60kV、180kV 和 10 MV X 线照射离体 人血诱发染色体畸变剂量效应的比较¹⁾

高沛永 张清林 李希亮 (中国人民解放军军事医学科学院放射医学研究所四室)

X线是人类了解和应用最多的一种放射线,每当人们研究一种新的辐射类型的生物效应时,都要与之相比较。同样,在各种辐射类型诱发人染色体畸变的研究中,已经有大量的实验资料将 Y线、中子、电子及其他粒子流与 X线作了比较。但是,在进行这种比较之前,首先要对 X线本身有更多的知识,即应了解光子能量不同的 X线诱发染色体畸变的效能如何,这正是本工作的目的所在。为此,我们选用目前临床诊断和治疗中经常使用的 60kV、180kV 和10MV X线,对其诱发人血染色体畸变的剂量效应关系做了比较研究。

材料和方法

本实验研究的方法,基本上是参照 WHO 1973 年推荐的要求进行^[23]。一些主要操作步骤的处理,如血液样品、恒温、培养制片及镜检计数的标准(分析畸变的类型及符合于统计学要求的细胞数目的设计)等,与本实验室以往的工作相同^[31]。

离体人血用 3 种能量不同的 X 线进行照射, 其空气照射量均为 0、25、50、100、200 和 300 伦琴 (R)。每种 X 线照射 12 份人血,总共照射 36 份(献血员的条件亦与本实验室以往工作相同)。每份人血均分成 6 个样品,除一份留作对照外,其余分别进行了 5 个不同剂量的照射。考虑到试管壁对射线的屏蔽因素,60kVX线照射时,离体血是在用射线灭菌的塑料试管(壁厚 2mm)内照射,而其余 2 种 X 线照射的血

样,则盛在薄壁玻璃试管中。3 种 X 线照射的一些具体情况,分别叙述如下: (1) 60kV X 线:使用的是医用 X 线治疗机 (10mA),滤板为 2.5mmAl, H. V. L. \approx 1.8mmAl, $\overline{E}_x \approx$ 28 KeV,标距为 35cm,照射量率为 24 伦/分。 照射量与吸收剂量(拉德)的转换系数取 0.93; (2) 180kV X 线:与前者使用的是同一治疗机 (10mA),滤板为 1mmCu + 0.5mmAl,H. V. L. \approx 1.7mmCu, $\overline{E}_x \approx$ 0.1 MeV,标距为 35cm,照射量率为 22.7 伦/分。照射量与吸收剂量的转换系数取 0.94; (3) 10 MVX 线:使用的是日产 LMR-15 医用电子直线加速器。10 MVX 线经过均整后,其 X 光子的等效单能值约为 4 MeV,标距为 105cm,选用的剂量率为 250 拉德/分。

结果与讨论

在每种 X 线照射的 36 份人血的实验中,总 共分析计数 26,465 个中期分裂细胞。 每种 X 线照射时,不同剂量点上分析的畸变率。 从表 1 可以明显地看到,本文所分析的 4 种畸变指 标,在每种 X 线的照射实验中,都随着照射量的

Gao Peiyong et al.: Comparative Studies of the Doseeffects on in vitro Culture Human Blood to Induce Chromosome Aberrations by Irradiation of 60 kV, 180 kV and 10 MV X-rays

¹⁾本工作承蒙307医院陈志坚、刘玉英、王景增医生和301医院王联元、卞文芳医生提供照射条件;薛仲三教授指导数据的统计处理;史元明主任、杨世魁同志在物理剂量学方面予以指导;本研究室吴德昌主任全面指导审定、谨致谢意。

表 1 3 种不同能量的 X 线诱发染色体畸变与照射量的关系

照射量(伦琴)	畸变细胞(%)			无 着 丝 点 (%)		
	60kV	180kV	10MV	60kV	180 k V	10MV
0	0.3404	0.3404	0.3404	0.3404	0.3404	0.3404
25	3.1159	2.7934	1.1690	2.1386	2.1563	1.3524
50	7.8333	5.2486	3.2727	4.0000	4.1989	2.5909
100	17.6667	16.9604	9.1408	11.8889	11.8943	7.4954
200	51.0000	49.6660	20.2229	38.6667	47.8842	15.4458
300	80.0000	76.1329	44.0000	74.5000	74.0189	37.4000
照 射 量 (伦琴)	(双+环)/100 细胞			总 畸 变 (%)		
	60kV	180kV	10MV	60kV	180kV	10MV
0	_	_	_	0.3404	0.3404	0.340
25	0.9506	0.8086	0.2857	3.1687	3.0630	1.7333
50	4.3889	1.8232	0.9091	8.5556	6.1326	3.5000
100	8.7778	6.3877	2.3766	20.7778	19.1630	10.1462
200		1 .	7 0005	CE 0000		l
200	26.0000	21.3808	7.8025	65.0000	69.7150	23.407

增加而增加。但是,这种增加的速度在3种照射情况下是不同的,其中以60kV X 线照射增加最快,180kV X 线次之,而在10MV X 线照射中,畸变率增加得最慢。经统计处理后,这一点看得更加明显。按前面讲到的照射量和吸收剂量的转换系数,把这3种X线的照射量变成血样的吸收剂量后,用最小二乘法将其与表1所列出的畸变率进行回归处理,建立了相应的回归方程及剂量效应曲线。其中畸变细胞(%)与受照剂量的关系符合于模式

$$Y = a + bX + cX^2$$

根据我们以往在曲线配合中的经验,为了给系数 a 以实际意义,我们令 X = 0 时,

$$Y = 0.3404$$

即 a = 0.3404,为正常对照血样自发畸变率的实际观察值。 3 种 X 线照射 37 ℃ 恒温的 离 体 血,诱发畸变细胞(%)的回归方程分别是:

$$Y_{60kV} = 0.3404 + 1.4439$$

$$\times 10^{-1}X + 5.4346 \times 10^{-4}X^{2}$$

$$Y_{180kV} = 0.3404 + 1.1984$$

$$\times 10^{-1}X + 5.7771 \times 10^{-4}X^{2}$$

$$Y_{10MV} = 0.3404 + 4.3105$$

$$\times 10^{-2}X + 3.9619 \times 10^{-4}X^{2}$$

经显著性检验, χ^2 值分别为 0.559、1.483 和 0.166,P 值均> 0.05,证明配合适度良好,回归 线见图 1。将吸收剂量的单位由拉德 (rad) 转换成戈瑞(gy) 后,这些回归方程则为:

$$Y_{60kV} = 0.3404 + 1.4439$$
 $\times 10^{-3}X + 5.4346 \times 10^{-8}X^{2}$
 $Y_{180kV} = 0.3404 + 1.1984$
 $\times 10^{-8}X + 5.7771 \times 10^{-8}X^{2}$
 $Y_{10MV} = 0.3404 + 4.3105$

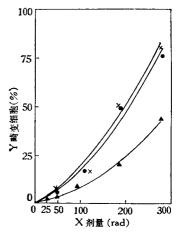


图 1 三种能量不同的 X 线照射离体人血诱发畸变 细胞(%)的剂量效应曲线

★ 60kV • 180kV ▲ 10MV

$\times 10^{-4}X + 3.9619 \times 10^{-8}X^{2}$

3 种不同能量的 X 线照射 离 体 人 血 诱 发 (XX+X)/100 细胞与受照 剂 量 的 关 系,可 用 $Y=kX^m$ 的模式表达,其回归方程分别是:

$$Y_{60kv} = 6.008 \times 10^{-3} X^{1.6424}$$

$$Y_{180kV} = 3.057 \times 10^{-3} X^{1.7238}$$

$$Y_{10MV} = 9.880 \times 10^{-3} X^{1.7663}$$

X² 值分别为 0.132、0.132 和 1.096, P值均 > 0.05,证明配合适度良好,回归线见图 2。将 吸收剂量的单位由拉德转换成戈瑞后,这些回归方程则为:

$$Y_{60kV} = 3.118 \times 10^{-6} X^{1.6424}$$

$$Y_{190ky} = 1.091 \times 10^{-6} X^{1.7238}$$

$$Y_{10MV} = 2.899 \times 10^{-7} X^{1.7663}$$

对以上实验结果,我们做如下三点讨论:

1. 不同能量的 X 线诱发染色体畸变的剂量 效应动力学是不同的 本实验中 60kV X 线光子的平均能量约为 2.8 × 10 eV, 180kV 和 10MV X 线光子的平均能量则分别接近于 1 × 10 和 4 × 10 eV, 三者之间的比例约为 1:3.6:143。 表 2 和表 3 分别比较了这 3 种 X 线诱发畸变细胞(%)及(双+环)/100 细胞剂量效应回归方程的系数。表 2 中的 b/c 值,表示单个 X 光子径迹与 2 个 X 光子径迹对畸变形成贡献相等的剂量。 从表 2 可以看出,随着 X 光子能量的增加, b/c 值在下降。 这说明能量

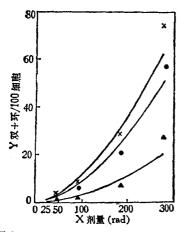


图 2 三种能量不同的 X 线照射离体人血 诱发双+环/100 细胞的剂量效应曲线 × 60kV • 180kV • 10MV

表 2 3 种 X 线诱发畸变细胞(%)剂量效应的比较

X 线	<i>b c</i>	Y = 10 时的剂量 (rad)	X = 100 拉德 时的畸变 (%)	
60kV 265		55	20	
180kV	207	62	18	
10MV 108		111	9	

表 3 3 种 X 线诱发(双十环)/100 细胞剂量效应的比较

X 线	k	m	Y = 10 时 的剂量 (rad)	X = 100 拉德 时的畸变 (%)
60kV······ 180kV······	6.008× 10 ⁻³	1.6424	91	11
180kV	3.057 ★ 10 ⁻³	1.7238	109	8
10MV	9.880× 10⁻⁴	1.7663	185	3

较低的 X 线在诱发染色体畸变的作用中,单个光子径迹(一次事件)的贡献较大,而能量较高的 X 线诱发的畸变,主要是 2 个同时存在的 X 光径迹相互作用(二次事件)的贡献。这一点启示我们,剂量率对能量不同的 X 线的生物效应的影响是不一样的,这个因素对高能 X 线的影响是重要的,但对能量较低的 X 线特别是当照射剂量不大时,剂量率的影响似乎不太重要。在 10MV X 线的照射中,当剂量超过 108 拉德时,剂量率就会对效应产生明显的影响;而对 60kV X 线,照射剂量超过 265 拉德时剂量率才会有 明显的影响。

能量不同的 X 线诱发染色体畸变这种动力 学上的差别,也表现在回归方程 Y = kX^m的剂 量指数 m上。 从表 3 给出的 m 值可以看出,当 X 线能量增加时,m 值有升高的趋势。 可以设 想,光子能量足够高的 X 线诱发的染色体畸变, 主要是 2 个光子径迹的贡献, m 值会接近 2 或 与 2 之间没有差别。 反之,能量很低的 X 线诱 发的染色体畸变,则以单个 X 光子径迹的贡献 为主, m 值会接近 1 或与 1 之间没有明显的差 别。

2. 不同能量的 X 线诱发染色体畸变的 RBE 随光子能量的增加而降低 60kV 和 10MV 与 180kV X 线相比,诱发畸变细胞(%)和

(双+环)/100 细胞的 RBE 是不同的。 首先 是,在相同的畸变率(%)水平上,X线诱发染色 体畸变的 RBE, 是随光子能量的增加而降低 的。 这 3 种 X 线诱发畸变的 效能的 顺序是: 60kV > 180kV > 10MV。 Virsik 等人比较了 30kV和150kVX线诱发人血双着丝点的RBE, 结果表明,在20拉德的剂量水平上,前者是后 者的 3 倍^[5], 也说明了能量较低的 X 线 诱 发 畸 变的效能,高于能量较高的 X 线。 这种情况与 不同能量的中子诱发染色体畸变的 RBE, 似有 相似之处。英国 NRPB 细胞遗传学实验室,对 3种能量不同的中子诱发染色体畸变的研究说 明,随着能量的增加中子诱发畸变的效能是减 少的[4]。在此之前,有人计算能量为 0.7MeV 的 中子诱发的畸变,在相同剂量水平上是 14.1MeV 中子的 10 倍^[3]。

其次是,60kV和 10MV X 线诱发染色体 畸变与 180kV X 线相比的 RBE,都不是一个 固定值。我们观察到当照射剂量较低时,能量不同的X线的 RBE 相差较大,随着照射剂量的增加,其 RBE 有接近的趋势。

3. 辐射防护工作中对能量较低的 X 线应予 足够的重视 能量较低的 X 线由于其贯穿能 力较弱,对其在外照射的防护上,只要屏蔽措 施得当,是不难解决的。但如果忽略防护措施, 从本研究的实验结果可以推测,对血液系统的 损伤还是值得重视的。

参 考 文 献

- [1] 高沛永等: 1979。遗传, 1(1):1-5。
- [2] Buckton, K. E., and H. J. Evans: 1973. Methods for the Analysis of Human Chromosome Aberrations. WHO. Geneva.
- [3] Gooch, P. C. and D. Scott: 1969. Report of the UNSCEAR, New York, pp. 118.
- [4] Lloyd, D. C. and G. W. Dolphin: 1977. Brit. J. Indust. Med., 34(4): 261—273.
- [5] Virsik, R. P. et al.: 1977. Radiat. and Environm. Biophy., 14(2): 109-122.

会讯

第一届全国血红蛋白分子病学术会议简讯

中国遗传学会第一届血红蛋白分子病学术会议于1981年元月16—19日在广西南宁召开。

16 个省、市、自治区 62 个单位,来自遗传、生化、生物、内科、外科、儿科、检验等专业的 120 名代表参加了会议。会议收到论文 112 篇,其中普查资料 51 篇;新发现的异型血红蛋白分析资料 19 篇;探讨血红蛋白病检查技术 13 篇;有关临床诊断及治疗 9 篇,其 他 20 篇。在会上交流了 47 篇。

到会代表一致认为:全国血红蛋白分子病研究协作组,从1979年11月在长沙成立以来,进行了大量的宣传发动和组织工作。协作单位已有17个省的43个单位。举办了有42个单位参加的普查技术学习讨论班,培养了人员,统一了方法。一年多来,在全国17个省(市、自治区)的汉、蒙、回、满、苗、黎、维吾尔、哈萨克、布依、瑶、侗、壮、土家、彝、仫佬、达斡尔、锡伯、塔吉克、朝鲜、乌孜别克、克尔克孜、傣、白、京等20多个民族中,

调查 123,437 人。 发现异型血红蛋白 315 例,发现率 2.55 %。同时,还发现 α 地中海贫血 154 例,β 地中海贫血 366 例。为弄清我国异常血红蛋白的种类及其分布提供了宝贵的数据。不少单位进行了血红蛋白的结构分析。会上报告了 HbJ-Bangkok, HbD-Punjab, HbG-台北,HbG-Coushatta 及数十例 HbE 的一级结构分析结果。 对血红蛋白病的临床诊断及治疗的研究,也取得了一些进展。有的单位还开始了血红蛋白的功能探讨。

会议还通过了1981—1983 年血红蛋白分子病研究规划。规划要求:进一步进行发生率的调查,弄清我国血红蛋白分子病的种类及其分布;加强结构与功能的研究;加强临床诊断及治疗的研究,开展遗传咨询和计划生育工作;开展分子遗传学研究。

会议建议于 1982 年 5 月前后在江西召开第 二 届 全国血红蛋白分子病学术会议。

(陈入骏)