•研究论文•

诺氟沙星-DNA 复合物的分子动力学模拟

马国正*" 蒋勇军 俞庆森

(°华南师范大学化学与环境学院 广州 510006) (⁶浙江大学宁波理工学院药物分子设计与营养工程重点实验室 宁波 315100)

摘要 采用分子模建的方法构建了诺氟沙星-DNA 复合物的初始结构,通过 2 ns 的分子动力学(MD)模拟研究表明:诺 氟沙星能够和双螺旋 d[ATATCGATAT]₂ 形成稳定的复合物,药物分子可紧密结合在 DNA 的小沟区域,并且能够与 DNA 的鸟嘌呤碱基形成两个稳定的氢键.在分子水平上提供了诺氟沙星直接与双螺旋 DNA 相互作用的结构及复合物 的动态变化情况.

关键词 诺氟沙星; DNA; 分子模建; 分子动力学模拟

Molecular Dynamics Simulation of the Norfloxacin-DNA Complex

MA, Guo-Zheng^{*,a} JIANG, Yong-Jun^b YU, Qing-Sen^b

(^a School of Chemistry & Environment, South China Normal University, Guangzhou 510006) (^b Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100)

Abstract Molecular dynamics (MD) simulations were used to investigate the interaction of norfloxacin with the DNA oligonucleotide d[ATATCGATAT]₂. The initial binding structure was built with molecular modeling based on the experimental results. A 2 ns MD calculation was performed to study the norflox-acin-DNA complex and the results indicated that norfloxacin was inserted in the minor groove of DNA, binding to the region of duplex TCGA bases. The possible H-bonds between carbonyl and carboxyl group of norfloxacin and amine group of the guanine base support a minor-groove complex for the compound in GC DNA sequence. Molecular dynamics studies complement the structural analysis and provide a clear picture of the norfloxacin-DNA complex.

Keywords norfloxacin; DNA; molecular modeling; molecular dynamics simulation

喹诺酮是一类重要的化学合成抗菌素,具有抗菌谱 广、活性强、毒副作用低及临床高效等特点,到目前已 经发展到第四代.其中,诺氟沙星作为第三代喹诺酮类 的代表药物,在临床上有着非常广泛的应用.

许多研究小组对喹诺酮药物抗菌作用的机理进行了 广泛的研究,并一致认为: DNA 促旋酶(细菌的拓扑异构 酶 II)是喹诺酮类药物作用的主要靶位,也是其作用机理 的中心,但是喹诺酮抗菌素并不是直接作用于 DNA 促旋 酶而是作用于 DNA^[1]. 对喹诺酮药物与 DNA 相互作用的 研究已经开展了很多工作^[2~8], 其中 Shen 等^[2,3]提出了药物-核酸相互作用的协同结合模型, 该模型指出:在 ATP供能情况下, DNA促旋酶诱导引发产生特异性的单链 DNA 结合口袋, 喹诺酮药物通过氢键、π-π 堆积以及 疏水相互作用与单链 DNA 相结合; Palumbo 等^[5,7]提出 了通过镁离子桥联药物与单链核酸的结合模型, 该模型 指出:喹诺酮药物与单链 DNA 的结合过程中, 镁离子 起着重要的间接作用.

以上两种模型都是喹诺酮药物与单链 DNA 的相互

^{*} E-mail: gzma@scnu.edu.cn

Received July 3, 2006; revised August 28, 2006; accepted October 23, 2006. 国家自然科学基金(No. 20173050)资助项目.

作用模型, 近年来, Kim 等^[9~12]采用荧光法以及圆二色 谱技术研究了诺氟沙星与小牛胸腺 DNA 以及氧氟沙星 与 B-型 DNA 的相互作用,结果表明:诺氟沙星在没有 ATP 供能和镁离子存在的情况下,和双螺旋 DNA 有明 显的结合;药物分子平面和 DNA 螺旋轴夹角为 65°~ 85°;诺氟沙星与 DNA 鸟嘌呤碱基之间有明显的相互作 用,结合在 DNA 的小沟区域.由此, Kim 等提出诺氟沙 星是与双螺旋 DNA 而非单链 DNA 直接作用结合,是一 种非经典的小沟结合模式.

由于没有药物-DNA 促旋酶-DNA 三元复合物晶体 结构的存在,从分子水平上对喹诺酮药物直接作用于 DNA的认识受到了限制.为此,我们在前人实验的基础 上,模建了诺氟沙星-DNA 复合物的结构,并且用分子 动力学模拟的方法动态地考察了此复合物结构的变化, 对更加充分了解喹诺酮药物与 DNA 的相互作用以及明 确喹诺酮抗菌作用的机理有积极的意义.

1 模型和计算

1.1 模型及力场参数

诺氟沙星药物的几何构型(如图 1a 所示)根据剑桥 晶体数据库中有关喹诺酮类药物的晶体结构进行构建, 并采用 Gaussian 03 程序在 HF/6-31G*水平进行构型优 化. 双螺旋 DNA 为 AMBER 程序产生的 B-型 DNA 片 断,选d[ATATCGATAT]₂,含有两个 GC 碱基对.药物-DNA 复合物初始构型由 DS Modeling 程序构建.对 DNA 螺旋采用 CURVES 程序^[13]进行结构分析.所有计 算都是在 PC-CLUSTER 上完成的.

药物-DNA 复合物的初始构型在 Kim 等的实验基础上构建,将诺氟沙星分子对接在DNA 双螺旋 GC 碱基对附近,距离 DNA 小沟底部 0.3 nm 左右.以药物分子平面近似平行于 DNA 碱基,羰基正对 DNA 的 G 碱基的方向嵌入 DNA 的小沟区域.构建出的初始构型如图 1b 所示.

药物分子力场采用 HF/6-31G*方法计算静电势,用 Amber 自带的 RESP 电荷拟合程序计算诺氟沙星部分 电荷,不存在的范德华非键参数用 Antechamber 程序产 生.

1.2 分子动力学模拟

所有的分子动力学模拟都采用 Amber 7 程序包中的 Sander 模块. 采用 FF-02 力场来模拟 DNA 复合物和溶 剂体系. 模拟温度为 300 K, 复合物体系用 Na⁺中和至 电中性, 质心周围包 0.8 nm 水分子, 水溶液采用显性 TIP3P 模型. SHAKE 算法用来限制所有含氢键的伸

图 1 (a)诺氟沙星分子结构示意图和(b)诺氟沙星-DNA 的初 始构型

Figure 1 (a) Structure of norfloxacin and (b) initial geometry of norfloxacin-DNA complex

缩,模拟步长为 2 fs, 非键对每 10 步更新一次,非键相 互作用截距为 0.9 nm. 分子动力学模拟分为三步:首先 进行 2000 步最陡下降法来消除分子间的高能碰撞, 然 后采用 1.7×10²¹ kJ/(mol•m²)的谐振力来限制 DNA 和药 物分子,进行 20 ps 的限制性 PME 动力学模拟,最后进 行 2 ns 的非限制性动力学模拟进行数据收集,每隔 100 步记录一次轨迹文件.

2 结果和讨论

2.1 复合物结构分析

复合物 MD 模拟中的均方根偏差(RMSD)值是衡量 体系是否稳定的重要依据,图 2 为诺氟沙星-DNA 复合 物的 RMSD 随时间变化图.由图所示,体系经过 200 ps MD 模拟后达到平衡状态,RMSD 值稳定在 0.25 nm 左 右.此外,在 200 ps 的 MD 之后,体系势能也趋向最小 值而达到稳定,从而为诺氟沙星-DNA 复合物能够稳定 存在提供了有力的证据.

图 2 诺氟沙星-DNA 复合物的 RMSD 随时间变化图 Figure 2 Root-mean-square deviation of norfloxacin-DNA complex from the initial structures as a function of time

由于复合物体系 MD 在 200 ps 就达到稳定,从而采

用 1.0~2.0 ns 间包含 5000 个构象的轨迹文件来提取平均结构.图 3(a)为 1.0~2.0 ns 的 MD 模拟后复合物体系的平均结构示意图.由图所示, DNA 的碱基相对初始结构有一定程度的弯曲,药物分子结合在 DNA 的 TCGA 小沟区域.和初始结构比较,诺氟沙星分子进行了一定程度的扭曲和翻转,分子平面和 DNA 螺旋轴大约成 70° 夹角,这和实验结果基本一致^[9].

DNA 在结合药物分子后, 碱基有不同程度的弯曲, 为了更好地识别这种结合作用, 采用 CURVES 软件计算了单体 DNA 和诺氟沙星-DNA 复合物双螺旋碱基的 扭转角. 复合物结构取自 MD 模拟在 1.0~2.0 ns 处的平均结构.这里我们只列出了诺氟沙星与双螺旋 d[ATATCGATAT]₂结合有关的 TCGA 碱基处的扭转角 数据, 见表 1 和 2.

图 3 (a)诺氟沙星-DNA 复合物在 1.0~2.0 ns 的平均结构及(b)诺氟沙星的结合位点示意图

Figure 3 (a) The $1.0 \sim 2.0$ ns time-averaged structure of norfloxacin-DNA complex and (b) norfloxacin binding to the TCGA region of d[ATATCGATAT]₂ (the possible H-bond is shown by dotted line)

Table 1 Torsion angles of free DNA													
		Chi	Gamma	Delta	Epsil	Zeta	Alpha	Beta					
		C(1')—N	C(5')—C(4')	C(4')—C(3')	C(3')—O(3')	O(3')—P	P—O(5')	O(5')—C(5')					
DNA	Т	-121.74	50.51	115.22	-175.29	-90.79	-62.01	173.98					
	С	-124.92	51.77	105.83	-171.16	-90.25	-65.82	-179.75					
	G	-105.58	48.68	128.75	-169.23	-109.96	-61.95	177.49					
	А	-114.54	46.54	122.99	-177.65	-90.46	-60.00	175.42					
	Δ	-11620	17.26	124.28	-174.25	-80 33	62 67	174 33					
	Л	110.20	47.20	124.20	174.23	07.55	02.07	174.55					
	G	-103.81	46.06	132.75	-161.25	-125.61	-61.40	174.24					
	С	-122.38	49.79	106.33	-172.83	-84.74	-62.78	179.26					
	Т	-121.51	49.01	110.04	-175.51	-90.10	-61.53	174.61					

表1 单体 DNA 的扭转角

		Table 2	2 Torsion angles of norfloxacin-DNA complex							
		Chi	Gamma	Delta	Epsil	Zeta	Alpha	Beta		
		C(1')—N	C(5')—C(4')	C(4')—C(3')	C(3')—O(3')	O(3')—P	P—O(5')	O(5')—C(5')		
	Т	-118.59	54.82	120.64	-175.07	-95.97	-62.56	174.78		
	С	-118.05	54.48	125.15	-172.82	-93.42	-63.74	172.47		
	G	-137.01	54.18	104.82	-171.33	-101.69	-64.99	176.83		
Norflowed DNA	А	-121.71	56.23	124.17	-174.44	-92.74	-64.60	173.57		
Normoxacin-DINA	А	-118.54	49.75	128.53	-174.51	-100.72	-63.18	178.20		
	G	-124.54	40.33	141.47	-172.21	-95.33	-62.89	-179.52		
	С	-92.27	53.53	139.68	-108.46	177.89	-82.19	160.93		
_	Т	-112.02	56.05	121.11	-167.57	-90.60	-66.18	167.70		

表 2 诺氟沙星-DNA 复合物的扭转角 **Table 2** Torsion angles of norfloxacin-DNA complex

由表 1, 2 可以看出:药物分子结合后,DNA 的碱基 扭转角发生了不同程度的变化,其中以 GC 碱基对的变 化最为明显.TCGA 链的 CG 碱基在 Chi, Delta 角处有较 大变化,其中 C 碱基 Chi, Delta 角的变化大约为 7°, 20°; G 碱基为 32°, 24°.其它扭转角没有明显变化;AGCT 链 的 GC 碱基在 Chi, Delta, Epsil, Zeta, Alpha 以及 Beta 角 处都有较大变化,其中 G 碱基在 Chi, Zeta 角的变化大约 为 21°, 30°, C 碱基在 Chi, Delta, Epsil, Zeta, Alpha, Beta 角的变化大约为 30°, 33°, 64°, 87°, 20°, 19°.对于其它碱 基的扭转角变化很小.由此可见,药物分子的结合导致 了双螺旋 d[ATATCGATAT]₂ 的 GC 碱基发生了较大的 扭转,也说明了药物分子和 GC 碱基有明显的相互作用, 这点已经通过实验得到证实^[9].

DNA小沟的结构及动力学研究,对于 DNA-蛋白以及 DNA-药物的分子识别有非常重要的作用.这里,我 们考察了诺氟沙星结合位点处 TCGA 双螺旋的小沟宽度变化情况,见图 4.对 DNA小沟宽度的定义为:DNA 双螺旋一条链的磷酸氧原子(O1P)P_i 与另一条链的 P_{i+3}的距离减去 0.58 nm (两个磷原子半径)^[14].

在图4中,采用AMBER程序动态监测了单体DNA 和诺氟沙星-DNA复合物的双螺旋TCGA处的小沟宽度 变化.如图所示,在MD模拟的1.0~2.0 ns时间范围内, 复合物TCGA双螺旋的小沟宽度变化平稳,和单体 DNA相比较,小沟的宽度在TCG碱基处都不同程度地 变窄.从而也能够说明,药物分子与DNA结合,主要作 用于双螺旋DNA的小沟区域.由于氢键、范德华等力 的存在致使药物与DNA紧密结合,使得TCG碱基处的 小沟宽度有一定程度的变窄.

2.2 诺氟沙星结合位点分析

由图 3a 可以看出,药物分子结合的主要部位位于 DNA 双螺旋的 GC 碱基处,药物分子的羰基和羧基分别 对着 DNA 的两个 G 碱基而哌嗪基则沿着小沟区域向 C 碱基伸展,氟原子和喹诺酮母环仍保持刚性,只有环外

图 4 TCGA 双螺旋小沟宽度随时间的变化图

Figure 4 Time-dependent fluctuation of the minor groove width of the TCGA duplex at the (a) A-tract, (b) G-tract, (c) C-tract and (d) T-tract tracts for the free DNA (top line) and DNA-complex (bottom line).

柔性较大的乙基和哌嗪基有一定的角度变化. 诺氟沙星 分子经过适当的扭转, 羰基氧和羧基上的羟基氧与 DNA 的 G 碱基上的氨基氢形成了两个很稳定的氢键, 如图 3(b)所示. 通过监测复合物氢键距离的变化(图 5), 诺氟沙星的 O(1)原子与 16 位 G 碱基的氨基 N 原子距离 在 0.27~0.32 nm之间, 平均距离为 0.28 nm, O(3)原子与 6 位 G 碱基氨基 N 原子距离在 0.29~0.35 nm 之间, 平 均距离为 0.3 nm. 这两个氢键的存在对复合物的稳定起 至关重要的作用.

通过对诺氟沙星-DNA 复合物的 MD 模拟结果进行 结构分析可以得知:诺氟沙星分子与双螺旋 d[ATATCGATAT]₂相互作用形成了稳定的复合物,对 MD 平均结构, DNA 双螺旋碱基的扭转角, 以及动态监 测 DNA 小沟宽度变化和复合物形成的氢键,都说明了 药物分子可结合在 DNA 的 TCGA 小沟区域,主要以氢 键形式与 DNA 的两个鸟嘌呤碱基相结合.从而在分子 水平上提供了诺氟沙星与 DNA 直接结合时的结构及动 态变化情况.

图 5 诺氟沙星两个氧原子与 DNA 碱基形成氢键的距离随时 间变化图

Figure 5 H-bond distances between some norfloxacin groups and DNA bases as a function of time

3 结论

通过在 Kim 等实验的基础上分子模建诺氟沙星-DNA 复合物初始结构,并进行分子动力学模拟研究表明:在没有 ATP 提供能量以及 Mg²⁺存在下,诺氟沙星分子能够和双螺旋 d[ATATCGATAT]₂ 紧密结合,形成稳定的诺氟沙星-DNA 复合物.诺氟沙星的羰基氧和羧基上的羟基氧可以和 DNA 双螺旋 G 碱基的氨基氢原子形成两

个稳定的氢键. 氢键作用的存在, 对诺氟沙星-DNA 复合物的稳定起了至关重要的作用.

References

- Shen, L. L.; Pernet, A. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 307.
- 2 Shen, L. L.; Baranowski, J.; Pernet, A. G. *Biochemistry* 1989, 28, 3879.
- 3 Shen, L. L.; Mitscher, L. A.; Sharma, P. N.; O'Donnell, T. J.; Chu, D. W. T.; Copper, C. S.; Rosen, T.; Pernet, A. G. *Biochemistry* **1989**, *28*, 3886.
- 4 Hanessian, S.; Saladino, R.; Nunez, J. C. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 2333.
- 5 Palù, G.; Valisena, S.; Ciarrocchi, G.; Gatto, B.; Palumbo, M. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 9671.
- 6 Fan, J. Y.; Sun, D.; Yu, H.; Kerwin, S. M.; Hurley, L. H. J. Med. Chem. 1995, 38, 408.
- 7 Sissi, C.; Andreolli, M.; Cecchetti, V.; Fravolini, A.; Gatto,
 B.; Palumbo, M. *Bioorg. Med. Chem.* **1998**, *6*, 1555.
- 8 Noble, C. G.; Barnard, F. M.; Maxwell, A. Antimicrob. Agents Chemother. 2003, 47, 854.
- 9 Son, G. S.; Yeo, J. A.; Kim, M. S.; Kim, S. K.; Holmén, A.; Åkerman, B.; Nordén, B. J. Am. Chem. Soc. 1998, 120, 6451.
- 10 Bailly, C.; Colson, P.; Houssier, C. Biochem. Biophys. Res. Commun. 1998, 243, 844.
- 11 Lee, E. J.; Yeo, J. A.; Lee, G. J.; Han, S. W.; Kim, S. K. *Eur. J. Biochem.* **2000**, 267, 6018.
- 12 Lee, E. J.; Yeo, J. A.; Jung, K.; Hwangbo, H. J.; Lee, G. J.; Kim, S. K. Arch. Biochem. Biophys. **2001**, 395, 21.
- 13 Lavery, R.; Sklenar, H. J. Biomol. Struct. Dyn. 1989, 6, 63.
- Hamerberg, D.; McFail-Isom, L.; Williams, L. D.; Wilson,
 W. D. J. Am. Chem. Soc. 2000, 122, 10513.

(A0607038 DING, W. F.; ZHENG, G. C.)