•研究论文•

用量子化学参数研究烯烃聚合物定量构效关系

禹新良 王学业* 高进伟 李小兵 王寒露

(湘潭大学化学学院 湘潭 411105)

摘要 以密度泛函理论(DFT)方法所得的烯烃聚合物结构单元的物性参数如总能量 E_t 、内能 E_{in} 、等容比热 C_V 、熵 S、 四极矩 Q_{ii} 、偶极矩 μ 、平均极化率 a 及原子最大负电荷 q^- 等 8 个量子化学参数,用逐步回归法分别建立了这些参数与 摩尔体积 $V_{298 \text{ K}}$,摩尔等张体积 P_s 、摩尔吸收常数色散分量 F_d 、摩尔折射率 R_{LL} 、摩尔抗磁磁化率 χ 、摩尔粘度温度函数 H_{vsum} 、摩尔 Rao 函数 U_R 及摩尔 Hartmann 函数 U_H 的结构一性能定量关系 (QSPR) 模型,其测试集的决定系数 R^2 分别是: $V_{298 \text{ K}}$ 为 0.989, P_s 为 0.982, F_d 为 0.975, R_{LL} 为 0.997, χ 为 0.988, H_{vsum} 为 0.914, U_R 为 0.988 及 U_H 为 0.972. 结果表 明,用这些量子化学参数所建立的聚合物 QSPR 模型能用于聚合物性能的预测.

关键词 密度泛函理论;量子化学参数;结构-性能定量关系;聚合物

QSPR Studies on Vinyl Polymers Based on Quantum Chemical Descriptors

YU, Xin-Liang WANG, Xue-Ye^{*} GAO, Jin-Wei LI, Xiao-Bing WANG, Han-Lu (College of Chemistry, Xiangtan University, Xiangtan 411105)

Abstract Density functional theory calculations were carried out for repeated units of vinyl polymers, such as polyvinyls, polyacrylates, polymethylacrylates, polystyrenes and polyalkenes. The calculated results of the total energy E_i , the internal energy E_{in} , the heat capacity at constant volume C_V , the entropy S, the quadrupole moment Q_{ii} , the dipole moment μ , the average polarizability of the molecule α and the most negative net charge of atom q^- were used to predict the molar volume at room temperature $V_{298 \text{ K}}$, the molar parachor of Sugden P_s , the dispersion component F_d of the molar attractive force constant, the molar refraction of Lorentz and Lorenz R_{LL} , the molar diamagnetic susceptibility χ , the molar viscosity-temperature function estimated as a sum of the structural units in the repeated unit H_{vsum} , the molar Rao ultrasonic velocity function U_R and the molar Hartmann ultrasonic velocity function U_H . Eight quantitative structure-property relationship (QSPR) models obtained from the training sets were evaluated externally using the test sets. Data of correlation coefficient R^2 between the predicted values and experiment values are: 0.989 for $V_{298 \text{ K}}$, 0.982 for P_s , 0.975 for F_d , 0.997 for R_{LL} , 0.988 for χ , 0.914 for H_{vsum} , 0.988 for U_R and 0.972 for U_H . The results indicate that the QSPR models constructed by such quantum-chemical descriptors can be well used to predict the properties of polymers.

Keywords density functional theory; quantum-chemical descriptor; quantitative structure-property relationship; polymer

聚合物的结构-性能定量关系(QSPR)是聚合物分子 设计和材料设计的科学基础.当前,随着计算机技术和 计算方法的不断完善和发展,聚合物的 QSPR 研究逐渐 成为研究前沿. Katritzky 等^[1]利用 CODESS 程序对 88

^{*} E-mail: wxueye@xtu.edu.cn Received January 17, 2005; revised October 17, 2005; accepted December 19, 2005. 湖南省教育厅重点(No. 05A002)资助项目.

种均聚聚合物的摩尔玻璃化温度(T_g /M)进行了研究,所得 QSPR 的决定系数 R^2 =0.946; Cao 等^[2]又对这 88 种聚 合物的 T_g 作了研究,所得 QSPR 的决定系数(R^2 = 0.9056) 比前者低,但所用的结构及电性参数物理意义 比较明确; Morrill 等^[3]利用 AM1 半经验量子化学方法 对分子的性质进行计算,以 CODESS 回归分析程序得 到预测聚合物 T_g 的 QSPR 模型,其决定系数(R^2 = 0.9977)较高; Tokarski 等^[4]对无定形聚合物的浸透性能 及 Kholodovych 等^[5]对聚合物的生物降解性能分别作了 定量研究;另外,许多学者^[6~8]采用人工神经网络 (ANN)方法研究了聚合物的 QSPR,取得了有价值的结 果.目前,还未见用量子化学 DFT 方法来研究聚合物 QSPR 的报道.本课题组用 DFT 计算所得的量子化学参 数对烯烃类聚合物的 QSPR 进行了研究.

1 计算模型和方法

由于聚合物分子量很大,且分布宽,要对整个聚合物分子进行精确计算在目前还存在困难.然而从聚合物结构单元得到的分子参数可用于聚合物的 QSPR 研究^[1,2],且用聚合物结构单元(用氢饱和)作为计算模型,使结构单元结构完整,并保持单元自身结构特点^[9].密度泛函理论认为,分子的总能量及体系的其他性质取决于体系电荷密度的分布,且即便是考虑电子的相关能,DFT 也不比从头算方法复杂^[10].尤其是其中 B3LYP/6-31G(d)方法不仅所需计算机空间和机时相对较少,而且能计算出可靠的电性和热化学参数,成为当前关注和运用的热门方法^[11-13].因此本文采用 DFT(B3LYP)方法在6-31G(d)基组水平上进行模型优化和计算.对其优化所得稳定构型作了振动分析,结果显示振动光谱中没有出现虚频率,表明其对应势能面上极小点.计算使用Gaussian 03 程序,在 Pentum IV 计算机上完成.

我们所用的量子化学参数分为 2 类: 一类为热化 学参数, 它们反映分子本身的性质, 包括分子中电子的 总能量 E_t 、内能 E_{in} 、等容比热 C_V 及熵 $S. E_t$ 为轨道能级 的加和减去电子的排斥能, 其大小等于优化计算所得 SCF 能量(E_{ele}), E_{in} , C_V 及 S 均是计算在温度为 298.150 K, 压力 $p=1.01 \times 10^5$ Pa 下体系的值, 且均为分子的平动、 振动及转动贡献之和; 另一类为电性参数, 它们能反映 分子间的作用力. 四极矩 Q_{ii} 表征体系中电荷分布偏离 球对称的程度, Q_{ii} 定义为

$$Q_{ii} = (Q_{xx} + Q_{yy} + Q_{zz})/3$$
 (1)

其中 Q_{xx}, Q_{yy} 及 Q_{zz} 分别表示电荷体系在 x, y 及 z 轴方向 对四极矩的贡献. 偶极矩 µ 反映分子电荷分布的非对称 性,即分子总的极化程度. 平均极化率 α 反映分子对电场的反应和产生偶极矩的能力,其定义为

$$\alpha = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3 \tag{2}$$

其中 a_{xx} , a_{yy} 及 a_{zz} 分别表示分子在 x, y 及 z 轴方向上极 化率的分量, a 随分子中电子的数目及分子半径的增大 而增大. 原子最大负电荷 q^- 反映分子中静电作用大小 及原子提供电子的能力. 由于聚合物的分子间力超过了 组成它的化学键的键能, 因此分析影响分子间力的因素 就非常重要, 而分子间的作用力包括范德华力(静电力、 诱导力和色散力)和氢键, 其中静电力可由 μ , Q_{ii} 等多极 矩表示, 诱导力和色散力则依赖于 $a^{[14]}$; 氢键由价键和 静电两部分组成, q^- 越负, 分子内及分子间氢键作用越 强, 因此选择这 4 个电性参数.

2 计算结果

2.1 模型的建立

表 1 列出了 40 种聚乙烯类的 8 种性能的实验数 据^[15],以这些数据为训练集建立模型.这些性能分别是 摩尔体积 $V_{298 \text{ K}}$ 、摩尔等张体积 P_{s} 、摩尔吸收常数色散 分量 F_{d} 、摩尔折射率 R_{LL} 、摩尔抗磁磁化率 χ 、摩尔粘 度温度函数 H_{vsum} 、摩尔 Rao 函数 U_{R} 和摩尔 Hartmann 函数 U_{H} .对量子化学参数和各种性能分别进行逐步回 归,回归计算结果见表 1,最优回归方程见表 2.

2.2 模型的检验

首先将所建模型采用留一法(leave one out, LOO)进行内部交叉验证,得到模型的交叉验证系数 *R*_{CV}²见表 2. 然后用测试集对模型进行外部验证,最终判断模型的精确性和对未知样本进行预测的能力.由于训练集聚乙烯类聚合物包含环、酯键(一OCO一),醚键(一O一),因此选择具有类似结构的聚丙烯酸酯类、聚甲基丙烯酸酯类和聚苯乙烯类等 49 种聚合物作为测试集.测试集的各性能的实验数据^[15]见表 3,预测结果见图 1,外部验证统计分析结果见表 4.

3 讨论

DFT 计算结果 Q_{ii} 为负值,表明分子负电荷的分布 远离核电荷中心,且极化特征为{-,+,-}^[17], Q_{ii} 越 负,分子电荷分布偏离球对称越严重,另外, E_t, E_{in}, C_v, S, Q_{ii}及α相关性较大,表明在计算模型的分子内原子数 越多, E_{in}, C_v, S 及 α 越大, E_t 越低.从逐步回归结果表 2 可以看出.各模型的相关系数较高,均在 0.990 以上.

表1 训练集40种聚合物的实验数据和计算结果^a Table 1 Experimental and calculated data of the training set for forty polymers^a

No.	Polymer	$V_{298 \text{ K}}$	$P_{\rm s}$	$F_{\rm d}$	$R_{\rm LL}$	χ	$H_{ m vsum}$	$U_{ m R}$	$U_{ m H}$
1	Polyethylene	33.1/36.0	78.0/79.4	540/646	9.298/9.915	22.70/25.65	840/1096	1760/2051	1350/1732
2	Poly(vinyl alcohol)	35.0/43.3	98.0/101.6	560/538	10.723/11.346	27.85/28.30	2208/1604	1930/1828	1545/1548
3	Poly(vinyl fluoride)	—	86.6/90.0	570/615	—	26.95/27.04	1542/1605	1830/1911	1445/1600
. 4	Poly(vinyl chloride)	45.1/38.1	115.2/110.9	800/827	14.288/13.424	38.85/36.23	2750/2618	2480/2446	2125/1979
5	Poly(vinyl bromide)	—	128.9/128.3	900/968	—	47.85/43.26	4969/5063	2610/2803	2125/2291
6	Poly(vinylidene fluoride)	40.0/41.4	95.2/101.4	640/635	9.025/11.562	31.55/31.88	2239/2476	1930/187	1575/1500
7	Poly(vinylidene chloride)	58.4/49.6	152.4/140.1	1100/1040	19.275/17.393	51.35/52.81	4580/4132	3230/2915	2710/2292
8	Poly(vinyl acetate)	72.4/71.6	182.0/185.9	1160/1131	—	48.85/48.85	2930/3097	3980/3736	3225/3009
9	Poly(vinyl ethyl ether)	76.7/76.3	176.0/180.9	1140/1163	20.199/20.455	51.20/50.60	2380/2449	4010/3989	3300/3210
10	Poly(N-vinyl pyridine)	88.9/92.9	246.9/243.5	1660/1648	—	67.74/70.52	3985/3646	5272/5536	4181/4436
11	Poly(vinyl propionate)	98.1/96.0	221.0/225.9	1430/1390	24.864/24.739	60.20/63.31	3350/3511	4860/4684	3900/3751
12	Poly(vinyl <i>n</i> -butyl ether)	108.1/109.4	254.0/260.2	1680/1622	29.497/29.379	73.90/71.87	3220/3277	5770/5724	4650/4571
13	Poly(vinyl sec-butyl ether)	108.9/112.0	254.0/257.5	1640/1592	29.456/29.047	74.70/72.03	3440/3211	5860/5644	4800/4488
14	Poly(vinyl methyl ether)	_	137.0/141.3	870/902	15.496/15.919	39.85/39.97	1960/2028	3130/3042	2625/2466
15	Poly(vinylide bromide)	_	179.8/175.4	1300/1329	_	69.35/68.19	9112/9033	3490/3647	2710/2990
16	Poly(vinyl methyl ketone)	62.6/60.7	_	_	18.696/18.567	—	_	3630/3529	2925/2846
17	Poly(vinyl iso-butyl ether)	107.7/111.0	_	_	29.495/28.988	—	_	—	
18	Poly(vinyl <i>n</i> -pentyl ether)	124.4/125.9	_	_	34.146/33.901	—	_	—	
19	Poly(vinyl <i>n</i> -octyl ether)	171.0/175.1	—	—	48.093/47.575	—	—	—	—
20	Poly(vinyl <i>n</i> -decyl ether)	208.7/201.5	_	_	57.391/56.746	—	_	—	
21	Poly(vinyl <i>n</i> -dodecyl ether)	238.1/240.8	_	_	66.689/65.937	_	_	—	—
22	Poly(N-vinyl carbazole)	161.0/159.8	427.7/439.3	3196/3250	_	126.30/125.39	8565/8378	10261/10295	8138/8191
23	Poly(vinyl isopropyl ether)	93.2/94.2	—	—	—	—	—	—	—
24	Poly(o-vinyl pyridine)	—	—	—	—	—	—	5655/5487	4485/4371
25	Poly(vinyl benzoate)	—	315.9/312.5	2170/2168	40.081/40.182	87.35/90.27	5470/5776	7230/6929	5745/5489
26	Poly(vinyl cyclohexane)	116.0/114.2	283.9/274.2	1970/1900	34.951/34.160	85.85/86.53	2728/3012	6380/6740	5045/5434
27	Poly(β -vinyl naphthalene)	140.0/128.4	—	—	—	—	—	—	—
28	Poly(α-vinyl naphthalene)	137.7/134.9	360.0/357.3	2590/2767	—	103.97/105.22	6452/6513	8623/8763	6839/6971
29	Poly(vinyl butyal)	131.3/135.6	323.9/316.0	2130/2046	—	97.39/94.87	—	7301/7214	5790/5744
30	Poly(vinyl pivalate)	—	298.8/297.7	1930/1809	—	84.85/84.62	4550/4166	6830/6310	5370/5005
31	Poly(vinyl chloroacetate)	83.1/87.2	—	—	25.265/23.982	—	—	—	—
32	Poly(vinyl cyclopentane)	—	—	1700/1683	—	—	—	5480/5899	4346/4755
33	Poly(vinyl sulfuric acid)	—	—	1042/1151	—	—	4396/4723	3210/3781	2670/3334
34	Poly(vinyl 2-ethylhexyl ether)	172.9/174.6	—	—	48.055/52.118	—	—	—	—
35	Poly(5-vinyl-2-methylpyridine)	—	—	—	—	—	—	6584/6331	5222/5041
36	Poly(<i>p</i> -vinylpyridine)	—	241.5/237.4	—	—	69.01/70.19	3985/3646	5655/5543	4485/4415
37	Poly(vinyl <i>n</i> -hexyl ether)	138.6/142.1	—	—	38.795/38.445	—	—	—	—
38	Poly(vinyl trimethylsilane)	—	—	1624/1520		—	—	5640/5315	4515/4219
39	Poly(vinyl methyl sulfide)	62.8/65.2	—	—	—	—	—	3280/3426	2765/2792
40	Poly(vinyl n-butylsulfide)	118.6/114.5	_	—			—	5920/6499	4790/5207

^{*a*} The data units are mL•mol⁻¹ for $V_{298 \text{ K}}$, $10^{-5/4} \text{ mL} \cdot \text{N}^{1/4} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1/4}$ for P_s , $J^{1/2} \cdot \text{cm}^{3/2} \cdot \text{mol}^{-1}$ for F_d , mL•mol⁻¹ for R_{1L} , $10^{-6} \text{ mL} \cdot \text{mol}^{-1}$ for χ , $g \cdot J^{1/3} \cdot \text{mol}^{-4/3}$ for H_{vsum} , $\text{cm}^{10/3} \cdot \text{s}^{-1/3} \cdot \text{mol}^{-1}$ for U_R and U_H . The data on the left of the slash are experimental values, the data on the right are predicted values.

化学学报

rube a Results of manaple medi regression analysis									
	No. –	Statistical analysis ^a							
Regression equation		n	SD	$R_{\rm CV}^{2}$	VIF _{jmax}	F	R		
$V_{298 \text{ K}} = 2.003 + 3.405 C_V - 2.716 \mu$	1	28	4.699	0.980	1.101	1607	0.996		
$P_{\rm s} = -83.186 + 1.823a + 1.900S + 0.270E_{\rm in}$	2	22	6.344	0.984	7.088	1643	0.998		
$F_{\rm d} = 592.167 + 21.569a + 1016.768q^{-1}$	3	24	74.733	0.964	1.048	943	0.994		
$R_{\rm LL} = 0.469 \pm 0.412 \alpha$	4	21	1.306	0.984	1.000	2942	0.997		
$\chi = 1.246 + 0.068 E_{\rm in} - 1.414 Q_{ii} - 2.186 \mu$	5	22	2.218	0.984	3.390	1064	0.997		
$H_{\rm vsum} = -1229.704 - 0.905E_{\rm t} - 34.878E_{\rm in} + 44.453S + 63.585\alpha$	6	22	292.125	0.947	7.890	264	0.992		
$U_{\rm R} = 1177.720 + 14.809 E_{\rm in} + 55.429a + 2606.363q^{-1}$	7	30	283.758	0.955	3.556	537	0.992		
$U_{\rm H} = 919.322 + 11.886 E_{\rm in} + 43.055 \alpha + 1857.806 q^{-1}$	8	30	234.228	0.951	3.556	484	0.991		

表 2 多元线性回归分析结果 Table 2 Results of multiple linear regression analysis

 a^{a} *n* is the number of sample; SD is the standard error; R_{CV}^{2} is the correlation coefficient by leave one out (LOO) method cross-validation; VIF_{jmax} is the maximum of variance inflation factor of models.

No.	Polymer	V _{298 K}	Ps	F _d	R _{LL}	χ	$H_{\rm vsum}$	$U_{\rm R}$	$U_{ m H}$
1	Polypropylene	49.5	117.0	770	13.909	34.85	1480	2730	2325
2	Polyisobutylene	66.8	156.0		18.517	47.35	2040	3730	3025
3	Poly(1,2-butadiene)		145.0	950	18.180	35.95	1663	3106	2587
4	Poly(1-butene)	65.2	156.0	1040	18.558	46.20	1900	3610	3000
5	Poly(4-methyl-1-pentene)	100.5	234.0	1540	27.818	—	2880	5460	4350
6	Poly(methyl acrylate)	70.6	182.0	1160	20.146	48.85	2930	3980	3225
7	Poly(methyl methacrylate)	85.6	220.8	1430	24.754	61.35	3490	4980	4325
8	Polyacrylonitrile	44.8	124.6	780	13.793	31.35	3452	2630	2195
9	Poly(acrylic acid)	—	142.8	880	15.477	39.35	2208	2790	2213
10	Poly(ethyl acrylate)	89.4	221.0	1430	24.933	60.20	3350	4860	3900
11	Polymethacrylonitrile	61.0	163.6	1050	18.401	43.85	—	3600	2990
12	Poly(ethyl methacrylate)	102.0	259.8	1700	29.541	72.70	3910	5860	5000
13	Poly(methyl ethacrylate)	—	259.8	1700	—	72.70	3910	5860	5000
14	Polystyrene	99.1	250.9	1780	33.679	73.35	4020	5980	4725
15	Poly(methyl α -chloroacrylate)	—		1460	25.039	65.35	4760	4730	4195
16	Poly(α -methyl styrene)	111.0	289.9	2050	38.093	85.85	4580	6980	5490
17	Poly(<i>t</i> -butyl methacrylate)	139.4	337.8	2200	38.591	97.35	5110	7830	6620
18	Poly(<i>p</i> -methyl styene)	113.7	289.9	2040		84.85	4680	6830	5475
19	Poly(o-methyl styene)	115.1	289.9	2040	38.359	84.85	4694	6705	5318
20	Poly(ethyl α -chloroacrylate)	96.8		1730	29.826	—	_	—	—
21	Poly(<i>n</i> -butyl acrylate)	—	299.0	1970		82.90	4190	6620	5250
22	Poly(<i>N</i> -methyl acrylamide)	_		1220		_	3130	—	—
23	Poly(isobutyl methacrylate)	136.1		2200	38.632	_	_	—	—
24	Poly(sec-butyl methacrylate)	135.2			—	96.20	_		—
25	Poly(<i>p</i> -methoxy styrene)		309.9	2140	40.613	89.85	5160	7230	5775
26	Poly(<i>n</i> -butyl methacrylate)	134.8	337.8	2240	38.670	95.40	4750	7620	6350
27	Polyacrylamide	54.6		920		37.35	_	—	—
28	Poly(<i>p</i> -chlorostyrene)	—	288.1	2070		88.85	5950	6580	5345
29	Poly(o-chlorostyrene)	—	288.1	2070	38.489	88.85	5906	6455	5194
30	Poly((1-phenylethyl methacrylate)	168.5	—		53.753	—	—	—	
31	Poly(methyl α-cyanoacrylate)	85.2	228.4	1440		57.85	5591	4880	4345

表 3 测试集 49 种聚合物的实验数据 Table 3 Experimental data of the test set for forty-nine polymers

									续表
No.	Polymer	V _{298 K}	$P_{\rm s}$	$F_{\rm d}$	R _{LL}	χ	$H_{\rm vsum}$	U_{R}	$U_{ m H}$
32	Poly(<i>p</i> -bromostyrene)		301.8	2170	_	97.85	8112	6710	5345
33	Poly(<i>p-t</i> -butyl styrene)	168.7	406.9	2810	52.421	120.85	6300	9680	7770
34	Poly(2-ethylbutyl methacryate)	163.7	415.8	2740	47.930	118.90	5810	9470	7850
35	Poly(cyclohexyl methacrylate)	153.2	387.7	2600	45.765	112.35	4867	8630	7195
36	Poly(<i>n</i> -hexyl methacrylate)	168.5	415.8	2780	47.968	118.10	5590	9380	7700
37	Poly(diphenylmethyl methacrylate)	216.0			73.619	—		—	—
38	Poly(benzyl methacrylate)	149.4	393.7	2662	49.089	111.20	6450	9110	7520
39	Poly(<i>n</i> -octyl methyacrylate)	204.2	493.8	3320	57.266	140.80	6430	11140	9050
40	Poly(2-hydroxyethyl methacrylate)		279.8		30.928	77.05	5182	5940	5045
41	Poly(cyclohexyl α -chloroacrylate)	151.0			46.050	—		8380	7065
42	Poly(<i>n</i> -propyl methacrylate)	118.7			34.021	—		—	
43	Poly(isopropyl methacrylate)	124.1			34.051	—		—	—
44	Poly(<i>p</i> -flurostyene)				—	—		5930	4703
45	Poly(phenyl methacrylate)	134.0			44.589	—	6030	8230	6845
46	Poly(1-pentene)	82.5			—	—	2320	—	—
47	Poly(1-hexene)	97.9	—		—		2740	—	
48	Poly(dodecyl methacrylate)	273.8	_	_	75.862		_	—	—
49	Poly(1-octadecene)	293.6			83.754	_		_	

表4 测试集8种性质的统计分析结果^a

Fable 4	Statistic ar	alysis re	esults of t	the test s	set for 8	properties ^a
---------	--------------	-----------	-------------	------------	-----------	-------------------------

Property	$V_{298 \mathrm{~K}}$	$P_{\rm s}$	F_{d}	$R_{\rm LL}$	χ	$H_{ m vsum}$	$U_{ m R}$	$U_{ m H}$
R^2	0.989	0.982	0.975	0.997	0.988	0.914	0.989	0.972
R_0^2	0.987	0.978	0.972	0.997	0.983	0.907	0.988	0.971
$R_{0}^{'2}$	0.988	0.980	0.974	0.997	0.985	0.914	0.989	0.972
k	1.037	0.989	0.954	0.978	0.996	0.966	0.959	0.929
k'	0.962	1.009	1.045	1.021	1.002	1.025	1.042	1.073
n	37	32	35	37	34	36	36	36
ME/%	6.280	3.238	5.860	2.465	4.057	8.775	4.937	6.826

^{*a*} *R* is the correlation coefficient between the predicted values and experimental values; R_0^2 and R_0^2 are coefficients of determination of predicted versus observed values and observed versus predicted values, respectively; *k* and *k'* are slopes of regression lines through the origin of predicted versus observed values and observed versus predicted values, respectively; *n* is the number of sample; ME is the average predicted error.

一个合理的 QSPR 模型须具备以下 3 个统计分析条件^[18]: (1) 训练集决定系数 $R_{\rm CV}^2$ 和测试集决定系数 R^2 均大于 0.6; (2) 对于测试集,决定系数 R_0^2 (预测值与实验值)和决定系数 R_0^2 (实验值与预测值)与测试集决定系数 R^2 相近,即 $\frac{|R^2 - R_0^2|}{R^2} < 0.1$; (3) 对于测试集,通过原点的回归线的斜率 $k \approx k \approx 0.85 \approx 1.15$ 之间.从表 2 和表 4 可以看出,我们所得结果均能满足以上条件.因此,可以得出结论:我们所得的 8 个 QSPR 模型是可靠的,可以对未知聚合物性质进行精确预测.

对于所计算模型的侧链越长,相应的 $V_{298 \text{ K}}$ 越大, 此时模型中原子数越多,因而 C_V 越大,又当 μ 越大时, 分子间作用力越强, 使分子间距离减小, 从而 $V_{298 \text{ K}}$ 减 小. 故 $V_{298 \text{ K}}$ 与 C_V 正相关而与 μ 负相关(见 Regression Eq. 1).

当 V_{298 K} 越大时, E_{in}, S 及 α 越大, 又 P_s与 V 有如下 关系

$$P_{\rm s} = V \gamma^{1/4} \tag{3}$$

而 γ 为表面张力, $\gamma^{1/4}$ 接近常数, 因此 $P_s 与 V_{298 \text{ K}}$ 有相同的变化趋势, 从而 $P_s 与 E_{\text{in}}$, *S* 及 α 正相关(见 Regression Eq. 2).

Figure 1 Relation of predicted results with experimental values of the test set of 8 properties a: $V_{298 \text{ K}}$, b: P_{s} , c: F_{d} , d: R_{LL} , e: χ , f: H_{vsum} , g: U_{R} , h: U_{H} 聚合物分子内聚能色散力贡献*E*_d与α成正比.而摩 尔吸收常数*F*与内聚能*E*有如下关系

$$F = \left(EV_{298 \text{ K}}\right)^{1/2} \tag{4}$$

因此 F_d 也随 α 的增大而增大. $V_{298 K}$ 与q⁻正相关,因为当 q^- 越负时,分子间作用力越强,使分子间距离减小,从 而有 $V_{298 K}$ 减小.因此F也与 q^- 正相关.所以 F_d 与 α 及 q^- 正相关(见 Regression Eq. 3).

按 Lorenz-Lorentz 方程有

$$R_{\rm LL} = N_{\rm A} \alpha / 3\varepsilon_0 \tag{5}$$

其中 N_A 为 Avogadro 常数, ε_0 为真空介电常数, 所以 R_{LL} 与 α 正相关(见 Regression Eq. 4).

抗磁性是任何物质对外磁场响应的共同特征.聚合物一般均为逆磁体,其抗磁磁化率公式如下

$$\chi = -\frac{\mu_0 Z N e^2}{6m} \overline{r}^2 \tag{6}$$

N 为单位体积中的原子数, Z 为每个原子的电子数, μ_0 为 真空磁导率, *m* 为电子质量, \bar{r}^2 表征电子在原子中的分 布, 其中负号表示感应磁化强度是逆磁性, 因此在分子 结构模型中, 侧链越长, χ 越大, 而此时分子的 Q_{ii} 越负, E_{in} 越大, 故 χ 与 Q_{ii} 负相关, 与 E_{in} 正相关, 又由于 μ 的 存在而使原子间距离发生变化, 继而影响电子拉莫进动 而导致 χ 的变化, 因此出现 χ 与 μ 负相关(见 Regression Eq. 5).

摩尔粘度温度函数 $H_v 与 H_{vsum}$ 及 H_{vstr} 有如下关系 $H_v = H_{vsum} + H_{vstr}$ (7)

其中 *H*_{vsum} 为结构单元所有基团对 *H*_v 的贡献, 而 *H*_{vstr} 为结构单元侧链的剩余效应, 由于关系式

$$H_{\rm v} = M E_{\rm V(\infty)}^{1/3} \tag{8}$$

 $E_{V(\infty)}$ 为 $T \rightarrow \infty$ 时聚合物的流动活化能, M_r 为结构单元的 相对分子量,在分子结构模型中,侧链越长,分子的极 性越大,聚合物链的刚性就越大,粘流温度就越高,流 动活化能就越大,因此 H_v 及 H_{vsum} 均增大,而此时分子 的 α 及 S 也增大, E_T 降低,又有当分子的 E_{in} 越高,聚合 物链的热运动能量越大, $E_{V(\infty)}$ 越小,从而有 H_{vsum} 越小, 所以 H_{vsum} 与 α 及 S 正相关,而与 E_t 及 E_{in} 负相关(见 Regression Eq. 6).

由于 U_R 与体积模量 B 有如下关系

$$B/\rho = (U_{\rm R}/V)^6 \tag{9}$$

其中 ρ 为聚合物的密度, V为聚合物的摩尔体积, 而 $B \approx$ 8.04 E_{sub1}/V , E_{sub1} 为分子晶体的晶格能, 因此 E q. 9 可化 为

$$U_{\rm R} \approx 1.4 \frac{E_{\rm subl}^{1/6} V^{7/6}}{M_{\rm r}^{1/6}}$$
(10)

对于所计算模型, 当侧链增长时, $V^{7/6}$ 增大幅度大于 $M_r^{1/6}$ 增大幅度, 因此 U_R 也增大, 并且此时分子的 $V_{298 \text{ K}}$ 也是增大, 而 $V_{298 \text{ K}}$ 与 α , E_{in} 及 q^- 正相关, 故 U_R 也与之 正相关(见 Regression Eq. 7).

U_H与 U_R有近似关系

 $U_{\rm H} \approx 0.8017 U_{\rm R} \tag{11}$

因而 $U_{\rm H}$ 也与 α , $E_{\rm in}$ 及 q^- 正相关(见 Regression Eq. 8).

根据统计原理, 在多元线性回归中, 当所得模型的 各参数 VIF_{*j*}≥10 时, 就认为参数 *j* 与其他参数存在严重 多重共线性问题, 对方程的解释就完全失去了意义, 如 文献[15]仅对各性质作了预测, 而不能作出解释, 本文 中各参数 VIF_{*j*}<10 (见表 2), 且回归系数有合理的理论 解释, 因此认为不存在强多重共线性问题, 可以作为最 终回归模型.

4 结论

从结构单元得到的量子化学参数 E_t, E_{in}, C_V, S, Q_{ii}, μ, α 及 q⁻ 与烯烃类聚合物的 R_{LL}, χ, V_{298 K}, P_s, F_d, H_{vsum}, U_R 及 U_H 8 种性能分别用逐步回归得到的 QSPR 模型相 关系数高,标准偏差小,稳定可靠.这些包含分子几何 结构、化学结构和电子结构等信息的量子化学参数,不 仅物理意义明确,而且参数可以快速而准确地通过计算 获得,从而可以提高所建模型的使用价值,为聚合物的 分子设计和材料设计提供理论基础.

References

- Katritzky, A. R.; Sild, S.; Lobanov, V.; Karlson, M. J. Chem. Inf. Comput. Sci. 1998, 38, 300.
- 2 Cao, C.; Lin, Y. J. Chem. Inf. Comput. Sci. 2003, 43, 643.
- Morrill, J. A.; Jensen, R. E.; Madison, P. H.; Chabalowski, C. F. *Chem. Inf. Comput. Sci.* 2004, 44, 912.
- 4 Tokarski, J. S.; Hopfinger, A. J.; Hobbs, J. D.; Ford, D. M.; Faulon, J. M. *Comput. Theor. Polym. Sci.* **1997**, *7*, 199.
- 5 Kholodovych, V.; Smith, J. R.; Knight, D.; Abramson, S.; Kohn, J.; Welsh, W. J. *Polymer* **2004**, *45*, 7367.
- 6 Ulmer II, C. W.; Smith, D. A.; Sumpter, B. G.; Noid, D. I. Comput. Theor. Polym. Sci. 1998, 8, 311.
- 7 Sun, H.; Tang, Y.-W.; Wu, G.-S.; Zhang, F.-S.; Chen, X.-Q. Comput. Appl. Chem. 2003, 20, 210 (in Chinese).

(孙红, 唐应武, 吴国是, 张复实, 陈锡桥, 计算机与应用 化学, **2003**, 20, 210.)

- 8 Mattioni, B. E.; Jurs, P. J. Chem. Inf. Comput. Sci. 2002, 42, 232.
- 9 Zhang, G.-L.; Dai, B.-Q.; Wei, Y.-D.; Dong, S.-S. Chem. J. Chin. Univ. 2001, 22, 249 (in Chinese).
 (张桂玲,戴柏青,韦永德,董绍胜,高等学校化学学报, 2001, 22, 249.)
- 10 Cohen, A. J.; Tantirungrotechai, Y. *Chem. Phys. Lett.* **1999**, 299, 465.
- Zhang, J.; Xiao, H.-M.; Ji, G.-F. Acta Chim. Sinica 2001, 59, 1265 (in Chinese).
 (张骥,肖鹤鸣, 姬广富, 化学学报, 2001, 59, 1265.)
- Wang, F.; Xu, X.-J.; Xiao, H.-M.; Zhang, J. Acta Chim. Sinica 2003, 61, 1939 (in Chinese).
 (王飞, 许晓娟, 肖鹤鸣, 张骥, 化学学报, 2003, 61,

1939.)

- Yi, P.-G.; Hu, R.-D.; Yu, Q.-S.; Shang, Z.-C. Acta Chim. Sinica 2005, 63, 44 (in Chinese).
 (易平贵, 胡瑞定, 俞庆森, 商志才, 化学学报, 2005, 63, 44.)
- Staikova, M.; Wania, F.; Donaldson, D. J. Atmos. Environ.
 2004, 38, 215
- 15 Bicerano, J. *Prediction of Polymer Properties*, 2nd ed., Marcelar Dekker Inc., New York, **1996**.
- 16 Thissen, U.; Pepers, M.; Üstün, B.; Melssen, W. J.; Buydens, L. M. C. *Chemom. Intell. Lab. Syst.* **2004**, *73*, 169.
- Glaser, R.; Wu, Z.; Lewis, M. J. Mol. Struct. 2000, 556, 131.
- 18 Tropsha, A.; Gramatica, P.; Gombar, V. K. Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69.

(A0501173 ZHAO, C. H.; LING, J.)