry diffraction patterns of bcc and hexagonal phases
(a) [230] zone axis of bcc phase (b) [1210] of hexagonal phase
(c) [1123] of hexagonal phase

体基元的取向肯定不只一种.为了弄清在六方相中结构基 元的排布方式,首先来分析六方相的极射赤面投影.图8 示出了六方相的伪5次对称轴在(1120)面上的极射投影 分布,其中 A 和 B 为实验观察到的伪5次轴(图5),C 和 D 分别为实验观察到的3次轴(见图6)和2次轴(见

Fig.8 Comparison of 3-fold symmetry diffraction patterns between bcc and hexagonal phases (a) [111] zone axis of bcc phase

(b) $[11\overline{2}15]$ zone axis of hexagonal phase

图 7). 空心五角形和黑点为实施 6/mmm 点群操作后衍 生出的伪 5 次轴位置. A 轴和 B 轴间的夹角为 63.43°, 与二十面体中两个 5 次轴间夹角相等. 同样, A 与 C 间 夹角 79.3° 以及 A 与 D 间夹角 30°,也分别与二十面体 中 5 次轴与 3 次轴间夹角 79.2° 及 5 次轴与 2 次轴间夹 角 31.7° 接近,表明 A, B, C 和 D 伪次轴均属于同一取 向的二十面体,这种取向的二十面体在六方晶体中以其两 个正交的 2 次轴分别平行于 [0001] 和 [1120] 方向.

图 9 为一个理想二十面体在其 2 次轴垂面 (纸面)上 的极射投影图.其中黑五角形标记为此取向二十面体 (这 里称为第一种取向)的 5 次轴投影位置,空心点为由点群 6/mmm 衍生 (以投影面上的一个 2 次轴为 6 次轴)出的 5 次轴投影点,根据它们之间的夹角关系、空心点分别属 于另外两种取向二十面体的 5 次轴.由于 5 次轴间夹角 (116.58°)与 6 次旋转 (60°)不匹配,(0001)面上的两 个 5 次轴经 6/mmm 点群操作后将衍生出无数个 5 次轴

图 7 六方相和立方相的 2 次对称衍射花样比较 Fig.7 Comparison of 2-fold symmetry diffraction patterns between hcc and hexagonal phases (a) [001] zone axis of hcc phase (b) (1100] zone axis of hexagonal phase

图 8 六方相的 (1120) 面极射赤面投影

(图 9 中阴影带所示). 与图 8 比较可以看出, 图 8 中五角 形 (空、实心) 代表的伪 5 次轴属于第一种取向的二十面 体, 而其余伪 5 次轴 (黑点位置) 则属于另外两种取向. 因为在晶体结构中二十面体有些畸变, 而且不同取向二十 面体由点群 6/mmm 关联, 导致伪 5 次轴间夹角不完全 相同. 同样的方法可讨论 3 次和 2 次轴的分布特征, 图 8 中的 2 次轴和 3 次轴属于第一种取向二十面体. 从以上 分析可知, 在六方 Al-(Fe, V)-Si 相中共存在 3 种取向 的二十面体结构基元.

图 9 二十面体在其 2 次轴垂面 (纸面)上的极射赤面投影

Fig.9 Stereographic projection of the icosahedron along its 2-fold axis

图 10 为六方 Al-(Fe, V)-Si 近似相中结构基元在 (0001) 面上的排布. 每个空的 (Fe+V) 二十面体中包含 一个小的空 (Al+Si) 二十面体,此种双二十面体基元处 于正三角形三个边的中点位置.并以其二个正交的 2 次轴 分别平行于所处的边和 [0001] 方向. 这种排布的 (0001) 面沿其法向 (c 袖) 方向以半个三角形边长 (a 袖) 间距平 移,可构筑出与空间群 P6/mmm 相匹配的六方结构晶 体. 此构架模型满足二十面体基元取向数 α=3,而且与实 验观察到的各类伪次轴方向很好符合.至于结构基元之间 以何种方式连接,乃至该六方近似相精确的晶体结构仍有

图 10 六方近似相 (0001) 面的结构基元排布

Fig.10 Schematic representation of icosahedra clusters on the (0001) plane of the hexagonal approximant

待进一步深入的研究.

3 结论

 (1) 在喷射沉积的 Al-Fe-V-Si 合金中形成六方 Al_{14.2}(Fe,V)_{3.0}Si_{1.3} 准晶近似晶体相,其点阵参数为:
 a=2.52 nm, c=1.26 nm,空间群为 P6/mmm.

(2) 六方 Al-(Fe, V)-Si 相和立方 α-Al(Fe, V)Si 相 之间具有如下严格的晶体学取向关系: $[0001]_{hex} \# [001]_{bcc}$ $(1\overline{1}00)_{hex} \# (100)_{bcc}$ $(11\overline{2}0)_{hex} \# (010)_{bcc}$

(3) 电子衍射和极图分析表明, 六方相中具有与立方 相中相同的二十面体结构基元. 这种结构基元以 3 种取向 堆砌可构筑出与空间群 P6/mmm 相匹配的六方近似相 的结构框架.

参考文献

- Schechtman D, Blech I, Gratias D, Cahn J W. Phys Rev Lett, 1984; 53: 1951
- [2] Kuo K H, Ye H Q, Li D X. J Mater Sci, 1986; 21: 2597
- [3] Shoemaker D P, Shoemaker C B. Mater Sci Forum, 1987; 22-24: 67
- [4] Kreiner G, Franzen H F. J Alloy Compd, 1995; 221: 67
- [5] Li X Z, Hirago K, Yamamoto A. Philos Mag, 1997; A76: 657
- [6] Elser V, Henley L. Phys Rev Lett, 1985; 55: 2883
- [7] Guyot P. Audier M. Philos Mag, 1985; B52: L15
- [8] Audier M and Guyot P. Philos Mag, 1986; B53: L43
- [9] Koh H J, Park W J, Kim N J. Mater Trans JIM, 1998; 39: 982
- [10] Bendersky L. J Microsc, 1987; 146: 303
- [11] Yang Q B, Kuo K H. Philos Mag, 1986; B53: L115
- [12] Steeds J W, Vincent R. J Appl Crystallogr, 1983; 16: 317