水稻辐射突变体遗传变异的初步研究1)

周松茂 李代玺 徐光华 (四川农学院原子能农业应用研究室,雅安)

突变体的选择与利用,在很大程度上取决于变异的分离与稳定。研究变异在各世代的表现及其整个稳定过程,对有效地选育和利用突变体具有重要的意义。过去国内外对突变体特别是大突变体,作了较多的研究。 山县弘忠 (1977)研究了早熟突变体的抽穗期,在 $\tau_2 - \tau_3$ 之间是呈正相关的 ($\tau = 0.835**$)。 佐本四郎等^[8]研究了株高与倒伏、抗倒性与粒重、品质及产量的遗传相关。李秀海、康尚杰研究了水稻 τ_1 损伤与 τ_2 突变频率的相关性,等等。这些研究对大突变的选择利用和间接提高水稻生产能力,发挥了积极作用。但随着生产水平的提高,目前对小突变的研究,更引起了人们的重视。

本试验采用⁶⁰Co-7 射线,处理中稻"桂朝二号"种子,研究其诱发突变体特别是小突变的遗传特点和稳定过程,为选育直接增进"桂朝二号"这类优良品种的生产能力和抗性育种工作提供一定参考。

材料和方法

本试验用 ⁶⁰Co-r 射线, 3.6 万和 2.4 万伦琴,分别照射"桂朝二号"的干种子和浸泡(泡48小时)种子,照射后各分一半用微波处理 25 分钟,以未照射的干种子作对照。r₁ 采用少株密值,成熟后,每个穗子取 5—8 粒种子,按处理组混收。

 γ_2 单株栽插,每个处理移栽 6,706 株。 抽穗期调查,采取两种方式:对照未出现抽穗株前的 γ_2 抽穗株,单独挂牌记载;对照出现抽穗株后,每个处理各定点 200 株,逐株记载抽穗日期。

7, 成熟后, 除根据一般标准确定 突变体

外,还按高泰保等^[5] 提出的,采用增山公式²计算,统计突变率,即把处理组中,属于对照变异范围临界值外的个体,计为突变,为此又随机抽取 500 株一并考种,将其考种及抽穗期调查数据,都按 5% 的显著水准计算突变值,确定微突变株。然后从整个突变体中(不包括"负"突变)随机抽取 72 份,对照抽取 27 份种成 73。

7₃ 按家系单株栽培(株行距 16.5×23.1cm), 各种 55 株,成熟后,每个家系(包括对照家系) 随机抽取 5 株考种。

遗传参数的统计分析按以下公式:

(1) 用回归和相关法[4] 估算世代间的遗传力:

$$h^{2} = \frac{\Sigma(x - \overline{x})(y - \overline{y})/\Sigma(x - \overline{x})^{2}}{h^{2} = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(x - \overline{x})^{2} \cdot \Sigma(y - \overline{y})^{2}}}$$

(2) 用方差分析法估算广义遗传力**,按**山口彦之^[6]的分析方法,方差分析如表 1。

表 1 一向分组资料方差分析模式

变异原因	自由度	均方	理论方差
家系间	m-1	$m_{\scriptscriptstyle 1}$	$\sigma_s^2 + n\sigma_s^2$
家系内	m(n-1)	m_2	σ_s^2

m表示家系数,n表示家系内取样个体数。

遗传方差
$$\sigma_s^2 = \frac{m_1 - m_2}{n}$$

Zhou Songmao et al.: Preliminary Study on Inheritance and Variation of Radiation-induced Mutants in Rice

- 1) 参加本试验工作的还有杨天正同志。
- 2) 其公式为: $\bar{x} \pm \sigma[(N+1)F/N]^{1/2}$ 。 \bar{x} 为样本平均值, σ 为总体标准差,N 为总样本数,F 为以 n! = 1, n! = N-1 的 F 值。

表 2 各主要突变性状态界值及突变率1)

	项 目	抽穗期(天)	株高 (cm)	穗长 (cm)	穗着粒 数 (粒)²¹	穂实粒数 (粒)	千粒重 (克)
突	突变临界值 (α = 0.05)		<92.0 和>110.0	<18.9 和>24.0	<71.0 和>165.0		<22.6 和>28.5
C	CK 平均值与标准差		100.0±3.0	21.8±1.5	112.0±21.0	93.0±19.0	26.4±1.3
	干种子照 3.6 万伦琴	97.0-117.0	93.0—111.0	19.0-25.0	65.0—200.0	51.0—123.0	19.8—30.3
变	干种子照 3.6 万伦琴后 加微波处理 25 分钟	101.0-116.0	85.0—110.0	19.0-25.0	67.0—167.0	35.0-132.0	21.5—27.9
幅	漫泡种子照 2.4 万伦琴	98.0—120.0	8 5.0—112 .0	20.0-26.0	72.0—185.0	45.0 —174.0	21.3-29.8
(R)	浸泡种子照 2.4 万伦零 后加微波处理 25 分钟	102.0115.0	79.0—112.0	19.0-24.0	74.0—1 89.0	52.0—141.0	22.7—28.9
	CK(未照射"桂朝二号" 干种子)	107.0-112	94.0—105.0	19.0—23.0	78.0—133.0	66.0-114.0	24.1-27.2
各类	各类突变体占总突变体%		19.0	16.6	26.1	23.7	7.1

- 1) 根据育种目标未统计晚熟、高秆、变劣等"负"突变体。
- 2) 即每穗颖花数,以下同。

表现型方差
$$\sigma_{\theta}^2 = \sigma_{g}^2 + \sigma_{e}^2$$

广义遗传力: $h^2(\%) = \frac{\sigma_{g}^2}{\sigma_{g}^2 + \sigma_{e}^2} \times 100$

公式中, of 是各系统基因差异所引起的方差, of 是由家系内(个体间)所引起的方差, 作为环境方差的估计值。

(3) 选择单一性状对单株产量的遗传相关 讲度:

$$\Delta G = K \cdot r_{g1,2} \sqrt{h_1^2 \cdot h_2^2 \cdot \sigma_{p2}^2} (K = 2.06)$$

公式中, h_1^2 、为选择性状遗传力, h_2^2 、 $\sigma_{p_2}^2$ 为单株产量的遗传力和表现型方差, $r_{g_1,2}$ 为选择性状与单株产量的遗传相关系数。

试 验 结 果

1. 用公式计算的各主要突变性状临界值,

以及各突变性状占总突变的比例,见表 2。

由表 2 看出,用公式所计算的突变性状临 界值是比较理想的,都在对照变异范围临界值 之外。同时还看出,各个突变性状在总突变中 的比例,是穗着粒数(26.1%)穗实粒数(23.7%) 较大,其次是株高(19.0%)和穗长(16.6%), 而抽穗期和干粒重的比例较小,分别为 7.4 和 7.1%。

2. 突变体世代间的遗传力,采用亲子回归和相关法估算的结果,分别列入表 3 和表 4。

由表 2 可见: 突变体世代之间遗传力较强的性状是干粒重 (52.8%)、株高 (47.9%),其次是穗着粒数(39.8%)和穗实粒数(34.6%),而单株产量(19.5%)和单株穗数(2.3%)的遗传力较

性状临界值, 弱。遗传力依次降低的顺序是: 千粒重→株高表3 用回归法估算的突变体遗传力(%)

项目	株高	穗长	单株穗数	穗着粒数	穗实粒数	结实率	单株产量	千粒重
突変体遺传力 (カ²)	47.9	23.5	2.3	39.8	34.6	28.8	19.5	52.8
	(2)	(6)	(8)	(3)	(4)	(5)	(7)	(1)
对照遗传力 (h²)	54.3	21.8	17.7	9.3	29.4	39.4	16.8	78.9
	(2)	(5)	(6)	(8)	(4)	(3)	(7)	(1)

()数字为位次,以下同。

表 4 用相关法估算的奖变体遗传力(%)

Ŋ	 目	株高	穗长	单株穗数	穗着粒数	穗实粒数	结实率	単株产量	干粒重
	突变体	65.2**	28.6	3,3	60.7**	46.8**	28.4	23.2	64.7**
h²	CK	67.5**	29.3	26.7	19 6	39.6*	36.3	21.8	48.3**
相关	ミ系数标准差 (Sr)	±19.0	土24.0	±25.0	±19.9	±22.1	±24.0	±24.3	±19.1
遗传	力变化范围 (R值)	46.2—84.2	4.6-52.6	-21.7 - 28.3	40.880.6	24.7—68.9	4.4-52.4	-1.1— 47.5	45.6—83.8

注:
$$Sr = \sqrt{\frac{1-r^2}{n-2}}$$

* 0.05 显著性, ** 0.01 显著性,以下同。

突变体 r_2 — r_3 的世代相关,从显著性来看 (表 4),达到 1% 显著水准的性状,有株高 (65.2%)、干粒重(64.7%)、穗着粒数 (60.7%)与穗实粒数(46.8%),其余性状的 r_2 — r_3 之间 都未表现出相关。从各性状的位次来看,突变体遗传力依次降低的顺序是:株高→干粒重→ 穗着粒数→穗实粒数→穗长→结实率→单株产量→单株穗数。

比较表 3 与表 4 还可看出,突变体世代间的遗传力两种方法估算结果,其位次则基本一致;而遗传力值,则用回归估算的多数都比相关法为低。与对照相比,两种方法估算的穗实粒数和穗着粒数的遗传力,都比对照有较大的提高,单株穗数的有所下降,其余性状无明显变

化。

3. 用方差分析法估算突变体 τ₃的广义遗传力、遗传进度和遗传变异系数,计算结果见表 5。

由表 5 可看出,突变体在 r_3 表现的广义遗传力较高或中等的性状是株高(75.5%)、结实率(64.6%)、穗实粒数(60.9%)与干粒重(60.5%),而单株产量(28.0%)和单株穗数(8.7%)的遗传力最低。

在 5% 选择强度下的遗传进度,穗实粒数可以期望增加 32 粒,与未处理的"桂朝二号"对照相比,约提高 35.2%;穗着粒数可期望增加31粒,约比对照提高 27.0%;结实率可比对照提高 24.0%;株高可期望变矮 12.9 厘米,约比对照降低 13.9%。

遗传变异系数本身数值表现较大,且比对

表 5 突变体主要性状的遗传力、遗传进度和遗传变异系数

项 目	株高	穂长	单株穂数	穗 着粒 数	穗实粒数	结实率	单株产量	千粒重
遗传力	75.5	50.1	8.7	52.2	60.9	64.6	28.0	60.5
h²(%)	(1)	(6)	(8)	(5)	(3)	(2)	(7)	(4)
遗传 变异系数	7.4	5.2	8.6	15.8	22.0	14.6	21.9	5.4
g. c. v. (%)	(6)	(8)	(5)	(3)	(1)	(4)	(2)	(7)
遗传进度 △G	-12.9	1.7	0.5	31.3	32.3	13.7	5.8	2.3
相对遗传进度	13.9	7.3	5.3	27.0	35.2	24.0	24.1	8.6
$\triangle G'(\%)$	(5)	(7)	(8)	(2)	(1)	(4)	(3)	(6)
突变性状遗传变异系数与 对照遗传变异系数的比值	2.6	1.1	0.8	1.9	2.0	4.6	1.1	0.9

表 6 选择单一性状对单株产量的遗传相关进度

项目	选择性状	株高	穂长	单株穂数	穗着粒数	穗实粒数	结实率	千粒重
选择性状与单株产量的遗传 (r _{g.1.2})	相关系数	0.73**	-0.21	0.55**	0.57**	0.99**	0.91**	-0.04
选择性状与单株产量 的遗传相关进度	ΔG	7.00	-1.62	1.79	5.54	8.49	0.07	-0.38
	△G' (%)	28.85	-6.65	7.35	18.64	34.87	33.14	-1.56

照增大近1-3.6倍的性状有穗实粒数、穗着粒数和结实率,其值分别为22.0、21.9和15.8%。株高的变异系数为7.4%。 其余的性状与对照比较,变化不大。

4. 选择单一性状对单株产量的遗传相关进度,计算结果列入表 6。

在5%选择率下,对 7₃ 的穗着粒数 (表 6)、 穗实粒数和结实率实行选择,引起单株产量的 遗传进度较高,分别可期望提高大约 18.64、 34.87 和 33.14%。对株高实行选择,对单株产 量可期望大约提高 28.85%。

讨 论

- 1. 根据本试验结果,辐射引起性状发生微 突变的频率比大突变的高,但由于穗粒数等变 异不如株高、抽穗期明显,所以虽有大量变异也 容易被漏掉。因此应注意研究其选择方法。
- 2. 对突变体估算结果表明,突变体株高、干粒重的世代遗传力和 r₃ 所具有的 广义 遗 传力较高,单株穗数与单株产量的遗传力最低。因此前者可从低世代起开始选择,后者宜在较高世代,等遗传力增大后再进行选择。
- 3. 突变体的穗着粒数、穗实粒数的世代遗传力和在 7。表现的广义遗传力,属中等值,但 其遗传进度和遗传变异系数较大,表明具有比较丰富的选择潜力和选择效果。结实率的遗传

力也属中等值,遗传变异系数及遗传进度也比较大,因此在低世代中,就应该严格选择结实率高的个体。干粒重的遗传进度与遗传变异系数较小,单株穗数的所有遗传参数都很低,说明对这两个性状实行选择,其潜力和效果可能不大。

- 4. 从对产量的遗传相关进度来看(表 6), 对穗实粒数、结实率实行选择,对单株产量的增进较大;选择单株穗数,对产量增进很小;选择 穗长、千粒重引起单株产量略有下降。
- 5. 从突变体与对照的世代遗传力以及与 7. 的遗传变异系数来看,只有穗实粒数、穗着粒数 和株高、结实率的变化较大,其余性状也有变 化,但不显著。说明辐射诱发能够引起某些性状突变,产生较大的改变,但同时又能保持原品种不少性状不发生重大变化,从而为突变育种的选择创造了有利条件。

参考 文献

- [1] 马育华: 1983。植物育种中的数量遗传学基础,江苏 科技出版社,3,317—322。
- [2] 四川绵阳地区农科所: 1976。遗传学报, 3(1): 69—75。
- [3] 邓达胜: 1981。遗传, 3(4): 22-24。
- [4] 汪夕彬、鱼宏斌: 1980。原子能农业应用, 4,13-17。
- [5] 高泰保・山县弘忠・赤藤克己: 1969。 育種學雑誌, 19,89--93。
- [6] 山口彦之: 1962。育種學雜誌, 12(2): 93-100。
- [7] 山县弘忠・赤藤克己: 1963。育種學雑誌, (1), 14-20。