Ni₃Al+NiAl 双相合金的氢致开裂*

李金许 李红旗 王燕斌 乔利杰 褚武扬

(北京科技大学材料物理与化学系、北京 100083)

摘 要 利用恒载荷试样和 WOL 试样研究 \int Ni₃Al+NiAl 双相台金中氢致裂纹形核的规律以及氢致滞后断裂归一化门槛应力 σ_c/σ_f 与试样中可扩散氢含量 w_{H_0} 的关系 结果表明、氢致裂纹择优在 NiAl 相中或 Ni₃Al/NiAl 相界面处形核扩展; Ni₃Al 能 阻碍氢致裂纹扩展 恒载荷实验表明、氢致带后断裂门槛应为随可扩散氢含量的对数线性下降,即 $\sigma_c/\sigma_f = 0.58 - 0.042 \ln w_{H_0}$.

关键词 氢致开裂, Ni-Al 合金、电一化门槛应力 **中图法分类号 TG111.91**, TG146 文献标识码 A 文章编号 0412-1961(2001)10-1049-04

HYDROGEN-INDUCED CRACKING FOR TWO PHASE (Ni₃Al+NiAl) ALLOY

LI Jinzu, LI Hongqi, WANG Yanbın, QIAO Lijie, CHU Wuyang Department of Materials Physics and Chemistry. University of Science and Technology Beijing, Beijing 100083 Correspondent: LI Jinzu, associate professor, Tel: (010)62332906, Fax: (010)62332945, E-mail: hijinzu@sohu.com

Manuscript received 2000–10–03, in revised form 2001–05-17

ABSTRACT The rule of hydrogen-induced crack nucleating and the threshold stress for hydrogeninduced delayed failure as a function of diffusible hydrogen concentration were studied. The results show that hydrogen-induced crack nucleated preferencially m NiAl phase and/or at Ni₃Al/NiAl interface. Ni₃Al could arrested hydrogen-induced crack propagating. The normalized threshold stress for hydrogen-induced delayed failure decreases linearly with the logarithm of the diffusible hydrogen concentration w_{H_0} , *i.e.* $\sigma_c/\sigma_f=0.58-0.042 \ln w_{\text{H}_0}$.

KEY WORDS hydrogen-induced crack, Ni-Al alloy, normalized threshold stress

NiAl 金属间化合物是潜在的高温结构材料。但由于 NiAl 在室溫下拉伸塑性很小 ^[1,2],所以、 NiAl 合金的发 展都有一种向两相或多相合金发展的趋势,即依靠引入塑 性第二相来初化基体、例如 β -NiAl 和 γ' -Ni₃Al 双相合 金就具有较好的室温塑性 ^[3,4]。无论是 Ni₃Al 还是 NiAl、 其室温脆性均和氢有关 ^[5-10]。

Ni₃Al 在空气中拉伸的延伸率远低于在真空或氧气中 的延伸率值^[5,6],在水中拉伸、延伸率则进一步下降^{"7]}, 目前均把这归因于水激发的氢脆。随应变速率的下降、在 空气中拉伸时延伸率不断下降^[8],这表明、这种氢脆和原 子氢的扩散、富集有关,在 H₂ 中拉伸时也显示氢脆。但 如果通过钨丝加热产生原子氢则氢脆敏感性更大⁽⁸⁾. 电解 充氢后再拉伸也能显示氢脆^[9]. 高温充入氢能降低 NiAl 的晶界强度,在H₂中实验时,在初一脆转变温度附近裂 纹扩展速率增大^{(10]}.由于 Ni₃Al 和 NiAl 均存在氢脆敏 感性^{7-10]}.可以推论两相合金 Ni₃Al+NiAl 也会存在氢 脆敏感性。到目前为止、研究 Ni-Al 系合金的氢脆均用 延伸率的下降来衡量,未见有关在恒载荷(或恒位移)条 件下氢致滞后开裂的报道。有人认为^[11,12],在空气中延 伸率的下降由氢的表面反应控制,与原子氢在晶体中的扩 散、富集无关。但如果在恒载荷(或恒位移)条件下发生滞 后断裂,则一定和氢的扩散、富集有关。因此,本文研究 了 Ni₃Al+NiAl 双相合金发生氢致滞后断裂的可能性。 并寻找其规律。

1 实验方法

Ni-Al 合金铸锭在 1280 ℃均匀化 6 h 后空冷.其成分 (质量分数、%)为: Al 16.99, Si 0.05, C 0.009, O 0.0011, N 0.0002, 余为 Ni. 分析表明、所得为 Ni₃Al+NiAl 双

^{*} 国家重点基础研究专项基金 G1999065000 及国家自然科学基金 59895150 资助项目

收到初稿日期: 2000-10-03, 收到修改稿日期: 2001-05-17 作者简介: 李金许、女, 1965年生, 副教授, 博士

相合金,其中 Ni₃Al 与 NiAl 的体积比为 7 : 3. 室 温时 $\sigma_{0.2}$ =305 MPa, σ_b =369 MPa, δ =2.3%. 经线切 割后成为 0.2 mm×4 mm×70 mm 的薄板拉伸试样以 及 22 mm× 17 mm×7.5 mm 的 WOL (wedge open loading) 恒位移试样.

一组无裂纹薄板试样加不同的恒载荷后在 0.5 mol/L H₂SO₄+250 mg/L As₂O₃ 溶液中动态充氢,记录氢致滞后断裂时间 $t_{\rm t}$,由 σ - $t_{\rm t}$ 曲线求出氢致滞后断裂的门槛应力 $\sigma_{\rm c}$,即^[13]

$$\left. \begin{array}{l} \sigma_{\rm c} = (\sigma_{\rm n} + \sigma_{\rm y})/2 \\ \sigma_{\rm n} - \sigma_{\rm y} \le 0.05(\sigma_{\rm n} - \sigma_{\rm y}) \end{array} \right\} \tag{1}$$

式中, σ_n 为在规定时间 (400 h) 内不断裂的最大应力, σ_y 为能发生断裂的最小应力,如果式 (1) 中第 2 个条件 不满足,则要在 σ_n 和 σ_y 之间再选一个应力做实验,直至 第 2 个条件满足为止,这样就可以保证所获得的 σ_c 误差 小于 5%. 充氢电流 i 分别为 100, 10, 1 mA/cm² 及 0(这 相当于在溶液中应力腐蚀).用小块试样在不同电流下充 氢 72 h,然后用排油集气法测量在恒温 (80 c) 下扩散出 的氢含量 w_{H_0} (质量分数 (10⁻⁴%),下同)^[14]. WOL 试样 用螺钉加载至开裂,抛光侵蚀后在空气中放置 24 h,然后 在相同溶液中电解充氢 (i = 10 mA/cm²).采用 Olympus BX60 MF5 型金相显微镜跟踪观察氢致裂纹的形核 过程,用 S250-MK3 型扫描电镜观察断口形貌.

2 实验结果与讨论

归一化应力 $\sigma/\sigma_t(\sigma_f$ 为在空气中拉伸时的断裂应力) 随断裂时间的变化如图 1. 由式 (1) 可求出氢致滞后断裂 门槛应力 σ_c .不同充氢条件下所获得的归一化氢致滞后 断裂门槛应力 σ_c/σ_t ,扩散氢含量 w_{H_0} 以及 ln w_{H_0} ,均 见见表 1. 从表可见, σ_c/σ_t 随 ln w_{H_0} 的升高而下降. 其直线方程为

表 1 不同充氢电流下的 σ_c/σ_f 和 w_{Ho} 值

Table 1 σ_c/σ_f and $w_{\rm H_0}$ under various current densities

nA/cm ²	σ_c/σ_f	wHo	ln w _{Ho}
	_	10-4%	
100	0.44	30.40	3 41
10	0.48	12.60	2.53
1	0.50	6.00	1. 79
0	0.55	2.40	0.88

$$\sigma_{\rm c}/\sigma_{\rm f} = 0.58 - 0.042 \ln w_{\rm H_0}$$
 (2)

式中, wHa 的单位为 10-4%.

图 2 是 WOL 试样动态充氢时加载裂尖扩展过程的 金相照片,其中白色相为 γ' -Ni₃Al 相, γ' 之间的黑色区 域为,3–NiAl 相. 保持恒位移 24 h 后, 加载裂纹 P—A 在 β 相中扩展,并最终终止在夹杂 A 处,如图 2a 所示,再 将试样在 0.5 mol/L H₂SO₄ +250 mg/L As₂O₃ 溶液中 电解充氢 10 min (i=10 mA/cm²), 可以看到主裂尖由于 夹杂的阻碍而未向前扩展。但主裂纹 P--A 明显加宽; 与此同时、在主裂尖 A 的前方形成很多不连续的微裂纹 a、b, c.d 等 (图 2b). 仔细观察可以看出, 这些微裂纹均产 生在深色的 NiAl 相中、且最前端的微裂纹 d 沿 γ'/β 两 相边界扩展。继续充氢 30 min, 微裂纹 d 扩展加宽,并 终止于粒状 γ' 相 E 处,它不是穿过 Ni₃Al 解理扩展, 而是在前方的 NiAl 相中形成微裂纹 e 和 f(图 2c). 再继 续充氢 30 min, 微裂纹 d 已扩展进 E 处的 γ'-Ni₃Al 相 中、同时微裂纹 e 和 f 变宽, 且 f 处的几个微裂纹已连 接在一起, 在 N 处沿两个条状的 Ni₃Al 相中间也形成了 一个微裂纹。如图 2d 所示。

图 3 是该试样的断口形貌。从图可以看出、断口以准 解理断裂为主 (图中 *E*, *F*, *G*, *H* 区)、也存在很多沿相界 断口 (图中 *M* 与 *N* 之间)和二次裂纹。

由此可知,在 $\beta + \gamma'$ 两相合金中,当加载试样动态 充氢一段时间后,氢致裂纹就会在加载裂纹前端不连续形 核、扩展,裂纹择优在 β -NiAl相中或沿 γ'/β 相界面形 核扩展,而 γ' -Ni₃Al相则是氢致裂纹扩展的障碍,只有 在Ni₃Al片层取向阻碍裂纹扩展并难以绕过时、裂纹才 会穿过 Ni₃Al片层,这表明 NiAl和 Ni₃Al 相都具有氢 致升裂敏感性,只不过敏感程度有一定差别.

如恒载荷需要经过一段时间后氢致裂纹才形核、扩展,最后导致试样的断裂.这显然和应力作用下氢的扩散 和富集有关.氢致开裂的机理仍存在争议^[14],但任何一 种理论均以富集的氢含量达到临界值为先决条件.对氢降 低表面能 γ 或鍵合力 σ_{th} 理论,只有富集的氢含量足够大 时才能使 γ 或 σ_{th} 大幅度下降,从而引起低应力脆断^[14]. 对氢促进局部塑性变形导致开裂的理论^[15],也只有当氢 含量足够大时才能在低应力下导致位错的发射和运动,并

图 2 恒载荷时电解充氢导致裂纹的形核和扩展

- Fig.2 Processes of hydrogen-induced crack nucleating and propagating after cathodically charging with hydrogen when keeping constant load (white phase—Ni3A), black—NiA))
 - (a) precrept in air for 24 h (loading crack P-A propagating in NiAl and stopping at a inclusion A)
 - (b) charging for 10 min ($i=10 \text{ mA/cm}^2$, P-A crack widened and microcracks a, b, c, \cdots appearing in NiAl)
 - (c) charging further for 30 min (microcrack d widened and stopping at Ni₃Al grain E, induced microcracks e and f)
 - (d) continuously charging for another 30 min (crack d going in grain E, cracks e and f widened, several cracks joining together at f position and a new microcrack appearing at N position)

形成很大的局部应力集中,当它等于被氢降低了的原子键 合力时就导致裂纹形核,应力作用下的平衡氢含量为^{[16}

$$w_{\rm H,\sigma} = w_{\rm H_0} \exp(\sigma_{\rm h} \overline{V}_{\rm H} / RT) \tag{3}$$

式中、 σ_h 为静水应力、 $\sigma_h = (\sigma_1 + \sigma_2 + \sigma_3)/3$; \overline{V}_H 为氢在 合金中的偏摩尔体积, 对于无裂纹恒载荷试样、 $\sigma_h = \sigma/3$ 由式 (3) 可知, 随外加载荷 σ 的升高, 富集的氢含量 $w_{\mathrm{H},\sigma}$ 也升高·当它等于临界值 $w_{H,th}$ 时, 就会通过某种机理导 致裂纹形核, 这时的 σ 就等于 σ_c , 在临界条件下式 (3) 变为

$$\sigma_{\rm c} = A' - B' \,\ln\,w_{\rm H_0} \tag{4}$$

式中, $A' = \frac{3RT}{\overline{V}_{H}} \ln w_{H,th}, B' = \frac{3RT}{\overline{V}_{H}}$.式 (4) 表明, σ_c 或 σ_c / σ_f 随 ln w_{H_0} 的升高而线性下降, 这已为实验所证 实, 由于 \overline{V}_H 和 $w_{H,th}$ 未知, 故无法定量计算式 (4) 中

图 3 无氢试样断口形貌

Fig.3 SEM fractograph of two phase (Ni_3Al+N_1Al) alloy after cathodically charging with hydrogen (E, F, G)and H: cleavage fracture: M - N phase interface fracture)

的系数,但从定性上看理论计算和实验结果是一致的.

3 结论

(1) Ni₃Al+NiAl 双相金属间化合物能发生氢致滞后 开裂、裂纹择优在 NiAl 相或 Ni₃Al/NiAl 相界面处形核 扩展, Ni₃Al 相能阻碍氢致裂纹的扩展。

(2) 氢致滞后断裂归一化门槛应力 σ_c/σ_f 随可扩散氢

浓度 w_{H_p} 的对数线性下降: $\sigma_c/\sigma_f = 0.58-0.042 \ln w_{H_0}$.

参考文献

- [1] Xu K, Arsenault R J. Acta Metall, 1999; 47: 3023
- [2] Deevi S C, Sikka V K. Intermetallic, 1996; 4: 357
- [3] Sikka V K. Mater Sci Eng, 1992; 153A: 714
- [4] Lee J H, Choe B H, Kim H M. Mater Sci Eng, 1992; 152A 253
- [5] Liu C T. Scr Metall Mater, 1992; 27: 25
- [6] George E P, Liu C T, Pope D P. Acta Mater, 1996; 44: 1757
- [7] Cohron J W, George E P, Heatherly L, Liu C T, Zee R H. Acta Mater, 1997; 45: 2801
- [8] Schulson E M, Xu Y. Acta Mater, 1997; 45: 3491
- [9] Wan X J, Zhu J H, Jin K L, Liu C T. Scr Metall Mater, 1994: 31: 677
- [10] Bergmann G, Vehoff H. Mater Sci Eng, 1995; 192A: 309
- [11] Wright J L, Zhu J H. Scr Mater, 1998; 38: 253
- [12] Nishimura C, Liu C T. Scr Metall Mater, 1991; 25: 791
- [13] Chu W Y, Yao J, Hsiao C M. Metall Trans. 1984; 15A: 729
- [14] Chu W Y. Hydrogen-Induced Plasticity Loss and Delayed Cracking, Beijing: Metallurgical Industry Press, 1988; 254
 (法書法、勿想作与書后版列、小言、公会工作中版社、1988;

(褚武扬 氢损伤与滞后断裂,北京:治金工业出版社, 1988: 254)

- [15] Li M D, Lü H, Zhang T C, Chu W Y. Sci Chin. 1997; 40E: 530
- [16] Chu W Y. Qiao L J, Wang Y B. Corrosion, 1999, 55: 667