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1 Introduction

With the development of networks, distribu-
ted cryptography has received a lot of attention in
modern cryptographic research. Threshold crypto-
systems provide security to distributed applica-
tions, and can avoid single point of failure in a net-
work system. In 2001, Boneh and Franklin pro-
posed a practical identity (ID)-based encryption
scheme from the Weil pairing'. It provides a pub-
lic key encryption mechanism where an arbitrary
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string can be served as the public key. The direct
derivation of public keys in identity-based public
key cryptography (IB-PKC) eliminates the needs
for certificates.

Combining IB-PKC with threshold cryptosys-
tems, some “ ID-based threshold decryption”
schemes have been constructed. In such schemes,
an entity’s public key is derived directly from its
identity. A trusted third party called the Private
Key Generator (PKG) uses the master key to gen-
erate private keys for all entities. The power of de-
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cryption is shared among a set of decryption serv-
ers, each of which holds a piece of private key as-
sociated with an identity or a piece of the master
key. When given a ciphertext, which is the output
of an ID-based encryption algorithm under an iden-
tity, a quorum of servers can act together to de-
crypt it.

Our contribution is to present and analyze
such a scheme based on the difficulty of the quad-
ruple Decision Bilinear Diffie-Hellman problem,
named ID-based threshold decryption (IB-ThDec)
scheme. This scheme is provably adaptive chosen-
ciphertext secure, in the random oracle model. At
last, we show IB-ThDec implies a fully secure cer-
tificateless public key decryption scheme, and an
ID-based dynamic threshold decryption system re-
sisting against adaptive chosen-ciphertext attack in
the selective identity model.

Other related works: To our knowledge, other
papers that have treated threshold decryption in the
context of ID-based cryptography are [2~5].
However schemes in [ 2,4,5] were only chosen-
plaintext secure, and the formal security proof in
[3] was in a weaker model named selective-1D
model™™, Back and Zheng added a tag after the ci-
phertext to convert it into a fully secure system’.
Their main idea was the validity of the ciphertext
became publicly checkable. However, in [ 3], se-
curity reduction didn’t touch on the probability of
the event that the adversary obtain the decryption
of ill-formed (but valid-look) ciphertext. What’s
more, all of these schemes could not tolerate active
adversary that can modify the public verification
information of corrupted decryption servers.

2 Preliminaries

2.1 Admissible bilinear pairings

Let G, be a cyclic additive group and G, be a
cyclic multiplicative group of the same prime order
q. Assuming that the discrete logarithm problem in
both G, and G, are hard, an admissible bilinear pai-
ring is a map e: G, X G,—>G, which satisfies the fol-
lowing properties;

(1) Bilinear: For any P,Q€ G, and a b€ Z, ,
e(aP.,bQ)=e(p,Q)*.

(2) Non-degenerate: There exists P, Q & G,
such that e(P,Q)#1.

(3) Computable: Given P,Q& G, , there is an
efficient algorithm to compute e(P,Q) €G,.
2.2 Quadruple Bilinear Diffie- Hellman Problem

(4-BDHP)

We now give the description of the quadruple

problem in bilinear group systems.

Definition 1 (4-BDH problem). Let e: G, X
G,—> G, be an admissible bilinear map. Let P be a
generator of G,, whose order is a large prime q.
Let a.b,c,d be elements of Z,. Given (P,aP,bP,
cP,abP ,bcP,acP,dP), output D=e(P,P)*,

Definition 2(4-Decision BDH problem). Let
e: G, XG,—> G, be an admissible bilinear map. Let
P be a generator of G,, whose order is a large
prime q. Let a.b.c.d be elements of Z,, and ran-
domly choose D& G,'. Given (P,aP,bP,cP,abP,
bcP,acP,dP), determine whether D=e(P,P)*,

An algorithm A that outputs b€ {0,1} has an
advantage ¢ in solving the 4-Decision BDH (4-DB-
DH) problem in (G, .G;,e) if | Pr[A(P,aP,bP,
¢P,dP.abP,acP,bcP,e(P,P)"!=1]—Pr[A(P,
aP,bP,cP,dP,abP,acP,bcP,D)=1]|>¢, where
D is randomly chosen from G,. Virtually, the
4-DBDH problem can be viewed as the combination
of three general Decision Bilinear Diffie- Hellman
problems. Thus it’s hard in (G,.G,,e). That
means there is no probabilistic algorithm that can
solve the 4-DBDH problem with a non-negligible
advantage ¢ within polynomial time.

2.3 Threshold Security

The idea of (z,n) threshold cryptosystem was
proposed in [ 6,7 ]. The formal security model of
threshold cryptosystems has been discussed in
[8,9]. In threshold setting, the adversary first
corrupts t— 1 out of n decryption servers and ob-
tains secret key shares held by them. During the
course of the chosen-ciphertext attack, the adver-
sary can submit ciphertexts to the uncorrupted de-
cryption servers. So in the threshold chosen-ci-
phertext attack (IND-TH-CCA2M") the adversary
sees both the decryptions of chosen ciphertexts and
the decryption shares of these ciphertexts. This
extra information makes it”s very difficult to con-
struct an IND-TH-CCA2 secure threshold crypto-
system.

In [9], two secure threshold cryptosystems
against chosen ciphertext attack are proposed. In
this work, non-interactive zero knowledge proof of
membership was used to make the ciphertext pub-
licly checkablet'''**), Motivated by [9], we present
an ID-based threshold decryption scheme IB-
ThDec, and prove its security in the sense of
threshold adaptive chosen-ciphertext attack in the
random oracle model"*!,

2.4 Non-interactive proof of membership

Similar to [ 3], a non-interactive zero knowl-
edge proof of membership system named Proof-Log
can be constructed for the language L= {(v,7) €
G, X G, |log,v=log, 9}, where g=e(P,P) and g=
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(P.P). P and P are generators of G,. G,,G,,e
have the same definitions as in section 2. 1.

Given (P,P,g,g), a one-way hash function
H;: G, XG, XG, XG,—> Z; and (k,k) € L, the
Prover wants to convince the Verifier that he in-
deed knows a secret S= (log,k) P= (log,k) P € G,
without yielding any “knowledge” of S. The proof
system works like this:

(1) The Prover randomly chooses T € Gy,
then computes y=e¢ (T, P), y=e¢(T,P), h=
H.(e(P.S), e(P,S), e(T.P). e(T.P)) and L=
T+hSEG,. Send {y,7,L} to the Verifier.

(2) The Verifier computes h=H; (k. ksv,7)
and checks whether e(L,P)=y « k" and e(L,P)=
7+ k". If both equations hold, then the Verifier re-
turns “Accept”, else returns “Reject”.

It’s easy to prove that (k,k) € L if and only if
there is an element S €& G; such that k=e¢(S, P)
and £=e(S,P) . and the properties of this protocol
can be discussed as in [ 3].

2.5 Modified basic CL-PKE scheme using binding
technique

In [ 14 ], the concept of certificateless public
key encryption (CL-PKE) is proposed. And the
binding technique is used to reduce the degree of
trust that users need to have in the Key Generation
Center (KGC). We slightly modify their scheme to
construct a basic certificateless scheme (BasicPub-
CL-PKE). Following algorithms are used to define
the BasicPub-CL-PKE.

Setup. Run by the KGC. It takes as input a
security parameter k,, to output G,, G;, e, q.
Choose a generator P € G,, a master key s & Z,,
and publish P,, = sP. Choose one hash function
H,.G,—{0,1}', where [ is the bit-length of plain-
texts. Then the system public parameters are
params=1G,,Gy,esl,q, P, P,y Hy .

Set-Secret-Value-and-Public-Key. Takes as in-
puts params and a random Q, € G;'. Choose ran-
dom x, € Z, as an entity A’ s secret value, and
output Py = (X,,Y,) = (xaP,xaP,y) as A’s
public key.

Public-Partial-Key-Extract.
Qi x4, s. It outputs the public partial key pair
(Dy DY) =(5Qu »24Q ).

Set-Private-Key. Takes as inputs A’ s secret
value x, and the public partial key D,. It outputs
A’s private key Sy=x,(D,) €G/.

BasicPuB-Encrypt. To encrypt a message M
with Q4. Pa, first check whether e (X4, P,,) =
e(Y,,P). If not, output | and abort. Else choose
random & Z;, and output C=(U,V)=GP,M@
H,(e(Qa,YA)).

Takes as input

Decrypt. Suppose the ciphertext C=(U,V) =
(P .M@H,(e(Qs,Y4)"). To decrypt it using the
private key S, , compute and output VEDH, (e(S, ,
U)).

Note that the modified basic CL-PKE scheme
is introduced to simplify the security analysis in
section 4. 3. In the security proof of the BasicPub-
CL-PKE, Q, can be looked as the fixed identity of
only one user. Thus, Q4 can be added to the public
parameters.

3 ID-based (t,n) threshold decryption
scheme from pairing

In this section, we describe a pair of ID-based
(t,n) The first
scheme is only a basic scheme which is analogous
to the BasicPub-CL-PKE and is only semantic se-
cure against chosen-plaintext attack. And then the

threshold decryption scheme.

full scheme is presented, which is provably fully
secure in the random oracle model.
3.1 The basic ID-based threshold decryption scheme

The basic ID-based
scheme Basic-IB-ThDec works as follows:

Setup. Run by the PKG.

(1) Given a security parameter k,, the PKG
chooses G, ,G, ,q(>>2%), e;: G, XG,—~G,, a gener-
ator PE€ G, , the master key s€ Z,, and publishes
P,.,=sP. Choose two cryptography hash functions
H,:{0,1}" =G/, H,:G,—>{0,1}".

(2) Choose a € Z, and output (X,Y)=<(aP,
aP,.>. Then the public parameters are: cp=1{q.,/l,
Gy+Gove Hy JH, (PP, XY

Share-Key-Gen. Given an identity ID, the
PKG chooses a polynomial of degree t—1 over Z, .
f(x)=s+a\x+ +a, 2", Tt computes and
publishes P, =sQ;p, =sH,(ID), P\, = f()Qup €
G, for 1<<i<<n. Then deliver d;p.;=af () Qi € G,
to the i-th decryption server I secretly. When

threshold decryption

receiving d;p;» I'; can check its validity by e(PS} ,
X)=e(dp.;»Y) and D LT(P{p) =P, where TC
ieT

(1,2,sm)» | T|=tand LT= [] j/GG—i) is the
Lagrange coefficient with res;j)faz:.t]?o the set T. If
the validity test fails, he complains to the PKG
that issues a new share. Note that P;,’s validity is
publicly checkable by e(P;p . X)=e(Qip,Y).

Basic-IB-Encrypt. To encrypt a message M &
{0, 1} under ID, the sender computes Q;, =
H,(ID), and then chooses a random r€& Z,". The ci-
phertext is given by (U,V) = (+rP,M@® H, (e(Qyp »
YO .

Decrypt. When receiving (U, V), decryption
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server I, computes his decryption share & p.c =
e(U,d;p.;) and gives it to a special server called the
combiner.

Recombine. The combiner selects a set TC {1,
2,++,n} of ¢t decryption shares §;.;p.c and computes
g= H&f‘in.(‘. Then the plaintext can be recovered

ieT
by J\/IéiV@Hg (g).

This basic scheme is presented to help the un-
derstanding and security proof of the full scheme.
Note that the PKG can use one polynomial to com-
pute and distribute key shares of different identities,
without degradation of system security.

3.2 The full ID-based threshold decryption scheme

First, we sketch the characteristics of our full
ID-based threshold decryption scheme IB-ThDec.

In the ID-based (¢, n) threshold decryption
scheme IB-ThDec from pairing, the system consists
of a trusted Private Key Generator (PKG), n de-
cryption servers I;(1<<i<<n), and many communi-
cation users. Similar to IB-PKC, the public keys are
the unambiguous identity of the users, such as the
email address or a telephone number. The plaintext
M that is encrypted under an identity is recoverable
from at least ¢+ of n decryption servers. Every de-
cryption server has a private key chosen by itself.
And the corresponding public verification key is giv-
en to the PKG. When an entity wants to decrypt a
received ciphertext from Alice, PKG returns the
partial secret keys and the public verification keys of
Alice to at least ¢ I';s. Then each I'; can generate a
decryption share of this ciphertext, taking as input
the ciphertext and the partial secret key and his pri-
vate key. These shares are sent to a combiner, who
starts checking the validity of every share. If more
than ¢ shares are valid, the combiner combines them
to obtain the plaintext.

Additionally, I'; can update his private key.
The PKG accepts I';” s request after verifying its va-
lidity, then transmits new partial secret key to I'.
This character is attractive in designing a dynamic
threshold decryption scheme. It will be discussed in
latter section.

The IB-ThDec consists of the following polyno-
mial-time algorithms.

Setup. Run by the PKG and n decryption serv-
ers [ (1<<i<<n).

(1) Given a security parameter k,, the PKG
outputs two groups G, and G, of the same prime or-
der g(>>2%), an admissible bilinear map e: G; X
G,—~>G,, a generator P€ G, , a master key s€ Z,.
Compute P, = sP and choose five hash functions
H,:{0,1}"—>G,, H,:G,—>{0,1}', H, : G, XG, X

G—~>G H,:G, XG, XG,—~Z; and Hy : G, X Gy X
G, XG,—~ Z,. Note that H,, H,, H; , H, are viewed
as random oracles in the security analysist’*’. Then
randomly choose a € Z,, publish (X,Y) = (aP,
aP,.).

(2) I'; randomly selects s, € Z,', and computes
P.=5,P. Keep s; as I';” s private key.

The system public parameters are:

cp=1{q. 1. G .Gy, P, P,y e
{H]}liJiS s AP b izicas X5 YY)

Key-Gen-1. Given an user’s identity ID, the
PKG returns P;, =sH, (ID) publicly. The user can
check its validity with e(P;,, X)) =e(H,(ID),Y).

Key-Gen-2. Given ID, the PKG chooses a pol-
ynomial of degree 1—1 over Z, :

f(o)=staxt+a_ 2" .
Fori=1,2,++,n, it computes a key share (S\J,
Vio)=Caf(D)Qup +sP e f(D)Qp.X)). Sjj are
returned to I secretly, while V! are transmitted
through public channels.

Full-IB-Encryption. To encrypt a message M &
{0,1}" under the receiver’s identity ID, the sender
chooses r,¢" € Z; uniformly at random and computes
Qip=H,(ID). Then set the ciphertext to be (V,
U,U,é¢, ), where V=M®@®H, (e(Q1p,Y)"), U=
P, W=/P, P=H,(U,V,W), U=rP, W=
‘P, =H,(P,U. W) and f=¢+¢'r.

Ciphertext-Validity-Test. Let C= (V,U, U, ¢ ,
f) be a ciphertext encrypted under an identity ID.
Then C’ s validity is publicly checkable. That is,
everybody can check whether ¢ = H, (P, U, W),
where W= fP—¢'U, P=H,(U,V,W) and W=
fP—¢'U. 1f not, output “Invalid Ciphertext”.

I';’ s-Sub-Decryption. Given a ciphertext C =
(V,U,U, ¢, f) and a key pair (S\, VD), I
checks the validity of (S}, V!, ) and computes his
decryption share as follows:

(1) (Key share verification) First, I'; checks
the validity of (S}, ,Vp) with e(Sjy ,P) =V, -«
e(P;y Pou).
H Vi Y =e(Qu.Y) for any subset TC {1,

€T

26,--- ,n} such that | T| =¢, where LT denotes the
appropriate Lagrange coefficient with respect to the
set T. If (S} .Vi)) can not pass this test, I"; out-
puts (i, “Invalid Key Share”).

(2) Else I'; checks the validity of the ciphertext
as in the ciphertext validity test. If it does not hold,
output (i, “Invalid Ciphertext”).

(3) Otherwise, both tests succeed. Compute
kip =e(Si) —=s:P s U) s Ri=e(T!,P), Ri=e(T!,
Uy hy=H; (V$) ko R R =T +h, (S} —
5;(P,,,)) for random T,€ G;. Then output the de-

And everybody can check whether
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cryption share 8%, = {iskip shis ;).

Decryption. Given a ciphertext C= (V,U, U,
¢, ) and a set of decryption shares {&}p.c}icr » the
combiner runs as follows:

(1) (Decryption share verification) For i€ T’,
check if h; = H; (V') , kip» R R,), where R, =
eQ»P)/(Vip)h and R, = e (A, UD/Ckip)". 1f it
fails, discard the decryption share and return (i,
“Invalid Decryption Server I";”).

(2) Else if the combiner collects ¢ valid decryp-
tion shares from IGE T, T<T', | T|=1t), it com-
putes K=[] (k)" and M=V @ H, (K). Then

the ciphertleeth is decrypted by the combiner.

I';’ s-Public- Key-Updating. In this scheme, we
allow the decryption server I'; (i € {1,2,+,n}) to
renew his private key s; as follows:

(DT chooses s;€ Z;. Compute P;=s.P and
A;=5.P,y. Then transmit (i, P,.A;) to the PKG
secretly.

(2) The PKG checks the validity of P, by ¢(P},
P,.) =e(A; . P). If it holds, PKG changes P, to P
publicly and renews S!. in Key-Gen-2 accordingly.
Else PKG refuses I';’ s request.

Note that each decryption server uses the non-
interactive zero knowledge protocol Proof-Log to
make its decryption share checkable.

4 Security analysis

4.1 Definition of the adversary

To give the formal definition of the IB-ThDec
scheme, we need to define adversaries for it. Since
we use a (z,n) threshold scheme, it’s reasonable to
assume that at most t—1 out of n decryption servers
will be corrupted by the adversary A. Assume
{I':};es.|s)=—1 be the set of corrupted decryption
servers. A can learn the secret keys of them, get all
broadcasting messages and decryption shares of un-
corrupted ones. Furthermore, the A can make the
corrupted decryption servers to deviate from the pro-
tocol in an unrestricted fashion. The actions that A
against the IB-ThDec are listed below:

(1) Iy’ s private key and key share extraction
queries. For i€ S, A is allowed to make request for
I'.’s private key s;,. Additionally, A can ask for
P, (S, VP of given identity ID for j€ S,1<C
E<n.

(2) Complete decryption key extraction queries.
A is allowed to query on an identity 1D’ s complete
decryption key. However, it is not reasonable for A
to extract the complete decryption key of the selected
challenge identity ID,,.

(3) Decryption queries. A is allowed to query

on chosen ciphertexts, to get the plaintexts and de-
cryption shares from uncorrupted decryption servers.
A natural restriction is A cannot query on the chal-
lenge ciphertext.

(4) Replace I';” s public key. Since I';” s public
key P,=s;,P(i=1,2,++,n) is not associated with
I’ s identity, A can choose s, € Z,; and try to re-
place P, by P,=5.P for corrupted I.

4.2 Security model

In this section, we give the formal security
models of the Basic-IB-ThDec scheme and the full
IB-ThDec scheme.

Definition 3(IND-IDTH-CPA). The basic
identity based (z,n) threshold decryption scheme
Basic-1B-ThDec is secure against ID-based thresh-
old chosen-plaintext attacks ( denoted by IND-
IDTH-CPA) if no polynomially bounded adversary
B has a non-negligible advantage in the following
game;

Init. B corrupts a fixed subset of r—1 decryp-
tion servers. Then the challenger gives the resul-
ting public parameters to B.

Key extraction queriesl. B’ s challenger runs
Share-Key-Gen:

(1) Given ID, the challenger returns the com-
plete decryption key S;, of ID, upon ID’s com-
plete decryption key extraction queries.

(2) The challenger gives Py, P} (1<<j<n)
and the private key shares d;,.; (i € S) of the cor-
rupted decryption servers to B. However, the pri-
vate key shares of uncorrupted decryption servers
are kept secret from B.

Challenge. B chooses two equal length plain-
texts (M,, M,) and an identity ID* to be chal-
lenged on. Then give them to the challenger. The
challenger responds with C*=(U,V) = Basic-1B-
Encrypt (M, cp,ID”) for a random b& {0,1}.

Key extraction queries2. B issues more key ex-
traction queries as in key extraction queriesl, ex-
cept the complete decryption key of ID".

Guess. B outputs a guess & € {0,1}. B wins if
b =0b.

Such an adversary B is called an IND-IDTH-CPA
adversary'™. B’s advantage is defined to be:
Adv(B)=|2Pr[b'=b]—1].

Definition 4 (IND-IDTH-CCA2). The (z,n)
threshold decryption scheme from ID-based crypt-
osystem is secure against ID-based threshold adap-
tive chosen-ciphertext attacks (denoted by IND-
IDTH-CCAZ2) if no polynomially bounded adver-
sary A has a non-negligible advantage in the fol-
lowing game:

Init. The adversary A chooses a set S of t—1
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players it wants to corrupt.

Setup. The challenger runs Setup algorithm
and gives the resulting public parameters to A, in-
cluding the public key P; of I'; (1<<i<<n).

I';’s private key extraction queries; Given S,
the challenger generates t— 1 corrupted decryption
servers’ private key 5; (i€ S). Return (z,s;) to A.

Key extraction queriesl. On an identity ID, A
performs a number of queries adaptively:

(1) Complete decryption key extraction que-
ries. The challenger generates complete decryption
key d;p =asH, (ID) and P,, = sH, (ID). Send
dips Pp to A.

(2) Key share queries. The challenger returns
(S V) for jES and i€ (1,2, ,n}.

(3) Replace I';’ s public key. For i & S, sup-
pose the request is to replace the public key of T
with (P/=s'P.A, = s’,Pp\,h >. After receiving (ID,
P/, A;>, the challenger accepts A’s request, and
renews S;b associated with P and ID.

Decryption queriesl. A arbitrarily feeds the
challenger ciphertexts, and then obtains plaintexts
and decryption shares of uncorrupted decryption
servers.

Challenge. A chooses two equal length plain-
texts (M, , M;) and an identity ID, which it wi-
shes to be challenged on. It”s not allowed to choose
an identity on which A has made a complete de-
cryption key extraction query, during the key ex-
traction queriesl. The challenger picks a bit &' €
{0,1} uniformly and sets the challenge ciphertext
to be C* = Full-1B -Encryption (M, , ID,, ,cp).
Return C* to A.

Key extraction queries2. A issues more key ex-
traction queries as in key extraction queriesl, ex-
cept the complete decryption key of ID,,.

Decryption queries2. A continues to interact
with the challenger by feeding it with ciphertexts
C+C".

Guess. A outputs a guess ¥ € {0,1}. A wins
the game if &"=10'.

Such an adversary A is called an IND-IDTH-
CCA2 adversary. A’s advantage is defined to be:
Ado(A)=[2Pr[6/=0"]—1].

4.3 Security proof

Theorem 1. Let H, .H,,H,,H, be random or-
acles. Then IB-ThDec is an IND-IDTH-CCA2 se-
cure scheme assuming the quadruple Decision BDH
problem (4-DBDH) is hard in groups generated by
Setup. Concretely, suppose there is an adversary
A that has an advantages ¢ against the IB-ThDec.
If A makes at most g, complete decryption key ex-
traction queries and at most qn, hash queries to

H,, then there is an algorithm that solves the
4-DBDH problem in groups generated by Setup
with advantages at least s”ze/Ze(l+qE)qH1 .

Proof of Theorem 1. The proof is by reduc-
tion. First we introduce three lemmas. Then The-
orem 1 follows by combining Lemma 1, Lemma 2,
and Lemma 3. O

Lemma 1. If H,,H,,H,,H, are random or-
acles, let A be an IND-IDTH-CCA2 adversary
that has an advantage e against IB-ThDec. Sup-
pose A makes ¢, complete decryption key extrac-
tion queries. Then there is an IND-IDTH-CPA
adversary B that has an advantage at least ¢ =
e/e(1+q;) against Basic-1B-ThDec.

Lemma 2. Let H,, H, be random oracles,
and let B be an IND-IDTH-CPA adversary that
has the advantage ¢’ against the Basic-IB-ThDec.
Suppose B makes qn, hash queries to H,. Then
there is an IND-CPA adversary C that has the ad-
vantage at least e”:5,/qu against BasicPub-CL-
PKE.

Lemma 3. Let H, be a random oracle, and
let C be an IND-CPA adversary that has the ad-
vantage ¢ against the BasicPub-CL-PKE. Then
there is an algorithm E that solves the 4-DBDH
problem with advantage at least ¢”/2.

Proof of Lemma 1. B works by interacting
with A in an IND-IDTH-CCA2 game as follows:

Init. A chooses a fixed set S of 1—1 decryp-
tion servers that it wants to corrupt. Without loss
of generality, assume A chooses S= {1, 2, -,
t—1}.

Setup. Algorithms B starts by receiving Basic-
IB-ThDec’s public parameters cp=1{q.l.G, .G, ,e,
P.P,..-H . H,,X,Y} from his challenger, and
gives A the IB-ThDec system parameters {q../,G, ,
G, ’e9P’P1)ub ’X’Y’{Hi}lgigs ’ {Pj }lgjgn }» where

1 q,l.G, Gy ,e, PPy, X, Y are taken from
cp.

(2)H,,H,, H,, H, are random oracles con-
trolled by B. Hj is a one-way hash function.

(3) Randomly pick m, € Z, (1<i<<n). Keep
m; in secret, return P;=m.P to A.

H,-queries. A can query H, at any time. Let
ID; be the i-th distinct identity asked by A, B flips
a coin; Ccoin; €{0,1}, Prlcoin;=0]=¢) and main-
tains a list L, of tuples (coin;y ID;, bis Qip, s
where:

(D If coin,=0, then B picks b; at random from
Z;. Output Qp =0b;P, add the tuple (coin, =0,
ID;.b;»Qip, > to L.

(2) If coin,=1, then B forwards ID; to B’s
challenger and returns the answer Qip, to A. Add
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the tuple (coin,=1,ID;, | »Qip, ) to L.

H,-queries. A can issue H, queries at any
time. B forwards it to B’s challenger and returns
the answer to A.

H;-queries. When A queries H; at a distinct
point (U,;,V,,W,), B defines P; at that point by
choosing T, € Z, uniquely, and maintains an ini-
tially empty list Ly of tuples (T;, (U;,V,,W,)).
Return P,=T.X.

H,-queries. When A queries H, at a distinct
point (P,,U,;,W;), B chooses ¢, € Z, uniquely at
random as the answer and maintains an initially
empty list L, of tuples (e;s (P, ,U;, W,)).

I';’s private key extraction queries. To answer
A’s private key extraction queries on £—1 corrup-
ted decryption servers, B returns m; (i€ S) to A.

Key extraction queriesl. A issues a number of
key extraction queries on ID; adaptively. It’s rea-
sonable to assume that A has asked about H, (ID;)
before issuing complete decryption key extraction
queries on an identity ID;. Let {coin;, ID;, b;,
Qi,” be the corresponding tuple on the L, list.

(1) Complete private key extraction queries.

If coin; = 0, B outputs complete decryption
key of ID; as d,,)’ =pY.

Else if coin; =1, B terminates the game and
outputs “Abort”.

(2) Key share queries.

If coin,=0, B randomly chooses a polynomial

t—1
of degree r—1 over Z,: S, (x)=0,+ Za_,x-’,
=1

Then compute S(,;)) = fm, (R)Y +m, P, » V(,;)) =
e(fip, (R) Ppy» X) for 1 ==k =n. Return (S;gi ,
V(“g) )(1<k<<n) to A. Add <ID;, {S(IJD), Vi jen >to
the list L,,. And return the verification key P =
b;P .

Else if coin,=1,

B forwards ID,; and S to its challenger and
gets Pip o {din . }es5 (Pl }1i=,. Return Pyp .

For j&€ S, return S;f;i =dp, ., +m;P .

For 1<<k<{n, return V}i} =e(P<,’3i . XD,

It’s easy to prove that S;’n) ,V(,fj)l (jES and kE {1,
2,++,n}) can pass the validity test of key shares.
(When coin; = 1, we make use of the fact that
{dip,.i}iess {P;g }1<r=, can pass the validity test
of B).

(3) Replace I’ s public key. Suppose the re-
quest is to replace the public key for I'; ( € S) with
P} =7¢/P after passing (P],A;) to B (It should be a
valid pair, i.e. e(P},P,.,) =e(A;,P). B accepts
A’ s request and computes partial keys upon ID,;

as:

If coin,=0, Siﬁ =S, (DY +A;,

If coin,=1, S</D> :dm’,,»‘f—A,».
The public verification keys ng keeps invariably.

Decryption queriesl. Given a ciphertext C, =
(V;,U., U, ,e;» f;) that is encrypted under ID; and
M;, B can simulate the decryption oracle and the
uncorrupted decryption servers via Ly, L, and L,,.
It responds to decryption queries as follows:

(1) First, B computes W, = f;P —e;U,;, and
searches the L, list for a tuple <(T;, (U;,V;,W.))
containing (U;,V,;,W;). If it is nonexistent, B re-
turns “Invalid Ciphertext”,

(2) Else B searches L, for a tuple (¢;, (P, ,U,,
W), where P,=T,X, W,= f,P,—eU,. If B
fails, return “Invalid Ciphertext”.

(3) Else, M; and 6[1[)].(7] (U=t,t+1,-

be computed as follows:

+,m) can

If coin; =0, when A queries B at C;, B per-
forms the following:

Since e(dm] LU))=¢e(b;Y,U;), output M, =
V.®H,(e(b,Y,U).

With Vi . S0 and &%, =e(S) —m P,y.
U.). B can reédily r/un ProofiLog to oujtput the de-
cryption share 8%, .« ={L.k'p vhy ).

If coin; = l,Jaithough B cannot get r; from
U,=r,P, he can assume U,=r,P, and simulate the
decryption of C; as:

Since e(d,DJ WUD :e(aSQmJ r;P)= e(sQ;D/ ,
r (T,X0)% output M, =V, ®H, (e(Py +-U)).

With {d,,),,k}liki,,] . /e/,,)J can be computed as
ki =e (S = m Py U =e (L, Py s UDT -
—1

He(L,S,,/,de Lk, U,). Where L}, is the Lagrange
m=1

coefficient with respect to S"={0} U S, for 0
m’'<<t—1. Run Proof-Log, and return Sil)}_(‘, ={l,
/el,,)/ Jhys A ).
~ Challenge. Adversary A issues two equal
length plaintexts (M,, M;) and an identity ID,,
which it decided to be challenged on. B responds
as follows:
(1) If coin, =0 then B terminates the game
and reports “Abort”,
(2) If coin,, =1 then B forwards (M,,M,),
ID,, to its challenger. When receiving the Basic-
IB- ThDec ciphertext: C'=U',V")=Basic-1B-En-
crypt(My scp,ID,) (0" €{0,1}), B simply choo-
sese’, f "€ Z,; and sets v=Vv',U*=U’, P*=
I'P, U =1"U"W'=fP—eU, W =[P —
e*U" Then B backpatches and defines the chal-
lenge ciphertext C*=(V*,U"*,U",e*, f*). Then
C" is the IB-ThDec encryption of M, for a random
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b €1{0,1} under the public key ID,, as required.

Key extraction queries2. Adversary A makes
more queries. B responds in the same way as in
key extraction queriesl, except the complete de-
cryption key of ID,,.

Decryption queries2. A issues more decryption
queries, B runs in the same way it did in decryp-
tion queriesl. The only restriction here is that the
target ciphertext C* is not allowed to be queried.

Guess. Eventually, A outputs a guess 6’ €
{0,1}. B outputs ¥ as its guess for 0.

Analysis.

(1) Suppose B is given a ciphertext C = C",
where C=((V,U,U,e, f),W.,W). If C can pass
the ciphertext-validity-test, and (V,U,W) £(V ",
U*,W*), then A must has queried H; at the point
(U,V,W>. So B has P=H,(U,V,W)=TX with
Te& Z;. Thus, B can exactly decrypt C as de-
scribed above.

Else if C can pass the ciphertext-validity-test
while <V, U, W) =«(V*,U*,W*) and (U,e, f) #*
(U*ye*sf*), then P=P". Set W=¢P ,W=/P,
U=+'P and U=/"P with v+ Gf ' =+, then
t'=¢ and C=C"). Because B accepts C, we have
f=t'4+er'="+er". So, since ¥ —r"#0 and H, is
a random oracle controlled by B, this happens with
the probability at most 1/q. It’s negligible when ¢
is large enough.

Note that if we additionally check whether
e(P,U)=¢(P,U) in the ciphertext-validity-test,
making use of the decision Diffie- Hellman problem
is polynomially solvable in (G,, G;,e), then the
latter case can be prevented readily. However, we
conceal it for the efficiency of validity test. As
shown above, it does not reduce the security of our
scheme. Thus, our scheme cancels pairing compu-
tations in the ciphertext-validity-test phase. Com-
paring with [ 3], our scheme is more efficient.

(2) If B does not abort during the game, then
A’s view is identical to its view in the real attack.
Because B’s responses to all hash queries are uni-
formly and independently distributed as in the real
attack, and all responses to A’s request can pass
validity test unless B aborts in the game. Further-
more, e(dp, JUD = eldmp, » U*). Thus, by the
definition of A, we have |2Pr (V"=0') — 1| =
Adv(A)=e. Let H denote the event that B does
not abort in the game, then the advantage of B is
¢ ¢+ Pr[H]. We name the event that A made a
complete private key extraction queries on ID; with
coin; =1 at some points as E;, and the event that A
chose ID,, with coin, =0 as E,. If Pr{coin=0]=
8, then PriH]=Pr[—E, N —E, ]=8" (1—9¢).

This value is maximized when 8, =1—1/(q,; +
D, Using 8,,,» PrlH] is at least 1/e(1+q;).
This shows that B’ s advantage is at least ¢ =
e/e(1+¢q;). This finishes the proof. 0

Proof of Lemma 2.
similar to that used in [ 5, Theorem 3.1], with
modifications to handle the adversary B who gets
X.Y from C by setting X=X,, Y=Y,, where
X.,Y, are taken from C’s challenger. Additional-
ly, B can never query on the challenge identity

This proof techniques is

ID" for its complete decryption key. O

Proof of Lemma 3. This proof techniques is
modeled on the proof of [1, Lemma 4. 3]. E takes
(P,aP,bP,cP,abP,acP,bcP,dP, D) as input,
and sets P,,,=cP, Qi=bP, X,=aP, Y,=acP,
Dy=bcP, D)y=abP. In challenge phase, C sub-
mits two equal length plaintexts (M,,M,). E re-
turns the challenge ciphertext C*=(U.V)=(dP,
M, PR) with R€ {0,1}', set H, (D) =R. In
guess phase, C outputs a guess b€ {0,1}. If "=
", then E outputs 1 meaning D=e(P,P)““, Oth-
erwise, return 0 meaning D #e(P,P)“, If D=
e(P,P)", then C’s view is identical to its view in
5//
?.
D #e(P,P)“ then D is uniform and independent
in G, , and the challenge ciphertext C* is independ-
ent of &', that is Pr[6'=0"]=1/2. Therefore, the
advantage of E is ‘ (%i%>—%‘ =¢’/2. This
finishes the proof. O

the real game, and Pr[o' =0¢"]= % + Else if

5 Further discussion

The IB-ThDec can readily be converted into a
fully secure certificateless threshold decryption
scheme, in which the communication users are re-
quired to choose their own public key pair (X, .,
Y,) as in CL-PKE. And each decryption server’s
private key share is given by the communication
users. The security reduction is similar to IB-
ThDec.

Another potential application of IB-ThDec is
an ID-based dynamic threshold decryption scheme
(IB-D-ThDec)"*,

server only needs to keep his private key s; in se-

Intuitively, each decryption
cret, while the partial secret keys Si; can be trans-
mitted through public channels, without betraying
any information of the complete decryption key.
Then the PKG can update the master key s, or
add/remove any decryption servers without chan-
ging its private information. That is, the decryp-
tion servers and PKG may communicate via broad-
cast channels after the key generation process has
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taken place, and the secret channels are never nee-
ded after that.
practical. However, we can only prove its security
That is, the ad-
versary commits the target identity ID” ahead of

Obviously, this scheme is very
in the selective-identity model™!.

time, and the challenge will not answer any key
extraction queries about ID*. The security reduc-
tion is also similar to IB-ThDec. Virtually, the se-
curity proof of the corresponding IB-D-ThDec
scheme has been implied in the proof of Theorem 1,

under selective-identity model.
6 Conclusions

In this paper, we propose an ID-based thresh-
old decryption scheme that can resist against both
the adaptive chosen-ciphertext attack, and against
the active attacker who can modify the behaviors of
decryption servers. At last, we illustrate the appli-
cations of IB-ThDec.
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