•研究论文•

聚 3-甲基噻吩修饰硫化物量子点连接纳米结构 TiO₂ 膜的 光电化学研究

郝彦忠* 王 伟

(河北科技大学理学院 石家庄 050018)

摘要 采用原位化学法在纳米结构 TiO₂ 膜上制备了量子点 CdS, PbS (Q-CdS, Q-PbS),并用电化学方法在 TiO₂/Q-CdS, TiO₂/Q-PbS 表面聚合 3-甲基噻吩[poly(3-Methylthiophene, PMeT)].用光电化学方法研究了 PMeT 修饰 Q-CdS, Q-PbS 连接 TiO₂纳米结构膜,实验结果表明,PMeT 和 Q-CdS, Q-PbS 单独修饰纳米结构 TiO₂电极和 PMeT 修饰 Q-CdS, Q-PbS 连接纳米结构 TiO₂电极的光电流产生的起始波长都向长波方向移动;一定条件下在可见光区光电转换效率均较纳米结构 TiO₂的光电转换效率有明显的提高;聚 3-甲基噻吩(PMeT)与 Q-CdS, Q-PbS 连接的纳米结构 TiO₂之间存在 p-n 异质结. 在一定条件下 p-n 异质结的存在有利于光生电子/空穴的分离,在本文实验条件下 PMeT 修饰 Q-CdS, Q-PbS 连接纳 米结构 TiO₂电极最高的单色光的光电转换效率分别为 11%和 7%.

关键词 量子点; TiO₂纳米多孔膜电极; 聚 3-甲基噻吩; 光电化学

Photoelectrochemical Study of Poly(3-methylthiophene) Modified Composite Sulfide Anchored Nanostructured TiO₂ Film

HAO Yan-Zhong* WANG Wei

(College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018)

Abstract The Q-CdS, Q-PbS quantum dot were formed *in situ* on the nanocrystalline TiO₂ electrode using chemical bath deposition techniques and the poly(3-methylthiophene) (PMeT) was prepared with electrochemical method on TiO₂/Q-CdS (Q-PbS) film. The photoelectrochemical properties of PMeT modified Q-CdS, Q-PbS anchored nanostructured TiO₂ film were studied by photoelectruchemical method. The results indicated that PMeT, Q-CdS and Q-PbS modified TiO₂ film and PMeT modified Q-CdS, Q-PbS anchored nanostructured TiO₂ film produced photocurrent in the longer wavelength region under certain condition. In infrared light region, the conversion efficiency of light to electricity for the composite semiconductor nanoporous films was greatly improved compared with that of the nanostructured TiO₂. The experiment result showed that the p-n heterojunction existed in the nanostructure TiO₂/Q-CdS (Q-PbS)/PMeT film electrode, which favored the separation of electron/hole pairs generated by photoexcitation. It cound be seen that the maximum value of incident photon to current conversion of efficiency (IPCE) for PMeT modified Q-CdS, Q-PbS anchored nanostructured TiO₂ film was 11% and 7% respectively.

Keywords quantum dot; TiO₂ nanoporous film electrode; poly(3-methylthiophene); photoelectrochemistry

半导体量子点由于其尺寸可控而广泛应用于光电 化学电池,目前研究较多的是 CdS^[1~3], CdSe^[4], PbS^[5,6] 等. 但是量子点敏化光电化学电池有严重的光腐蚀问题. 采用导电聚合物^[7~11]修饰光阳极的研究已有报道,

^{*} E-mail: yzhao@hebust.edu.cn

Received August 2, 2006; revised September 11, 2006; accepted November 2, 2006. 国家自然科学基金(Nos. 20573031, 20203008)、河北省自然科学基金(No. 202351)及河北省教育厅指导性项目(No. Z2005203)资助项目.

但是目前报道的导电聚合物的吸收效率、载流子迁移率 和载流子收集率等较低,由于纳米材料具有的特殊的物 理化学特性和导电聚合物易于合成制备以及通过掺杂 和聚合单体的改变可调控其光电性质、半导体性质的特 点,采用纳米材料和导电聚合物来研制新型的光伏电池 以及探索研究其中的物理化学原理已成为本研究领域 的国际前沿性课题.而本文中所研究的聚 3-甲基噻吩 (PMeT)修饰 Q-CdS, Q-PbS 连接纳米结构 TiO₂多孔膜电 极及其光电化学机理至今还未见任何报道,这对提高太 阳电池效率提供了新的研究思路.

1 实验部分

1.1 仪器与试剂

光电化学实验采用带石英窗口的三室电解池,工作 电极为自制电极.参比电极为饱和甘汞电极,对电极为 Pt 电极.用恒电位仪(Potentiostat/Galvanostat Model 263 A)测定光电流时进行电位控制,并经计算机采样处理. 以 200 W 氙灯为光源,通过单色仪(WDG30)照射在工作 电极上.光强用 LPE-1A 型激光功率/能量计标定.

所用试剂除乙腈为色谱纯外,其它均为分析纯,未 经进一步纯化.所有溶液均用二次去离子水配制.

1.2 工作电极的制备

纳米结构 TiO₂ 电极参考文献[12]制备, ITO/TiO₂/ PMeT 膜电极参考文献[13]制备, 制备的 ITO/TiO₂ 电极, 先在饱和的 Pb²⁺, Cd²⁺溶液中浸泡一定时间, 使 Pb²⁺, Cd²⁺进入电极纳米孔内, 然后用二次蒸馏水冲洗电极表 面,将残留在表面的 Pb²⁺, Cd²⁺冲洗除尽, 再将电极放 入 0.5 mol/L Na₂S 溶液中浸泡 1 min, 用二次蒸馏水冲洗 电极表面,将残留在表面的 S²⁻冲洗除尽, 最后在 80 ℃ 烘箱内干燥一定时间, 在 TiO₂ 纳米孔中形成纳米尺度 的 PbS, CdS, 即制成 ITO/TiO₂/Q-PbS, ITO/ TiO₂/Q-CdS 膜电极.

制备 ITO/TiO₂/Q-PbS 或 Q-CdS 膜电极后,以它们 为工作电极,在含 0.01 mol/L 氟硼酸四丁基铵和 0.1 mol/L 的 3-甲基噻吩单体的乙腈溶液中,以饱和甘汞电 极为参比电极,以 Pt 电极为对电极,在 1 mA/cm²恒电 流下电化学聚合 50 s,即制成 ITO/TiO₂/Q-PbS, Q-CdS/ PMeT 膜电极.

以上电极均用铜导电胶在未覆盖纳米多孔膜的导电基底上粘上一根导线,用环氧树脂密封导线联接处及纳米多孔膜边沿,暴露在电解质溶液中的表观工作面积为 0.5 cm².

1.3 光电化学测定

光电化学实验采用带石英窗口的三电极电解池,分

别以 ITO/TiO₂电极, ITO/TiO₂/Q-PbS 或 Q-CdS 膜电极, ITO/TiO₂/PMeT 膜电极, ITO/TiO₂/Q-PbS 和 Q-CdS/ PMeT 膜电极为工作电极, 以饱和甘汞电极为参比电极, 以 Pt 电极为对电极, 以 0.04 mol/L 邻苯二甲酸氢钾溶液 为底液的 0.1 mol/L KSCN 溶液为支持电解液. 用恒电 位仪(Potentiostat/Galvanostat Model 263 A)在测定光电 流时进行电位控制, 以 200 W 氙灯为光源, 通过单色仪 照在工作电极上. 实验在室温下进行.

2 结果与讨论

图 1 为 ITO/TiO₂, ITO/TiO₂/Q-PbS 和 ITO/TiO₂/ Q-CdS 纳米多孔膜电极的 AFM 图,从中可以看出, Q-PbS 和 Q-CdS 明显沉积到了 TiO₂ 的表面上,并且 Q-CdS 颗粒分布明显比 Q-PbS 颗粒分布均匀.

Figure 1 AFM images of the ITO/TiO₂ (a), ITO/TiO₂/Q-PbS (b) and ITO/TiO₂/Q-CdS (c) porous films electrode

图 2 为 ITO/TiO₂, ITO/TiO₂/PMeT, ITO/TiO₂/Q-PbS/ PMeT 和 TO/TiO₂/Q-CdS/PMeT 电极的光电流作用图谱.

Figure 2 Photocurrent action spectra of four electrodes a: ITO/TiO₂ electrode (electrode potential: 0.3 V), b: ITO/TiO₂/PMeT electrode (electrode potential: -0.2 V), c: ITO/TiO₂/Q-PbS/PMeT electrode (electrode potential: -0.3 V), d: ITO/TiO₂/Q-CdS/PMeT electrode (electrode potential: -0.3 V)

由图 2 可以看出, 在一定条件下 PMeT 单独修饰和 PMeT 修饰 Q-PbS 或 Q-CdS 连接纳米结构 TiO₂电极的 光电流产生的起始波长都向长波方向移动; 在波长为 380 nm 以后光电转换效率均较纳米结构 TiO₂ 的光电转 换效率有明显的提高; 其中以 PMeT 修饰 Q-CdS 连接纳 米结构 TiO₂ 的效果最好.

图 3 为 ITO/TiO₂/Q-CdS/PMeT 电极和 ITO/TiO₂/ Q-PbS/PMeT 电极在 420 nm 波长单色光照射下的瞬态 光电流. 由图 3 可以看出, 光照 ITO/TiO₂/Q-CdS/PMeT 和 ITO/TiO₂/Q-PbS/PMeT 电极在负电位下产生阴极光 电流,在正电位下产生阳极光电流.

图 3 ITO/TiO₂/Q-CdS/PMeT (A) 电极和 ITO/TiO₂/Q-PbS/ PMeT 电极(B)瞬态光电流

Figure 3 Photocurrent transients of ITO/TiO₂/Q-CdS/PMeT (A) and ITO/TiO₂/Q-PbS/PMeT (B)

图 4 为 ITO/TiO₂/Q-PbS/PMeT, ITO/TiO₂/Q-CdS/ PMeT 膜电极在 470 nm 单色光照射下和暗态下电流--电 势线性扫描曲线. 由图 4 可知,不论在光照还是在暗态 条件下纳米结构 TiO₂/Q-PbS/PMeT 膜与 TiO₂/Q-CdS/ PMeT 膜都表现出了明显的 p-n 异质结整流特性,表明 PMeT 与 Q-PbS, Q-CdS 连接纳米结构 TiO₂ 膜之间形成 了 p-n 结. p-n 结的存在,在界面处产生内建电场,内建 电场有利于光生电子-空穴的分离,有效地降低了电荷 的反向复合.

图 4 ITO/TiO₂/Q-PbS/PMeT (A)和 ITO/TiO₂/Q-CdS/PMeT (B) 电极的电流-电势线性扫描曲线

(a) 光照; (b) 暗态. 扫描速度: 100 mV/s, 入射光波长: 470 nm
 Figure 4 Current-voltage cures of ITO/TiO₂/Q-PbS/PMeT (A) and ITO/TiO₂/Q-CdS/PMeT (B) electrode

(a) under illumination; (b) in the dark. Scanning rate: 100 mV/s, wavelength: 470 nm $\,$

图 5 为 PMeT, Q-PbS, Q-CdS 与 TiO₂ 的能级结构 图, TiO₂ 的价带位置为 $E_V = -7.26 \text{ eV}^{[13]}$, 禁带宽度为 3.2 eV. 由图 4 可知, Q-PbS^[14]与 Q-CdS^[15]的价带位置高 于 TiO₂ 的价带位置. PMeT 为有机 p 型半导体^[16], Q-PbS 或 Q-CdS 为 n 型半导体. 由于能级匹配,在纳米结构 TiO₂ 多孔膜电极中,能带不弯曲,带边随电位变化^[17], 且由于 Q-PbS, Q-CdS 连接的纳米结构 TiO₂ 与 PMeT 之 间形成 p-n 异质结,当光子能量大于 PMeT 的禁带宽度 E_g 时, PMeT 价带中的电子吸收光被激发到导带中去, 从而形成载流子,光生载流子在界面电场作用下,则注 入到 Q-PbS, Q-CdS 的导带中,随着电极电势的变化,光 生电流可能为阳极光电流,也可能为阴极光电流.

图 6 为 p-n 异质结的工作原理示意图. 图中 E_F 为半导体费米能级, 由图 6 可以看出, Q-CdS/Q-PbS 中的电

图 5 能级示意图 Figure 5 The energy level diagram

图 6 p-n 异质结工作原理示意图 **Figure 6** The schematic for mechanism of p-n heterojunction

子向 PMeT 扩散, PMeT 中空穴向 Q-CdS/Q-PbS 扩散, 最 终达到动态平衡, 扩散的结果是在 Q-CdS/Q-PbS 侧形成 正的空间电荷层, 在 PMeT 侧形成负的空间电荷层, 从 而在两种半导体界面处形成了一个内建电场. 当对 PMeT 联接正极时(电极电势为负), 外电场方向与 p-n 异 质结中的电场方向相反, 致使异质结中的电场减弱, 势 垒高度降低, 电子和空穴易于向对方扩散而形成宏观的 阴极光电流; 当 PMeT 联接负极时(电极电势为正)时, 外电场方向与 p-n 异质结中的电场方向相同, 这时势垒 升高, PMeT 中的少量电子和 Q-CdS/Q-PbS 连接纳米结 构 TiO₂ 中的少量空穴在内电场作用下通过势垒流向对 方, 形成阳极光电流.

为了更清楚地了解在可见光区光电流的变化情况, 我们在 420 nm 单色光照射下,测量并对比了 ITO/TiO₂/ Q-PbS/PMeT 电极和 ITO/TiO₂/Q-CdS/ PMeT 电极电流随 电势的变化,如图7所示.由图7可知,在一定条件下两 种电极的光电流随外加电势的变化都经历了先增大后 减小的过程.两个电极均在一0.5 V 处光电流达到最大 值.当外加电势在一0.6~一0.2 V 和 0.1~0.4 V区间内, ITO/TiO₂/Q-CdS/PMeT 电极的光电流,而在外加电势在 一0.2~0.1 V 区间内, ITO/TiO₂/Q-CdS/ PMeT 电极的光 电流明显小于 ITO/TiO₂/Q-PbS/PMeT 电极的光电流,这 可能是因为 PMeT 聚合基底不同,复合电极表现出不同

图7 ITO/TiO₂/Q-PbS/PMeT 电极(a)和ITO/TiO₂/Q-CdS/PMeT 电极(b)的电极电势与光电流作用曲线

Figure 7 Photocurrent versus potential curves for the ITO/ TiO_2/Q -PbS/PMeT (a) and ITO/TiO_2/Q-CdS/PMeT (b) electrodes

3 结论

通过光电化学方法,研究了聚 3-甲基噻吩(PMeT) 修饰量子点硫化物(Q-PbS, Q-CdS)连接纳米结构 TiO₂多 孔膜电极的光电化学行为.采用 Q-PbS 和 Q-CdS 分别修 饰 TiO₂电极和 PMeT 修饰 Q-PbS, Q-CdS 连接 TiO₂纳米 结构多孔膜电极较 TiO₂ 电极的光电流产生的起始波长 都向长波方向移动,在一定条件下 PMeT 修饰 Q-CdS 连 接 TiO₂纳米结构多孔膜电极比 PMeT 修饰 Q-PbS 连接 TiO₂电极的光电转换效率更好.

References

- 1 Grätael, M. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 4, 145.
- 2 Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. Eur. Phys.
 2001, 16, 241.
- 3 Vogel, R.; Pohl, K.; Weller, H. J. Chem. Phys. Lett. 1990, 174, 241.
- 4 Peter, L. M.; Rileyd, J.; Tull, E. J. Chem. Commun. 2002, 10, 1030.
- 5 Wijayantha, K. G.; Peter, L. M.; Otley, L. C. Sol. Energy Mater. Sol. Cells 2004, 83, 363.
- 6 Shen, Q.; Arae, D.; Toydao, T. Photochem. Photobiol. A: Chem. 2004, 164, 75.
- 7 Hoyer, P.; Könenkamp, R. Appl. Phys. Lett. 1995, 66, 349.
- 8 Capoen, B.; Martucci, A.; Bouazaoui, M. Mol. Struct. 2003, 651, 467.
- 9 Hao, Y.-Z.; Cai, C. L. Acta Phys.-Chim. Sin. 2005, 21, 1395 (in Chinese).

(郝彦忠, 蔡春立, 物理化学学报, 2005, 21, 1395.)

10 Hao, Y.-Z.; Wu, W. J. Chem. J. Chin. Univ. 2005, 26, 1098 (in Chinese).

的特性所致.

(郝彦忠, 武文俊, 高等学校化学学报, 2005, 26, 1098.)

- Hao, Y.-Z.; Cai, C. L. Acta Chim. Sinica 2006, 64(4), 283 (in Chinese).
 (郝彦忠, 蔡春立, 化学学报, 2006, 64(4), 283.)
- 12 Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
- Hao, Y.-Z.; Wu, W. J. Acta Chim. Sinica 2005, 63(3), 215. (in Chinese).

(郝彦忠, 武文俊, 化学学报, 2005, 63(3), 215.)

14 Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98,

3183.

- 15 Zhang, L.; Wang, Y. Q.; Yang, M. Z.; Gao, E. Q.; Cai, S. M. *Chem. J. Chin. Univ.* 2000, 21, 1075 (in Chinese).
 (张莉, 王艳芹, 杨迈之, 高恩勤, 蔡生民, 高等学校化学 学报, 2000, 21, 1075.)
- Wu, W.-J.; Hao, Y. Z. *Photographic Sci. Photochem.* 2004, 22, 378 (in Chinese).

(武文俊, 郝彦忠, 感光科学与光化学, **2004**, 22, 378.)

Hao, Y. Z.; Yang, M. Z.; Li, W. H.; Qiao, X. B.; Zhang, L.;
 Cai, S. M. J. Sol. Energy Mater. Sol. Cells 2000, 60, 349.

(A0608026 ZHAO, C. H.; FAN, Y. Y.)