•研究论文•

三代碳硅烷光致变色液晶树状物的光化学研究 ——端基含 108 个 4-丁氧基偶氮苯介晶基元

张其震*," 殷晓颖" 王 艳"

(山东大学 "化学化工学院 "环境科学与工程学院 济南 250100)

摘要 报道了新化合物含 108 个丁氧基偶氮基元端基的三代(D3)碳硅烷光致变色液晶树状物在各溶液中的反-顺光异构化(光致变色)反应速率常数 k_p ,光化学回复异构化正/逆反应速率常数 k_t 和 k_c ,热回复异构化反应速率常数 k_H ,光化学回复异构化反应平衡常数 k_t/k_c ,活化能 *E*,异构化转换率及热回复异构化反应中的反-顺异构体组分比. D3 的光致变色反应速率常数为 10⁻¹ s⁻¹,而含偶氮基元的光致变色液晶聚硅氧烷的光致变色反应速率常数为 10⁻⁸ s⁻¹,因此,D3 的光响应速度比后者快 10⁷ 倍.

关键词 光致变色液晶树状物;光电信息存储材料;反-顺光异构化;光回复异构;热回复异构;活化能;异构转换率

Study on Photochemistry of Carbosilane Photochromic Liquid Crystalline Dendrimer of the Third Generation Containing 108 4-Butoxyazobenzene Mesogenic Groups on Periphery

ZHANG, Qi-Zhen^{*, a} YIN, Xiao-Ying^a WANG, Yan^b (^a School of Chemistry and Chemical Engineering, ^b School of Environmental Science and Engineering, Shandong University, Jinan 250100)

Abstract The photochemical behavior of a new photochromic liquid crystalline (LC) carbosilane dendrimer of the third generation (D3) was described. 108 4-butoxyazobenzene mesogenic fragments were attached to its periphery. The reaction rate constant of *trans/cis* photochemical isomerization k_p , thermal back-isomerization k_H and photochemical back-isomerization k_t and k_c of D3 were described. The transition percent of isomer A/A_0 , activation energy *E*, *trans/cis* ratio in thermal back-isomerization A'/A_0 and equilibrium constant of photochemical back-isomerization reaction k_t/k_c of D3 were discussed. Photochromic rate constant of D3 is 10^{-1} s⁻¹, but that of photochromic LC polysiloxanes containing azobenzene moieties in side chain is 10^{-8} s⁻¹, thus the photoresponsive rate of LC dendrimer D3 is 10^7 times larger than that of the latter.

Keywords photochromic liquid crystalline dendrimer; photo-electro informational storage material; *trans/cis* photo-isomerization; photochemical back-isomerization; thermal back-isomerization; activation energy; transition percent of isomer

将光致变色性和液晶性结合于一体的光致变色液 晶高分子材料具有普通有机和高分子光致变色材料所 不具有的优点.树枝状大分子既有高聚物的优异性能又 能克服后者光响应速度慢的缺陷,本文报道的含 108 个

^{*} E-mail: qzzhang@sdu.edu.cn

Received October 10, 2004; revised December 3, 2004; accepted January 24, 2005. 国家自然科学基金(Nos. 29874020, 59573029)和山东省自然科学基金资助项目.

丁氧基偶氮苯基元树状物是一种光致变色液晶树状物, 它兼有树枝状大分子,液晶和光致变色及光响应性三者 的优点.

Liao, Anna, Bobrovsky 和 Yokoyama 等^[1~6]合成了偶 氮基元分别位于树中心、树枝链和树外围的树状物,但 对其光化学反应的定量数据(如速率常数)报道较少,在 内容上侧重于光异构化和热回复异构化,而树状物的光 回复异构化反应平衡常数 k_t/k_c,光回复异构化反应速率 常数 k_t和 k_c,至今未见报道,并且上述树状物均无液晶 性.

我们通过分子设计手段改变树中心、树枝链以及树 外围介晶基元种类、数目、端基及其配合物,旨在构筑 一系列新型功能性树状大分子,研究其合成、结构、液 晶性及光化学反应,开发新一代液晶材料,光电信息存 储材料和色谱固定相^[7-15].本文主要报道含 108 个丁氧 基偶氮苯端基的三代光致变色液晶树状物的反-顺光异 构化,光回复异构化和热回复异构化反应速率常数,光 回复异构化反应平衡常数,活化能,异构转换率及组分 比 A'/A。等物理参数.

1 实验部分

1.1 仪器和试剂

HP8451A 型二极管阵列式分光光度计,美国 Oriel Hg-Xe 弧灯,瑞士秒表,1/10 s,501 型超级恒温槽.三代 (D3)、二代(D2)、一代(D1)和零代(D0)树状物和偶氮基 元化合物(M5)的制备及液晶性见文献[7~10],D2,D1, D₀和 M5 的光反应见文献[11~13],其他试剂为分析纯. D3 的结构式如下:

1.2 光反应

光源是功率为 200 W 的 Hg-Xe 灯的白光经滤光片 或溶液滤光器以取得窄带光.溶液滤光器是由一组盛溶 液的 0.5 cm 石英比色皿组成. 360 和 470 nm 滤光片是 930 型荧光光度计附件(上海第三分析仪器厂).参照文献[16]在1 cm 带磨口塞石英杯中进行光反应,记下光照时间,记录不同光照波长及时间溶液的 UV-vis 吸收光谱.

2 结果与讨论

2.1 反-顺光异构化(光致变色)反应

浓度为 3.00×10⁻⁵ mol/L 的 D3 的 THF 溶液光照前 (t=0)的UV-vis吸收曲线(图1曲线1)的300~410 nm(最 大吸收波长 λmax=357.6 nm)和 400~600 nm (λmax= 442.0 nm)区域出现的强吸收峰和弱肩峰分别归属于反 式 D3 的 π-π*和 n-π*电子跃迁. 用 360 nm 紫外光照射后, 强峰的 λ_{max} 处吸光度迅速减小,峰位蓝移,肩峰的 λ_{max} 处吸光度略有增加,峰位略有蓝移.曲线2为长时间光 照(t=5 min)至光稳定态(延长光照时间吸收曲线的峰 形、峰位不变)的吸收曲线, 它的 2 个等消光点(拐点)分 别在 321.0 和 424.5 nm. 参照小分子和高分子光化学的 实践^[17],根据360 nm光照 t 时刻各吸收曲线在 π-π*跃迁 区域 λ_{max} 处吸光度的减小, 2 个等消光点的出现, 曲线 2 和顺式偶氮苯小分子吸收曲线的近似性, 以及图中除了 峰位移动没有增加新吸收峰等情况, 认为反式 D3 在 360 nm 紫外光照条件下仅发生了反-顺光异构化反应, 部分反式 D3 转变为顺式 D3, 未发生光交联或光降解等 副反应. 但曲线 2 不是顺式 D3 的吸收曲线, 除曲线 1 是反式 D3 的吸收曲线之外, 360 nm 光照下 D3 的其它各 吸收曲线均是某一比例的反-顺式 D3 相互叠加的吸收 曲线,以曲线2的π-π*跃迁区域吸收峰为例,若已知D3 在光稳定态的反-顺异构体组分比[测定曲线 2 与曲线 1 强吸收峰在 λmax 处吸光度比值(见 2.3 节)或用色谱法分

图 1 树状物 D3 在 THF 中光照(360 nm)前(1)、后(2)的紫外-可见光谱变化

Figure 1 UV-vis spectra of dendrimer D3 in THF before (1) and after (2) irradiated at 360 nm

Curves 1 to 2 refer to irradiation time of 0, 1, 2, 3, 4 and 180 s, respectively

离,用¹H NMR 法测定反-顺 D3 含量],则可将曲线 2 的 π-π*跃迁区域吸收峰细分为分别归属于顺式 D3 和反式 D3 的两条高斯曲线^[18],若已知各吸收带的标准吸收曲 线及其高斯曲线,则可绘出顺式 D3 和各种反-顺比 D3 的 UV-vis 吸收曲线,求出相应的最大吸收波长.光照前 后在氯仿和 THF 溶液中的 D0, D1, D2, D3 和 M5 的 UV-vis 光谱峰形大体上相似,表明三代树状物的树干对 于树外围末端偶氮基元的 UV-vis 吸收光谱无明显影响, 这一性质使三代树状物具有类似于小分子偶氮基元化 合物的光致变色性.

设A₀为光照前(t=0)的吸光度, A_t为光照(360 nm) t 时刻的吸光度, A_{∞} 为光照(360 nm) $t = \infty$ 时刻(5 min)的吸 光度,在 3.00×10^5 mol/L 的 D3 的 CHCl₃或 THF 溶液中 测定. 当 *t*=5 min 时为光稳定态, 实际上当 *t* 为 20 s 时, 它的 UV-vis 吸收曲线已经趋近光稳定态. 根据公式 $\ln[(A_0 - A_\infty)/(A_t - A_\infty)] = k_p t$ 作图(见图 2), 直线的斜率即 为D3在各溶液中的反-顺光异构化速率常数 k_n (s⁻¹),由 图 2 及表 1 可见: 在氯仿及 THF 中的 k_p 值的顺序均为: D1>D2>D3; D3 在氯仿中的 kp值小于它在 THF 中的 $k_{\rm p}$ 值, D1的情况与D3相同, 但D2的情况与D3相反. 三 代、二代、一代和零代树状物及基元 M5^[11~13]在各溶液 中的 kp 值为同一数量级(10⁻¹ s⁻¹),表明树主干对于树外 围基元的能量转移和空间位阻束缚影响较小,而含偶氮 基元的侧链聚硅氧烷在相同溶液中的 kp 值的数量级均 为 10⁻⁸ s^{-1[16]}, 前者的光响应速度比后者快7个数量级, 表明三代、二代、一代和零代树状物无高聚物链缠结及 主链对侧链的束缚,因而具有较好的光致变色性和光响 应特性.

有关树状大分子代数对于光化学异构化过程中动 力学的影响是一个重要论题,但目前尚未见相关文献报 道,树状物代数的影响可能源于偶氮端基在局部的高浓 度,树状物随代数增加,其端基以几何级数定律形式增 加,在 D0-D1-D2-D3 系列树状物中,其端基数目 m= 3ⁿ×4 (n 为代数),而树状物的表面仅以半径的平方形式 增加(s=πr²),因此,每一个端基所占据的表面曲率随代 数的增加以近似于指数级数减少,从而增加了端基之间

图 2 三代(D3)、二代(D2)和一代(D1)树状物的 $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ 对照射时间 t (λ_{irr} =360 nm)作图 **Figure 2** Plots of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ vs. irradiation time t for dendrimers D3, D2 and D1 in (a) CHCl₃ and (b) THF under irradiation conditions (360 nm, 1, 2, 3, 4, 5, 6, 8 and 10 s) a—CHCl₃; b—THF; 1—D1; 2—D2; 3—D3

		CHCl ₃				THF			
	D3	D2	D1	D0	D3	D2	D1	D0	
$k_{\rm p}/(10^{-1} {\rm s}^{-1})$	1.59	5.18	6.01	5.67	3.84	4.35	6.24	5.14	
$k_t/(10^{-2} \text{ s}^{-1})$	2.78	15.3	6.51	4.82	2.70	4.86	6.43	5.05	
$k_{\rm c}/(10^{-3}~{\rm s}^{-1})$	6.36	44.9	14.9	8.68	5.25	9.06	12.2	10.3	
k_t/k_c	4.372	3.41	4.369	5.55	5.14	5.36	5.27	4.90	
A/A_0 (360 nm)	0.30	0.262	0.258	0.23	0.49	0.21	0.20	0.18	
$k_{\rm H}/(10^{-4} {\rm s}^{-1})$	1.15/18	18.67/12	3.91/13	8.61/18	3.41/18	0.52/12	0.26/14	0.12/18	
T/°C	2.49/23	19.00/25	25.8/25	61.40/25		1.68/25	1.57/25	1.44/25	
	17.7/28	21.70/30	31.7/30	68.70/30		1.85/30	1.72/30	1.65/30	
		26.80/35	42.3/35	75.30/35		1.95/30	1.87/35	1.87/35	
$E/(10^{-4} \mathrm{J} \bullet \mathrm{mol}^{-1})$	0.19	2.29	3.36	1.53		1.06	1.37	1.98	

表1 三代(D3)、二代(D2)、一代(D1)和零代(D0)树状物在 CHCl₃和 THF 中的 *k*_p, *k*_t, *k*_c, *k*_t/*k*_c, *A*/*A*₀, *k*_H和 *E* 值 **Table 1** *k*_p, *k*_t, *k*_c, *k*_t/*k*_c, *A*/*A*₀, *k*_H and *E* of dendrimers D3, D2, D1 and D0 in CHCl₃ and THF

的相互排斥作用及空间障碍,反-顺光化学异构化反应 的结果是部分反式异构体转变为顺式结构,顺式异构体 为弯曲形结构,反式异构体近似地为线型结构,它们的 空间排斥作用是顺式大、反式小,由于高代数树状物的 端基局部浓度大(每一个端基占据的表面小),空间排斥 作用大,因此高代数树状物的反/顺光异构化速率常数 小于对应的低代数树状物,这是一种树状大分子的结构 效应.

2.2 光回复异构化反应

设 A_0 为光照 (360 nm)前 λ_{max} 处的吸光度, A_{∞} 为经光 照(360 nm) t=∞时刻(5 min)达到光稳定态,测其 λ_{max} 处 的吸光度, A_t 为再用 470 nm 可见光照射 t 时刻测其 λ_{max} 处的吸光度, Ae 为用 470 nm 可见光照射后, 光回复异构 化正反应和逆反应达到动态平衡时(本例 t=5 min)的吸 光度. C_{te}和 C_{ce}分别为达到光回复异构化反应动态平衡 时,反式异构体和顺式异构体的浓度,二者之和为C0,kt 为470 nm 可见光照射时, 光回复过程中, 由顺式异构体 转变为反式结构(即光回复异构化正反应)的一级动力学 反应速率常数, k_c为由反式异构体转变为顺式结构(即光 回复异构化逆反应)的一级动力学反应速率常数. 二者 比值 k_i/k_c 为光回复异构化反应平衡常数, 据此可评估 顺-反式两种异构体所处的平衡位置,异构化的结果和 回复的程度. A₀, A_∞, A_t和 A_e的测定方法如下: 以 D3 为 例,用 360 nm 紫外光照射 3.00×10⁵ mol/L 的 D3 的 CHCl₃或 THF 溶液达到光稳定态,按 2.1 节方法测出 A₀ 和A... 然后更换滤光片,用470 nm可见光照射 t 时刻测 定各时刻在 300~600 nm 范围内 UV-vis 吸收曲线图及 其λ_{max}处的吸光度 A_t在 360 nm 光照时随光照时间的延 长, λ_{max}处的吸光度下移, 在 470 nm 光照下, 随时间的 延长, 吸光度上移. 后者是一个光回复异构化过程, 直 至在一个平衡位置稳定下来.该位置顺、反两种结构处 于动态平衡之中,两者仍存在相互转化过程,但转变速 率相同. 即溶液的吸光度相对稳定, 本例中以用 470 nm 光照 300 s(实际上几十秒时已经趋近平衡)时的吸光度 A_e为平衡时的吸光度. 根据公式

$$\ln \frac{A_e - A_{\infty}}{A_e - A_t} = \frac{A_0 - A_{\infty}}{A_e - A_{\infty}} k_t t$$

作图, 直线斜率为 $\frac{A_0 - A_{\infty}}{A_e - A_{\infty}}k_t$, 求出 k_t (s⁻¹), 再根据光回

复异构化正/逆反应达到平衡时的条件:

$$k_{\rm c} = \frac{C_0 - C_{\rm te}}{C_{\rm te}} k_{\rm te} = \frac{A_0 - A_{\rm e}}{A_{\rm e} - A_{\rm \infty}} k_{\rm t},$$

求出 $k_{\rm c}$ (s⁻¹).

由表1及图3可见:在氯仿和THF中平衡常数 k_t/k_c

的顺序为: D0>D3>D1>D2 (CHCl3)和D2>D1>D3> D0 (THF); 在氯仿及 THF 中速率常数 k_t 及 k_c 的顺序为: D2>D1>D0>D3 (CHCl₃)和 D1>D0>D2>D3 (THF); D3, D2 和 D1 在氯仿中的 k_l/k_c值分别小于其在 THF 中 的对应值, D0 的情况与此相反, 即 D0 在氯仿中的 k_l/k_c 值大于它在 THF 中的对应值; 而其 k 和 k 的情况与此 相反; D3, D2 和 D1 在氯仿中的 kt 和 kc 值分别大于其在 THF 中的对应值, D0 的情况与此相反, 即 D0 在氯仿中 的 k 或 k 值小于它在 THF 中的对应值. 三代、二代、 一代和零代树状物的 kt/kc 值在 3.41~5.55 之间, 相差 2.14, 三代树状物在氯仿及 THF 中的 k_l/k_c 值分别为 4.37 和 5.14, 相差仅 0.77, 表明树主干的空间束缚, 能量转 移及溶剂化作用对于树外围偶氮基元的光化学活性影 响较小,这和存在链缠结的高聚物^[16]不同. k,/k。值越趋 近于 1, 表示光响应的可逆性好, 有作为光控开关的应 用前景.

图 3 三代树状物在 CHCl₃和 THF 溶液中于光照射(470 nm) 下的光化学回复异构化一级动力学反应图

Figure 3 First kinetic reaction relation of photochemmical back-isomerization reaction for dendrimer D3 in $CHCl_3$ and THF solution under irradiation conditions (470 nm, 1, 2, 3, 4, 5, 6, 8 and 10 s)

1-CHCl3; 2-THF

2.3 反-顺式异构体组分比 A/A₀(异构转换率)

根据在 D3-D2-D1-D0 等多种样品的光化学实验中 均未发现与 Beer 定律有偏差的例子^[18],故直接从反式 D3 和顺-反混合体吸收曲线最大值的比值计算反式 D3 的异构化转换(为顺式)的程度(A₀, A_t和 A_{*}符号的物理意 义和测定方法见 2.1 节). A 是 A_t和 A_{*}符号的物理意 示反式偶氮苯在原组分中的相对百分含量,A/A₀值越小, 反式异构体转变为顺式异构体的比例越大,即异构体转 换率越大.由表 2 及图 4 可见:在达到光稳定态后,D3, D2,D1和 D0的 A/A₀值与溶液浓度无关,四者在氯仿和 THF 中 A/A₀顺序均为:D3>D2>D1>D0;其异构转换 率的顺序与 A/A₀值顺序相反(D3<D2<D1<D0).树状 物代数对于异构转换率的影响也可用"树状大分子的结 构效应"解释. 高代数树状物的每一个端基所具有的表 面低于同类低代数树状物,造成端基的局部高浓度,并 产生较大的排斥作用.此时弯曲状的顺式异构体比线型 的反式异构体有更大的空间排斥作用.因此代数越高反 式异构体所占比例越高, A/A0 值越大, 异构体转换率越 小. D2, D1 和 D0 在氯仿中的 A/A0 值均大于在 THF 中的 对应值,而D3在CHCl3中的A/A0值小于它在THF中的 对应值. 其原因基于树状大分子与溶剂的相互作用, "良"溶剂使树状大分子膨胀从而增加分子半径,减少端 基间的空间位阻作用,有利于顺式异构体所占比例增 加,导致 A/A0 值的减少和异构转换率的增加,而"劣"溶 剂则使树状大分子的树干压缩,从而减少分子半径,增 加端基间的空间位阻作用,有利于反式异构体所占比例 增加,导致 A/A₀值的增加和异构转换率的减少.在本例 中氯仿为G3的"良"溶剂, THF为G3的"劣"溶剂, 用360 和 470 nm 光轮流反复照射, 其 UV-vis 谱呈现良好可逆 性,说明 A/Ao 值与光照过程无关,仅与最后过程的光照 波长相关, 表明上述光异构化反应无其它光副反应.

图 4 三代(D3), 二代(D2), 一代(D1)和零代(D0)树状物的 *A*/*A*₀ 随光照时间 *t* 的变化

Figure 4 Plots of A/A_0 vs. irradiation time (*t*) for dendrimer D3, D2, D1 and D0 at λ_{irr} =360 nm in (a) CHCl₃ and (b) THF a-CHCl₃; b-THF (λ_{irr} =360 nm)

2.4 热回复异构化反应

 A_0 和 A_{∞} 符号的物理意义和测定方法见 2.1 节. 首先 测定无光照条件下 3.00×10⁵ mol/L 的 D3 的 THF 溶液 在 λ_{max} 处的吸光度 A_0 ,其次用 360 nm 光照该溶液 5 min 至光稳定态测定 D3 UV-vis 吸收曲线 π -π*跃迁区 λ_{max} 处 的吸光度 A_{∞} .第三,分别测定控温于 18,23 和(28± 0.05) ℃的各 t 时刻的 D3 溶液在 300~600 nm 范围内的 UV-vis 吸收曲线图及其在 π -π*跃迁区的 λ_{max} 处的吸光度 A_t . 由于在该过程中,时间增加, A_t 增大, $A_t \sim t$ 图呈上升 曲线,反式 D3 增多,这和反-顺光异构化反应(时间 t 增加, A_i减少, A_i~t 图呈下降曲线,反式 D3 减少)恰恰相反,是一个回复过程,并且没有光照,只有供热(控温),故称为热回复过程和热回复异构化反应.为此,以 360 nm 光照至光稳定态的 A₀为起点, A₀为终点代入一级动力学推导公式,可得

$$\ln \frac{A_0 - A_\infty}{A_0 - A_t} = k_{\rm H} t$$

作图后,直线斜率为热回复异构化反应速率常数 $k_{\rm H}$ (s⁻¹), 由表 1 及图 5 可见:同一温度下,D3 在氯仿中的 $k_{\rm H}$ 值小 于它在 THF 中的 $k_{\rm H}$ 值.偶氮苯的热回复过程是一个吸 热过程,升高温度有利于稳定反式异构体,因此温度越 高,D3,D2,D1 和 D0 的 $k_{\rm H}$ 值均比低温下的对应 $k_{\rm H}$ 值大, 热回复异构化速率和同样时间内所能回复到的最大值 A_t 也越大,热回复异构化速率常数 $k_{\rm H}$ 比光致变色反应速 率常数 $k_{\rm p}$ 和光回复异构化反应速率常数 $k_{\rm t}$ 及 $k_{\rm c}$ 要小得 多,分别相差 3 个和 2 个数量级.

图 5 树状物 D3 在 CHCl₃中,在 360 nm 光照射至光稳定态后的热回复异构化一级动力学反应图

Figure 5 First kinetic reaction relation of the thermal backisomerization for dendrimer D3 in CHCl₃ after irradiation at the photostationary state at λ_{irr} =360 nm under experimental conditions (180, 360, 540, 720, 900, 1080, 1260, 1440, 1620 and 1800 s)

1—18 °C; 2—23 °C; 3—28 °C

2.5 活化能 E

根据公式
$$\frac{\mathrm{dln} k_{\mathrm{H}}}{\mathrm{d}T} = \frac{E}{RT^2}$$
, 积分得 $\ln k_{\mathrm{H}} = -\frac{E}{RT} + B$,

作 $\ln k_{\rm H} \sim \frac{1}{T}$ 图,得一直线,斜率为一<u>*E*</u> (*R*=8.341 J•mol⁻¹•K⁻¹),求出活化能 *E*. 由表 1 及图 6 可见,在氯 仿中 *E* 值顺序为 D3 < D0 < D2 < D1, D0 是一个例外,而 在 D3-D2-D1 树状物体系中,代数越高,活化能越小,说明高代树状物比低代树状物更容易发生热回复异构 化反应,更易转变为反式异构体,其原因是高代数状物

的端基的局部浓度大,它的空间排斥作用比低代树状物 大,这不利于具有弯曲结构的顺式异构体的存在.

图 6 三代树状物在 CHCl₃ 中热回复异构化反应中的活化能 Figure 6 Activation energy in thermal back-isomerization reaction for dendrimer D3 in CHCl₃

2.6 热回复异构化反应中的反-顺偶氮基元组分比 (A'/A₀)

光照前 D3 的 3.00×10^5 mol/L CHCl₃或 THF 溶液在 λ_{max} 处的吸光度为 A_0 (参见 2.1 节).用 360 nm 光照至光 稳定态后,避光,控温,发生热回复异构化反应,顺式 D3 自发地转变为 D3.时间增加,反式 D3 增多,记录各 t 时刻在 300~600 nm 范围的吸收曲线图及其在 λ_{max} 处 的吸光度 A'. A'/A₀ 值表示在 360 nm 光照达到光稳定态 后在热回复异构化反应中,反式偶氮苯异构体在原组分 中的相对百分含量.由图7可见,高温下D3 在氯仿中的 A'/A₀ 值高于低温下其对应值,说明升温可提高反式异 构体含量,高温下反式异构体更稳定;由图7可见,18 °C

图 7 树状物 D3 在 360 nm 光照射至光稳定态后的热回复异构化过程中 *A*'/A₀随时间的变化

Figure 7 Plots of A'/A_0 vs. time (*t*) of thermal backisomerization after irradiation ($\lambda_{irr} = 360$ nm) at the photostationary state for dendrimer D3 under experimental conditions (180, 360, 540, 720, 900, 1080, 1260, 1440, 1620 and 1800 s)

1-18 °C, CHCl₃; 2-23 °C, CHCl₃; 3-28 °C, CHCl₃; 4-18 °C, THF

在氯仿中 D3 的 A'/A₀ 低于它在 THF 中的对应值.

References

- Liao, L.-X.; Seilanci, F.; Mcgrath, D. V. J. Am. Chem. Soc. 2004, 126, 2181.
- 2 Liao, L.-X.; Junge, D. M.; Mcgrath, D. V. *Macromolecules* 2002, 35, 319.
- 3 Anna, C. S.; Chrimstrian, R.; Dieter, O.; Luis, M. Chembiochem. 2001, 2, 542.
- 4 Bobrovsky, A. Y.; Pakhomov, A. A.; Zhu, X.-M. Polym. Sci., Ser. A 2001, 43, 431.
- 5 Yokoyama, S.; Nakahama, T.; Otomo, A.; Mashiko, S. J. Am. Chem. Soc. 2000, 122, 3174.
- 6 Archut, A.; Azzellini, G. C.; Balzani, V.; Cola, L.; Voegtle, F. J. Am. Chem. Soc. 1998, 120, 12187.
- 7 Zhang, Q.-Z.; Liu, J.-Q.; Yin, X.-Y.; Zhang, J.-Z. Acta Chim. Sinica 2002, 60, 2232 (in Chinese).
 (张其震,刘建强,殷晓颖,张静智,化学学报, 2002, 60, 2232.)
- 8 Zhang, Q.-Z.; Liu, J.-Q.; Yin, X.-Y.; Zhang, J.-Z. Acta Chim. Sinica 2003, 61, 416 (in Chinese).
 (张其震,刘建强,殷晓颖,张静智,化学学报, 2003, 61, 416.)
- 9 Zhang, Q.-Z.; Yin, X.-Y.; Wang, D.-Q. Acta Chim. Sinica 2003, 61, 619 (in Chinese).

(张其震, 殷晓颖, 王大庆, 化学学报, 2003, 61, 619.)

- Zhang, Q.-Z.; Liu, J.-Q.; Li, A.-X.; Zhang, J.-Z. Acta Chim. Sinica 2004, 62, 312 (in Chinese).
 (张其震,刘建强,李爱香,张静智,化学学报, 2004, 62, 312.)
- Zhang, Q.-Z.; Liu, J.-Q.; Yin, X.-Y.; Zhang, J.-Z.; Acta Chim. Sinica 2003, 61, 1108 (in Chinese).
 (张其震,刘建强,殷晓颖,张静智,化学学报, 2003, 61, 1108.)
- Zhang, Q.-Z.; Liu, J.-Q.; Zhang, J.-Z. Acta Chim. Sinica 2004, 62, 317 (in Chinese). (张其震,刘建强,张静智,化学学报, 2004, 62, 317.)
- 13 Zhang, Q.-Z.; Liu, J.-Q.; Tang, X.-D., Zhang, J.-Z. Acta Chim. Sinica 2004, 62, 1822 (in Chinese).
 (张其震,刘建强,唐新德,张静智,化学学报, 2004, 62, 1822.)
- I4 Zhang, Q.-Z.; Sheng, X.; Yin, X.-Y. Acta Chim. Sinica 2003, 61, 1478 (in Chinese).
 - (张其震,盛昕,殷晓颖,化学学报,2003,61,1478.)
- 15 Tang, X.-D.; Zhang, Q.-Z.; Li, A.-X.; Fan, X.-H.; Chen, X. F.; Zhou, Q.-F. Chin. J. Chem. 2004, 22, 1034.
- Zhang, Q.-Z.; Zhang, J.-Z.; Wang, Y. Acta Polym. Sinica 1996, 121 (in Chinese).
 (张其震,张静智, 王艳, 高分子学报, 1996, 121.)
- 17 Angeloni, A. S.; Caretti, D.; Carlini, C. Liq. Cryst. 1989, 4, 513.
- 18 Eisenbach, C. D. Makromol. Chem. 1978, 179, 2489.

(A0410107 SHEN, H.)