•研究论文•

具有碱催化活性的有序氮氧化硅 MCM-41 介孔分子筛的制备与性能研究

张存满*," 刘 茜 徐 政"

("同济大学材料科学与工程学院 上海 200092) (^b中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室 上海 200050)

摘要 以介孔氧化硅 MCM-41 为氮化前驱体,以纯的氨气为氮源,通过调节氮化工艺参数,制备出了氮含量高达 23.01 wt%、比表面积高达 665.4 m²•g⁻¹、平均孔径为 2.5 nm 的氮氧化硅有序介孔分子筛材料.采用 CNH 元素分析、N₂吸附-脱附分析、小角 XRD、高分辨透射电镜(HRTEM)、红外光谱以及 ²⁹Si 固体核磁共振谱(MAS NMR)等技术对材料的结构进行系统的研究.并且通过苯甲醛和丙二腈的缩合反应研究了该类材料的碱催化活性.研究表明,在 30 ℃反应 3 h 后苯甲醛的转化率达到 99.9%.

关键词 氮氧化硅; 有序介孔材料; MCM-41; 碱性催化

Preparation and Performance Study of Ordered Silicon Oxynitride MCM-41 Molecular Sieves with Basic Catalytic Activity

ZHANG, Cun-Man^{*,a} LIU, Qian^b XU, Zheng^a

(^a School of Material Science and Engineering, Tongji University, Shanghai 200092) (^b State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050)

Abstract The ordered silicon oxynitride mesoporous materials with nitrogen content 23.01 wt%, BET surface area 665.4 $\text{m}^2 \cdot \text{g}^{-1}$ and mean pore size 2.5 nm were successfully prepared by controlling nitridation process parameters. The changes in composition and structure of the silicon oxynitride MCM-41 were investigated by means of elemental analysis, nitrogen sorption measurements, low-angle XRD, Si MAS NMR, IR spectra and high-resolution TEM. The resulting materials showed high activity toward the Knoevenagel condensation of benzaldehyde with malononitrile and the yield reached 99.9% after reacting for 3 h at 30 °C, which often acts as a probing reaction for base catalysis.

Keywords silicon oxynitride; ordered mesoporous material; MCM-41; base catalysis

众所周知, 在精细化工合成中, 有限的孔道结构 (阻止大分子达到活性位)是沸石类分子筛催化剂应用受 限制的原因之一. 也正因为如此, 介孔材料的出现引起 了极大的关注, 由于介孔材料具有孔径可调的特点, 使 得这类材料有可能成为大分子有机反应的催化剂或催 化剂载体. 在有序的介孔材料当中, 有序的介孔氧化硅 被广泛研究,并且到目前为止,它的稳定性是最好的. 然而由于纯的氧化硅介孔材料具有中性 Si 骨架而缺少 酸性位,从而限制了其在催化领域中的直接应用.虽然 在硅氧骨架中引入 Al 或其它过渡金属可以增加其酸性, 但是,由于可以引入的金属的量的限制和无定形的骨架 结构,使其酸性仍然很弱.因此,到目前为止,有序氧

^{*} E-mail: zhangcunman@mail.tongji.edu.cn

Received April 21, 2005; revised July 25, 2005; accepted October 14, 2005. 国家自然科学基金(No. 50372080)资助项目.

化硅介孔材料主要还是被用作载体.

研究表明, 氦氧化物具有一定的碱催化性能, 可以 用作固体碱性催化剂^[1,2]. 这类氮结合的固体碱催化剂 都是通过氨气氮化相应的氧化物, 使氮原子取代部分氧 原子而形成的, 由于氮原子与氧原子相比, 具有更低的 电负性而使材料的骨架具有了比较强的碱性. 由于这类 材料具有其它碱性催化剂所不具备的优点(如比表面积 高、易处理等), 使得此类材料可能成为比较有应用价值 的碱性催化剂.

到目前为止, 氮结合的固体碱性催化剂可以分为下 面两种情况: 第一类是无定形氮化物或氮氧化物, 这种 材料在碱催化的反应中具有较高的活性,而被认为是具 有比碱金属离子交换的沸石型分子筛具有更高的催化 活性,并且可与水滑石或氧化镁相媲美[2].这类材料有 无定形氮氧化硅^[1,2]、氮氧化磷酸铝^[3]、氮氧化磷酸锆^[4,5]、 氮氧化钒酸铝^[6]、氮氧化磷铝酸镓^[7]和氮化硅或氨基化 硅^[8~10]. 然而这种材料不具有规则的孔道结构而在择形 催化中的应用受到一定的限制; 第二类是氮结合的沸石 型分子筛,这类材料的氮含量较第一种材料要低得多, 造成这种情况的主要原因:一方面是沸石型分子筛一般 具有良好的晶体结构,不易与氨气反应;另一方面是在 经过高温氮化的方式将氮结合进入骨架结构的同时,还 要保持分子筛的孔道结构,致使很难制备出氮含量较高 的沸石型分子筛. 由于氮含量低而使得这类材料的碱性 较弱. 然而由于其具有其它无定形氮氧化物所不具备的 高的比表面积和规则的孔道结构,使得这类碱性催化材 料仍然引起了人们的注意,近几年,已有几种氮结合的 微孔分子筛被报道,如 AlPO₄-5^[11], NaY^[12]和 SAPO-11^[13]. 另外,本课题组也制备出了氮结合的类 ZSM-5 的双孔分子筛,并研究了其碱催化活性^[14].

从以上分析可知,合成出具有高氮含量、规则孔道 结构、孔径可调的有序介孔氮氧化硅材料有着诱人的应 用前景.早在2001年,Haskouri等^[15]通过高温氨气氮化 的方法制得了介孔氮氧化硅材料,然而其氮含量较低 (9 wt%),并且孔道的有序度不好;2003年,Inagaki等^[16] 用氮气高温氮化有机无机复合物而制得了氮结合的介 孔氧化硅材料,然而其氮含量仅为1 wt%;同年 Mokaya 等^[17]通过氨气高温氮化的方法合成了具有 MCM-48 结 构的氮氧化硅材料,然而其氮含量也只有14.8 wt%.从 2001年本课题组开始从事氮氧化物有序介孔材料研究, 先后制备出了氮含量为 18 wt%左右的氮氧化硅酸铝有 序介孔材料^[18]和以 SBA-15 为前驱体制备出了氮含量为 20 wt%、比表面积为 390 m²·g⁻¹的有序介孔氮氧化硅材 料^[19].

介孔氧化硅MCM-41具有更大的比表面积,并且其

典型的孔径为 3 nm 左右, 作为催化剂来说其具有更大的优势, 如更高的活性、更好的孔道择形催化性能等. 然而, 具有 MCM-41 结构的介孔氧化硅的热稳定性比介孔氧化硅 SBA-15 的差, 这就给制备高氮含量的氮氧化 硅 MCM-41 提出了更高的难度. 幸运的是, 一方面我们 通过改变合成工艺合成出更稳定的氧化硅 MCM-41, 另一方面, 经过多年的氮化工艺研究, 寻找出了更优的氮 化条件, 可以制备出更高氮含量的有序氮氧化硅介孔材料. 本课题组制备出了氮含量高达 23.01 wt%、比表面 积为 665.4 m²•g⁻¹的有序介孔氮氧化硅分子筛, 并且对 该分子筛的结构和组成进行了较为深入的研究, 并通过 碱性催化的指示反应研究了该类材料的碱催化活性.

1 实验部分

1.1 稳定的有序介孔结构的氧化硅 MCM-41 的合成

在大量文献报道的 MCM-41 合成工艺的基础上,通 过优化合成工艺,成功合成出稳定的 MCM-41 前驱体. 一次典型的合成过程描述如下:首先将 0.8 g 的氢氧化 钠(NaOH, >96%)加入到 200 mL 的 35 ℃的去离子水 中,然后再将 4.85 g 的模板剂十六烷基三甲基溴化胺 (CTAB)加入到去离子水中,猛烈搅拌 1 h 以后,将 24.8 mL 的正硅酸乙脂(TEOS, >98%)缓慢加入到去离子水 中(大约需要 5 h),并且伴随着剧烈的搅拌,再把所得的 胶体在 35 ℃老化 24 h. 最后把所得的均匀胶体装入到 高压釜中,在 120 ℃保温 48 h. 凝胶混合物的最终化学 摩尔组成为 1SiO₂-0.12CTAB-0.12Na₂O-100H₂O. 分离 出的固体产物经去离子水水洗、80 ℃真空干燥得到 MCM-41 介孔材料的前驱体.部分前驱体在 550 ℃空气 中处理 12 h 脱除模板剂,并命名为 MCM-41 样品,作为 参比样品.

1.2 高氮含量的氮氧化硅 MCM-41 有序介孔材料的制备

考虑到氮化的活性,本文采用含模板剂的 MCM-41 作为前驱体以降低氮化的活化能.将前驱体放入氧化铝 料舟中,在有流动氨气(经过脱水处理后的)的石英管炉 中氮化. 氨气的流量为 1000 mL/min,氮化温度在 950 和 1000 ℃之间变化,氮化时间在 8 和 24 h之间变化.在 氮化之前,将炉管抽真空,用 N₂冲洗两遍,并且通 N₂ 直到 500 ℃后换通氨气.等氮化完成,温度降至 500 ℃ 后再换通 N₂.氮化后的试样分别按照氮化时间和氮化 温度命名,如 *T-t*-NMCM-41(*T* 氮化温度;*t* 为氮化时间).

1.3 表征

1.3.1 氮含量分析

对试样的氮含量,采用了 CNH 元素分析仪方法进

行定量分析. CNH 元素分析仪是 Model 2400 CNH Elemental Analyzer, Perkin-Elmer, Norwalk, CT 型, 分析条 件: 1000 ℃, 添加 Ag₂WO₄+MgO 作为高温氧化剂; 每 一个样品分析两次, 取其平均值.

1.3.2 N2吸附-脱附分析

用 Micromeritics ASAP2010 型自动吸附比表面仪测 定样品在液氮温度下的吸附--脱附曲线、比表面积、孔 容和孔径;根据相对压力在 0.05~0.2 之间的吸附数据 用 BET 法计算比表面积,用 BJH 法计算介孔相的孔径 分布,用 *t*-plot 法计算微孔孔容和微孔比表面积,根据 等温线的脱附分支计算介孔相结构特征.测定之前,所 有样品都在 100 ℃真空脱水处理 1 h,在 200 ℃脱气处 理 4 h.

1.3.3 X 射线衍射(XRD)

利用 D/max2550V 型 X 射线多晶衍射仪分别在 $1.8^{\circ} < 2\theta < 10^{\circ}$ 的扫描范围内,以分别获得试样的小角 X 射线衍射图谱和广角 X 射线衍射图谱,分别分析样品的 孔结构的有序性和相对结晶度情况.分析条件:管电压 40 kV,管电流 100 mV, Cu K α , λ =0.15418 nm. 铜靶(40 kV, 60 mA),扫描速度为 1 (°)/min.

1.3.4 透射电镜(TEM)

高分辨透射电镜(HRTEM)照片由日本电子公司 JEOL2010CX 型透射电镜拍摄,加速电压 200 kV. 1.3.5 红外光谱分析

采用 Perkin-Elmer1600 FT-IR 型红外光谱分析仪采 集试样的红外光谱.

1.3.6 固体核磁共振分析

固体核磁共振谱在型号 Bruker DSX-300 的仪器上 收集.¹H和²⁹Si 的共振频率分别为 300.13 和 59.62 MHz. 主要实验参数为:¹H和²⁹Si 的 90°脉宽分别为 4.1 和 4.5 µs, 4 mm 转子的魔角旋转速度为 5 kHz. 高分辨²⁹Si 和 ¹H 谱通过 CP/MAS/DD(交叉极化, 魔角旋转和质子高功 率去偶)实验得到, 交叉极化(CP)时间为 3.5 ms.

2 结果与讨论

2.1 孔结构表征

从表1中可以清楚地看到,氮化处理以后所有试样的比表面积均明显下降,这是由于经过相对高温、长时间的热处理之后,引起了晶格的收缩,从而引起了孔径的缩小所至.此外,在氮化处理的试样中,随着氮含量的增加,比表面积略微有所增大,在其它文献中也发现了类似的现象^[15,17],这可能是由于随着更多的氧原子被氮原子取代,无机墙体的密度有所降低所致.另外,除了试样 1000-24-NMCM-41 以外,其它所有的氮化处理的试样的孔墙的壁厚均有所增大.

N₂吸附-脱附方法是研究多孔材料的重要研究手段.图 1(a)是氮化前后一些试样的等温线,从图中曲线可以看出,所有试样都显示了典型的 IV 型等温线特征,具有毛细管凝聚发生在均匀的孔道中,并且没有脱附滞后现象.对母体 MCM-41 而言,毛细管凝聚发生在相对压力0.34~0.42范围内,而对在950 ℃氮化后的试样来说,毛细管凝聚发生在相对压力为0.22~0.32的区域内;对在 1000 ℃氮化的试样来说,毛细管凝聚发生在相对压力为0.17~0.27 的区域内,这表明经过高温氮化处理后试样的孔径均明显地缩小.图 1(b)更清晰地表明氮化以后孔径明显缩小.这主要是由于经历了相对剧烈的热处理以后,晶格发生较大收缩而引起孔径缩小.

介孔材料孔结构的有序性可以通过小角 X 射线衍 射来表征. 图 2 是所有试样的小角 X 射线衍射图谱. 从 图上可以看出,试样在经过高温长时间氮化以后,对应 于(100),(110)和(200)的衍射峰的强度均有所降低,这表 明氮化以后试样的有序性遭到一定程度的破坏,但是从 图上仍可以清楚地看出,氮化以后试样的(110)和(200) 的衍射峰仍存在,这说明即使经过高温长时间的氮化以 后,介孔材料仍具有一定的长程有序性. 特别是对在 950 ℃氮化的试样来说,各个衍射峰更清晰可见,这两 个试样的有序性仍然比较高. 另外,还可以发现氮化以

表1 研究试样的组成、d值以及结构特性 "

Table 1 Elemental composition, d spacing and textural properties of studied MCM-41 materials						
Sample	N content/wt%	<i>d</i> ₁₀₀ /nm	$A_{\text{BET}}/(\text{m}^2 \cdot \text{g}^{-1})$	D _{BJH} /nm	$V_{\rm BJH}/({\rm cm}^3 \cdot {\rm g}^{-1})$	Thickness of pore wall/nm
MCM-41	—	4.285	828.2	3.07	0.81	1.88
950-8-NMCM-41	14.25	3.839	620.5	2.46	0.52	1.97
950-18-NMCM-41	19.12	3.871	640.9	2.44	0.53	2.03
1000-8-NMCM-41	22.20	3.773	642.3	2.39	0.49	1.97
1000-18-NMCM-41	22.97	3.805	649.0	2.45	0.45	1.94
1000-24-NMCM-41	23.01	3.709	665.4	2.52	0.48	1.76

^aA_{BET}: BET surface area; D_{BJH}: BJH pore diameter; V_{BJH}: BJH pore volume.

图1 试样 MCM-41 和 NMCM-41 的吸附脱附等温线(a)和 BJH 孔径分布区曲线(b)

Figure 1 (a) Adsorption-desorption isotherms of some samples at 77 K; (b) BJH pore size distribution of some samples calculated from the adsorption branch of the isotherm

后所有的衍射峰都向高 20 方向移动(d 值降低), 这表明 氮化以后 MCM-41 材料的晶格发生了较大的收缩(> 9.3%).

图 2 试样 MCM-41 和 NMCM-41 的小角 XRD 图谱 Figure 2 Low-angle XRD patterns of the MCM-41 and NMCM-41 samples

```
图 3 是氮含量为 23.01 wt% 的试样 1000-24-NMCM-
```

41 的高分辨透射电镜的照片和电子衍射图. 从图上清 楚地看到此材料仍然保持了良好的 MCM-41 的有序六 角孔结构特征. 从照片上可以估计孔道的大小大约为 2.5 nm, 与 N₂吸附-脱附测得的结果很一致.

图 3 试样 1000-24-NMCM-41 的有代表性的高分辨透射电子 显微镜像及选区电子衍射

(a) 电子束平行于孔道方向;(b) 电子束垂直于孔道方向

Figure 3 Representative HRTEM images and electron diffraction of the sample 1000-24-NMCM-41

(a) electron beam parallel to the pore channels; (b) electron beam perpendicular to the pore channels

2.2 氮化机制及表面组成研究

在结合氮的过程中, 氨气 NH3 与前驱体表面的反应 占主导地位. 根据相关文献报道, 结合本文对介孔氮氧 化硅材料的表面组成研究,认为无定形氧化硅介孔材料 的氮化过程如图 4 所示. 氨气分子首先吸附在氧化硅表 面上的 Lewis 酸性位上, 并反应生成 Si-NH₂[图 4(a)] 或生成 Si-NH₂和 Si-OH 基团[图 4(b)]. Si-NH₂和 Si-OH 基团进一步反应生成 Si-NH-Si, 同时释放一 分子的水[图 4(c)]. 亚胺 Si-NH-Si 再和 Si-OH 缩合 生成氮化硅,并同时再释放一分子的水[图 4(d)]. 然后 氮再通过扩散作用进入到骨架当中.分析这些氮化反应 过程,不难发现,氮化过程是一个可逆过程,并且每一 步氮化反应均生成水,这表明要使氮化不断进行,必须 尽快将生成的水带走而促进反应正向进行,否则氮化就 会停止. 这表明氮化过程中氨气流量是影响氮化过程的 一个重要因素,同时氨气中的水含量也是一个重要因 素.氮化是从材料的表面开始的,因此材料的表面形貌 会严重影响氮化速率和氮化率.对介孔氧化硅而言,其 巨大的比表面积不仅极大地加速了氮化速率,而且其薄 的孔壁大大地提高了该类材料的氮化程度.

皆 4 氨气与介孔氧化硅衣面的反应 **Figure 4** NH₃ reaction with mesoporous silica surface

X 射线研究结果表明,高温氮化后的氮氧化硅介孔 材料的墙体仍然为无定形态,而红外光谱技术是研究无 定形的网络结构的一种有效手段,这种技术不仅可以研 究其表面的官能团,而且还可以研究骨架材料的结构变 化,如图 5 中的硅醇键[≡Si(OH)],硅氨基 [≡Si(NH₂)] 和硅亚胺基 (或硅氮烷)[≡Si—NH—Si≡].氮氧化硅介 孔材料的墙体是由具有不同O:N 比的 Si(O,N)₄四面体 组成.关于氧化硅和氮氧化硅材料的一些特征红外吸收 峰在表 2 中已经列出^[20~22].表中吸收峰位的数据都是来 自于结晶陶瓷材料或简单的聚合物,因此在无定形的氮 氧化硅材料中实际的吸收峰宽化了,并且发生了移动 (由于无定形的结构以及组成分布的变化).

图5是试样MCM-41, NMCM-41和结晶氮化硅的一 组红外光谱曲线. 在氧化硅的红外图谱中, 1100 cm⁻¹ 附 近吸收带对应于非对称 Si-O-Si 的伸缩振动峰, 而 800 cm⁻¹附近吸收带对应于三维结构中对称 Si-O-Si 的弯曲运动, 475 cm⁻¹ 吸收带对应于三维结构中对称 Si-O-Si 的弯曲运动. 从这组曲线可以看出, 随着氮 含量的增加, 介孔材料吸收谱的峰形逐渐趋近于结晶氮 化硅的吸收谱, 900 cm⁻¹ 附近的吸收带逐渐形成, 同时 800 cm⁻¹ 的吸收带逐渐消失. 比较各个氮氧化硅试样 NMCM-41 与结晶氮化硅试样的的吸收谱, 900 cm^{-1} 附 近的吸收带逐渐形成是由于 Si-NH₂, Si-NH-Si 和 Si—N—Si 基团的形成引起的. 1100 cm⁻¹ 附近波段的逐 渐消失表明 SiO₄ 四面体的逐渐消失. 在 5 个 NMCM-41 试样中, 1550 cm⁻¹的吸收带逐渐形成, 这个吸收带是由 Si(NH2)2 的振动引起的. 此外, 氮化以后, 试样的吸收 带随着氮含量的增加而逐渐宽化,这是由于随着氮含量 的增加,组成的不断变化引起的.

图 5 部分试样的红外光谱 Figure 5 Infrared spectra (in KBr) of some samples tested

Peak position/cm ⁻¹	Absorption mode			
475	O—Si—O bending			
800	Si—O—Si bending			
850~900	Si—N—Si			
900	Si—NH—Si asymmetric stretch from bridging silazane			
932, 938	Si—NH _x from silylamine and disilazane groups			
960	Si—O, nonbridging Si—O such as silanol			
1170	N—H imide bending			
1100, 1200	Three fold degenerative stretching of SiO ₄ tetrahedra			
1550 and shoulders	Geminal Si(NH ₂) ₂			

表 2 氧化硅或氮氧化硅的一些特征吸收频率 **Table 2** Characteristic infrared absorption frequencies for Si—N and Si—O moieties^[20~22]

由于固体核磁共振具有超强的分析能力,经常被用 来评价材料的表面组成. 本文采用了固体核磁共振技术 进一步评价分子筛的氮化情况.图6是样品MCM-41和 氮结合试样 NMCM-41 的²⁹Si 魔角旋转核磁共振谱,从 这个图谱上可以清楚看出,随着氮化程度的深入,墙体 中组成的变化情况. 从文献可知^[23], SiO₂ (Si-O₄)的化 学位移大约是在 δ -112 附近, 表面的硅醇键 Si—OH (SiO₃—OH)的化学位移大约是在 δ —100 附近, 而表面 的 SiO₂—(OH)₂ 的化学位移大约是在 δ —90 附近. 从样 品 MCM-41 的谱线上发现, 该样品的表面存在大量的硅 醇键 Si-OH 和一些 Si(OH)₂, SiO₄ 基团. 该样品在 950 ℃氮化以后,具有不同O:N比的Si(O,N)4四面体大量 地形成, 但是样品初始的 Si-OH, Si(OH)2 和 SiO4 仍大 量存在,氮化不够完全.而在 1000 ℃氮化后的试样 (1000-8-NMCM-41 和 1000-24-NMCM-41)中氮化反应更 加完全,大量的无定形氮化硅、SiN4四面体或Si2NH和 Si(NH)₂基团形成(δ -48~-43), 而 SiOH, Si(OH)₂和 SiO₄的信号已经很弱. 仔细比较这些图谱还可以发现在 950 ℃氮化处理更有利于 Si₂N₂O (δ=-63)相的形成, 然而不存在单一的 Si₂N₂O 相. 在氮化过程中, 很可能是 氦原子随意地取代氧原子,而这种取代即使已经形成了 Si₂N₂O相也不会停止. 而组成的相对变化可以通过调整

图 6 试样 MCM-41 和氮结合的试样 NMCM-41 的 ²⁹Si MAS NMR CP 谱

Figure 6 ²⁹Si MAS NMR CP spectra for MCM-41 and some silicon oxynitride MCM-41 samples

氮化条件来控制.

根据上面的结果和分析可知,本文已经成功合成了 具有高氮含量、高比表面积、平均孔径为 2.5 nm 具有 MCM-41 孔结构特征的氮氧化硅有序介孔材料.

2.3 碱催化性能研究

Knoevenagel 缩合反应经常在有机合成中用以从含 有羰基的有机物制备烯烃,此类反应通常在温和的反应 条件下,在碱催化剂作用下完成.因此,Knoevenagel 缩 合反应经常被用来作为评价氦氧化物催化剂的碱性催 化活性的指示反应.本文选取了苯甲醛和丙二腈的缩合 反应作为指示反应,这一反应的反应方程如 Scheme 1 所示(T代表反应温度).

Scheme 1

可见此反应没有副反应发生,产物也很单一,除了 水之外,只有苯丙烯二腈.在研究氮氧化硅 MCM-41 分 子筛的碱催化性能之前,首先需要做两个实验:(i)不加 任何催化剂;(ii)加入 0.5 mmol 的氨气作为催化剂.在 第一个实验中,发现即使是经过了几天的反应,苯甲醛 的转化率也非常低,可以忽略不计;在第二个实验中, 发现在 30 ℃的温度下,反应了 4 h 后苯甲醛的转化率 也仅为不到 4%.因此,对于本催化反应,氨气的影响几 乎可以忽略不计.

在 30 ℃温度下, 对于苯甲醛和丙二腈的缩合反应, 苯甲醛的转化率与反应时间的关系见图 7(a). 在此反应 中未经氮化处理过的母体分子筛 MCM-41 显示了很低 的催化活性(<5%),而其它三个具有代表性的试样 (950-8-NMCM-41, 950-18-NMCM-41 和 1000-24-NMCM-41)则显示出了相当高的活性,以至在 30 ℃反应 3 h 后, 三个试样的苯甲醛的转化率均分别为 88%, 93%和 99%. 随着氮含量的增加,苯甲醛的转化率逐渐增大,这是由 于随着氮含量的增加,碱性位的数量也有所增多,从而 使催化效率提高. 除了高的氮含量形成高催化活性外, 大比表面积、大孔容以及有序的孔道结构也很重要.图 7(b)是试样 1000-24-NMCM-41 在不同温度下苯甲醛的 转化率与反应时间的关系,在80℃的反应条件下,反 应 40 min 后, 苯甲醛的转化率就达到 99%以上. 虽然关 于氮氧化硅的碱催化机理仍在讨论之中,我们认为分子 筛表面含氮基团(如一NH2, 一NH一和≡N)的存在应该 是引起碱催化活性的最根本的原因.

图 7 有序氦氧化硅 MCM-41 作为苯甲醛和丙二腈的缩合反应的催化剂的催化活性

(a) 不同试样在 30 ℃条件下的催化活性; (b) 试样 1000-24-NMCM-41 在 不同温度下的催化活性

Figure 7 Catalytic activity of the ordered silicon oxynitride MCM-41 catalysts in the Knoevenagel condensation of benzaldehyde with malononitrile

(a) catalytic activity of different samples at 30 $^\circ\!\!C$; (b) catalytic activity of the sample 1000-24-NMCM-41 at different temperature

3 结论

通过对具有 MCM-41 介孔结构的氧化硅前驱体(含 模板剂)的高温氨气氮化处理,成功地制备出高氮含量 的有序氮氧化硅介孔分子筛材料.通过有效的表征手段 对材料的孔结构特征和表面组成进行了深入、系统的研 究.研究结果表明,经过高温长时间的氮化之后,材料 不仅具有高氮含量(高达 23 wt%以上),而且仍能保持良 好的有序介孔结构.碱性催化研究表明,此类材料在苯 甲醛和丙二腈的缩合反应中显示出了极强的碱催化活 性.结合这种分子筛的特殊孔道结构(均匀的孔径分布, 且孔径为 2.5 nm 左右),使得氮氧化硅 MCM-41 介孔材 料在将来有可能成为一种有大分子参与反应的高效择 形碱性催化剂.

References

- 1 Lednor, P. W.; Ruiter, R. D. J. Chem. Soc., Chem. Commun. 1991, 1625.
- 2 Lednor, P. W. Catal. Today 1992, 15, 243.
- 3 Benftze, J. J.; Odriozola, J.; Marchand, A. R.; Laurent, Y.; Grange, P. J. Chem. Soc., Faraday Trans. 1995, 91, 4477.
- 4 Fripiat, N.; Parvulescu, V.; Parvulescu, V. I.; Grange, P. *Appl. Catal.*, A **1999**, 181, 331.
- 5 Fripiat, N.; Centeno, M. A.; Grange, P. *Chem. Mater.* **1999**, *11*, 1434.
- 6 Wiame, H. M.; Cellier, C. M.; Grange, P. J. Phys. Chem. B 2000, 104, 591.
- 7 Peltier, V.; Conanec, R.; Marchand, R.; Laurent, Y.; Delsarte, S.; Gueguen, E. *Mater. Sci. Eng.*, B 1997, B47, 177.
- 8 Kaskel, S.; Farrusseng, D.; Schlichte, K. Chem. Commun. 2000, 2481.
- 9 Kaskel, S.; Schlichte, K. J. Catal. 2001, 201, 270.
- 10 Farrusseng, D.; Schlichte, K.; Spliethoff, B.; Wingen, A.; Kaskel, S.; Bradley, J. S.; Schuth, F. Chem. Int., Ed. Engl. 2001, 40, 4204.
- 11 Stein, A.; Wehrel, B.; Jansen, M. Zeolites 1993, 13, 291.
- 12 Ernst, S.; Hartmann, M.; Sauerbeck, S.; Bongers, T. *Appl. Catal.*, A **2000**, 200, 117.
- 13 Xiong, J. M.; Ding, Y. J.; Zhu, H. J.; Yan, L.; Liu, X. M.; Lin, L. W. J. Phys. Chem. B 2003, 107, 1366.
- 14 Zhang, C.; Xu, Z.; Liu, Q.; Wan, K. Appl. Catal., A 2004, 258, 55.
- 15 Haskouri, J. E.; Cabrera, S.; Sapina, F. F.; Latorre, J.; Guillem, C.; Porter, A. B.; Marcos, M. D.; Amomos, P. *Adv. Mater.* 2001, *13*, 192.
- 16 Kaoor, M. P.; Inagaki, S. Chem. Lett. 2003, 32, 94.
- 17 Xia, Y.; Mokaya, R. Angew. Chem., Int. Ed. 2003, 42, 2639.
- Zhang, C.; Xu, Z.; Liu, Q.; Wan, K. J. Inorg. Mater. 2004, 19, 559 (in Chinese).
 (张存满, 徐政, 刘茜, 万克树, 无机材料学报, 2004, 19, 559.)
- 19 Wan, K.; Liu, Q.; Zhang, C. Chem. Lett. 2003, 32, 362.
- Wood, D. L.; Rabinovich, E. M. Appl. Spectrosc. 1989, 43, 263.
- 21 Nguyen, V. S.; Burton, S.; Pan, P. J. Electrochem. Soc. 1984, 131, 2348.
- 22 Fink, R.; Müller, B.; Rudakoff, G. J. Non-Cryst. Solids 1992, 145, 99.
- 23 Weeren, R. V.; Leone, E. A.; Curran, S.; Klein, L. C.; Danforth, S. C. J. Am. Ceram. Soc. 1994, 77, 2699.

(A0504213 SONG, J. P.; LING, J.)