•研究论文•

## 丙烯腈在 Cu(100)表面化学吸附的密度泛函理论研究

夏树伟\*\*\* 高林娜\*\* 徐香\*\* 孙雅丽\*\* 夏少武\*

("中国海洋大学化学化工学院 青岛 266003) (<sup>6</sup>青岛科技大学化学与分子工程学院 青岛 266042)

**摘要** 利用密度泛函方法,模拟金属铜原子簇 Cu<sub>14</sub>(9,4,1)的(100)表面,对丙烯腈(CH<sub>2</sub>=CHCN)在 Cu(100)面上不同吸附 位的吸附状况进行了理论研究.结果表明:丙烯腈分子通过端位 N 原子垂直吸附在金属表面上为弱化学吸附,部分电荷 从丙烯腈分子转移至铜金属簇;由 N 原子的孤对电子与金属铜形成弱 σ 共价键;顶位是最佳吸附位,吸附能为 40.7391 kJ•mol<sup>-1</sup>, N 原子与金属表面间的平衡距离为 0.2279 nm;其次为桥位和穴位,吸附能分别为 36.2513 和 30.2158 kJ•mol<sup>-1</sup>, 平衡距离为 0.2194 和 0.2886 nm;吸附后 C=N 键的强度降低,活化了丙烯腈分子.化学吸附使体系的熵减小,是由于 丙烯腈分子的平动和转动因吸附而被限制.

关键词 密度泛函; 丙烯腈; Cu(100); 化学吸附

# DFT Study of the Chemisorption of Acrylonitrile on the Cu(100) Surface

XIA, Shu-Wei<sup>\*-a</sup> GAO, Lin-Na<sup>a</sup> XU, Xiang<sup>a</sup> SUN, Ya-Li<sup>a</sup> XIA, Shao-Wu<sup>b</sup> (<sup>a</sup> College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003) (<sup>b</sup> College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042)

**Abstract** The adsorption of acrylonitrile (AN) on the different sites of Cu(100) surface has been studied theoretically by means of model copper cluster Cu<sub>14</sub>(9,4,1) with density functional theory (DFT). AN standing up and adsorbed perpendicularly to the surface and bonded to the metal sites via a nitrogen-metal interaction took a weak chemisorption. Such chemisorption led to electron transfer from the AN molecule to the cluster. In the metal complexes of Cu<sub>14</sub>-AN, the  $\sigma$ -bonding via the lone pair electrons on the N atom was observed. Chemisorption on top site was preferred with the adsorption energy of 40.7391 kJ•mol<sup>-1</sup> and the equilibrium *N*-surface distance of 0.2279 nm, while both bridge and hole sites were less stable than the top one, with their adsorption energies of 36.2513 and 30.2158 kJ•mol<sup>-1</sup>, *N*-surface distances of 0.2194 and 0.2886 nm respectively. AN was activated by the chemisorption, which made the decrease of the strength of C=N. The major contributions to the entropy decrease came from rotations and translations of AN, since these motions were lost upon chemisorption.

Keywords density functional theory; acrylonitrile; Cu(100) surface; chemisorption

已知金属胶体铜是催化丙烯腈(CH<sub>2</sub>=CHCN 用 AN 表示)水合制丙烯酰胺反应中活性最高的催化剂<sup>[1,2]</sup>,且选择性达 100%,丙烯酰胺是工业生产聚合物的常用原

料. 值得注意的是吸附在金属催化剂表面的丙烯腈分子 中,只有CN基团受到水分子的进攻,而C=C双键不受 影响. 在丙烯腈分子二聚制备六乙烯二胺的电化学反应

\* E-mail: shuweixia@hotmail.com

Received April 20, 2005; revised August 2, 2005; accepted September 20, 2005. 国家自然科学基金(No. 20203011)资助项目.

中,首次发现丙烯腈分子在金属表面的吸附方式对合成 反应非常重要<sup>[3]</sup>.因此丙烯腈分子与过渡金属固体表面 的相互作用对催化反应及其机理的探讨很有意义.

需要通过了解分子在金属表面的吸附结构、取向及 与表面的键合,来了解吸附过程.Loo等<sup>[4]</sup>利用表面强化 的拉曼散射光谱(SERS)研究了丙烯腈分子在金属铜表 面的吸附方式,发现存在两种吸附方式,一种是以N原 子端吸附的立式,另一种是分子平面平行于金属表面的 卧式,并分别给出了C=C和C≡N键的振动频率.紫外 和X射线光电子能谱(UPS和XPS)研究表明<sup>[5]</sup>,当丙烯 腈单分子层吸附于铜表面时,直立与平卧吸附分子数之 比约为 2:1.因此我们对丙烯腈分子直立吸附于金属 铜表面的状态进行了研究.

首次采用密度泛函(DFT)方法对 CH<sub>2</sub>=CHCN 分子 以 N 原子端立式在金属铜表面的吸附状态进行理论研 究.目前密度泛函方法广泛地用于过渡金属体系的计 算,其计算结果较 HF 方法更精确<sup>[6-8]</sup>.在 DFT 框架下, 以 Cu<sub>14</sub>(9,4,1)为簇模型,通过较高水平的理论计算,对 包括吸附键在内的吸附分子的几何构型进行全优化,对 比分析了 CH<sub>2</sub>=CHCN 在 Cu(100)面上不同吸附位的结 合能,稳定性,电荷分布及转移,成键情况及振动频率, 并与光谱实验数据相对比,另外,对吸附过程中熵的改 变进行了计算.

## 1 计算模型和方法

采用 Cu<sub>14</sub>(9,4,1)原子簇模型来模拟 Cu(100)表面, 其中第一层 9 个 Cu 原子,第二层 4 个 Cu 原子,第三层 1 个 Cu 原子,结构如图 1 所示.在该原子簇模型表面存 在顶位(top),桥位(bridge)和穴位(hole).Cu<sub>14</sub>原子簇被广 泛应用于研究 Cu 对 CO, CO<sub>2</sub>, HCN, SO<sub>2</sub>等含孤电子对 的闭壳层体系的吸附<sup>[9-12]</sup>,这些研究表明 Cu<sub>14</sub>原子簇是 模拟 Cu(100)面的一个合理模型,它能够定性地描述金 属与此类分子间的相互作用.本文采用 Cu<sub>14</sub>原子簇模 型,比较丙烯腈分子在 Cu(100)面不同吸附位的计算结 果.该模型中不考虑表面弛豫和重构效应,相邻底物原 子间的距离和键角按晶胞参数进行取值,即 Cu—Cu 距 离为 0.2562 nm, Cu<sub>14</sub>原子簇具有 C<sub>4v</sub>对称性.对 CH<sub>2</sub>= CHCN 分子及其与 Cu(100)面间的距离进行了全优化.

计算过程中采用 B3LYP 方法<sup>[13]</sup>,由于 Cu 为重金属 原子,故用赝势法来处理,利用 Hay 和 Wadt 有效势 (ECP)<sup>[14]</sup>来代替内层 18 个电子对外层 11 个电子的贡献, 所用基组为 LANL2DZ,对 C,H,N 原子选取 6-31G(d,p) 基组,所用计算程序为 Gaussian98W 软件包,所有计算 在 PIV2400 微机上进行.



**图 1** Cu<sub>14</sub>(9,4,1)原子簇的结构, 吸附位和 AN 分子在顶位吸 附的示意图

Figure 1 The structure and adsorption site of cluster  $Cu_{14}$  and the adsorption of AN on top site

T: top site; B: bridge site; H: hole site

## 2 结果与讨论

## 2.1 Cu14-AN 的优化构型

目前 AN 分子在 Cu(100)面上直立吸附的确切构型 尚缺实验数据,因此本文研究了 AN 以 N 原子端立式在 Cu(100)面三种不同吸附位上的吸附构型,对不同吸附 位的吸附构型进行全优化,获得 CH<sub>2</sub>=CHCN 分子在不 同吸附位的结合能,吸附高度和分子结构参数(见表 1). 其中 CH<sub>2</sub>=CHCN 分子与 Cu<sub>14</sub>原子簇之间的结合能 *E*<sub>b</sub> (Binding Energy)由下式计算.

$$E_{\rm b} = E_{\rm \infty} - E_{\rm M-AN} \tag{1}$$

式中 $E_{\omega}$ 表示AN分子与金属簇相距无穷远时,体系的总能量, $E_{M-AN}$ 表示AN分子在Cu<sub>14</sub>原子簇表面稳定吸附时体系的能量.吸附能计算中采用完全均衡校正法,即Counterpoise方法,对本体系的吸附能进行基函数重叠误差(BSSE)校正<sup>[15]</sup>.

由表 1 可以看出, 与自由的 AN 分子相比, 吸附后 桥位和穴位构型中的 C(2) $\equiv$ N(1)键伸长, 由自由 AN 的 0.11635 nm, 分别增加到 0.11672, 0.11643 nm, 但顶位 的 C(2) $\equiv$ N(1)键略有缩短, 为 0.11623 nm; 3 种吸附构型 中的 C(2)-C(3)键均缩短, C(3)=C(4)双键均伸长, C-H 键长变化不大, 整体上吸附后 AN 分子骨架伸长; 通 过两面角 $\angle$ N(1)-C(2)-C(3)-H(7),  $\angle$ N(1)-C(2)-C(3)-C(4)的变化可以看出, 吸附后 AN 分子中各原子 不再共面, 表明骨架 C 原子的杂化状况发生变化, 顶位 吸附 AN 分子的 C(3)原子, 由 sp<sup>2</sup>杂化变为 sp<sup>2.33</sup>, 另外 与 C(4)相连的氢原子翘起, 偏离分子平面也说明了这一 点. 分子骨架中所有键长的变化情况表明 AN 分子尚未 解离. 由结合能看出, AN 分子在顶位吸附的结合能 (40.7391 kJ•mol<sup>-1</sup>)较桥位(36.2513 kJ•mol<sup>-1</sup>)和穴位 (30.2158 kJ•mol<sup>-1</sup>)的高, 说明顶位为较佳吸附位.

自由 AN 分子及 Cu<sub>14</sub>-AN 的振动频率计算结果列于 表 2,可见自由 AN 分子的振动频率计算结果与 IR 和 Raman 光谱实验数据相近. Cu<sub>14</sub>-AN 的频率分析计算值 中低频区(<200 cm<sup>-1</sup>)主要是铜原子簇的振动吸收,这 与 Cu<sub>3</sub> 的振动频率实验值(149~252 cm<sup>-1</sup>)相一致<sup>[16]</sup>, 128.044 cm<sup>-1</sup>处的峰代表 Cu—N 的伸缩振动.

吸附后 AN 分子中各键的振动频率发生明显的改变. 顶位吸附后  $v_{C=N}$ 较自由 AN 分子降低,由 2243.849 变至 2230.899 cm<sup>-1</sup>,红移 13 cm<sup>-1</sup>,说明吸附使 C=N键强度减弱,从而振动频率降低;桥位吸附的红移程度最大(69 cm<sup>-1</sup>),表明其 C=N 键的伸长程度最大,表 1 中 C=N 键长的计算值与之一致.总之吸附使 AN 分子偏离稳定构型而活化.

| Site                                            | Тор      | Bridge   | Hole     | Free AN  |  |  |  |
|-------------------------------------------------|----------|----------|----------|----------|--|--|--|
| $E_{\rm b}/({\rm kJ}{ m \bullet}{ m mol}^{-1})$ | 40.7391  | 36.2513  | 30.2158  | —        |  |  |  |
| $R_{\text{N-surface}}^{b}/\text{nm}$            | 0.22790  | 0.21944  | 0.28860  | —        |  |  |  |
| $R_{C(2)=N(1)}/nm$                              | 0.11623  | 0.11672  | 0.11643  | 0.11635  |  |  |  |
| <i>R</i> <sub>C(2)</sub> – <sub>C(3)</sub> /nm  | 0.14288  | 0.14242  | 0.14305  | 0.14309  |  |  |  |
| $R_{C(3)=C(4)}/nm$                              | 0.13393  | 0.13429  | 0.13396  | 0.13381  |  |  |  |
| $R_{C(4)-H(5)}/nm$                              | 0.10845  | 0.10844  | 0.10845  | 0.10846  |  |  |  |
| $R_{C(4)-H(6)}/nm$                              | 0.10851  | 0.10850  | 0.10850  | 0.10847  |  |  |  |
| <i>R</i> <sub>C(3)</sub> – <sub>H(7)</sub> /nm  | 0.10873  | 0.10869  | 0.10869  | 0.10869  |  |  |  |
| $\angle N(1) - C(2) - C(3)/(^{\circ})$          | 178.4839 | 179.2644 | 177.7856 | 178.7748 |  |  |  |
| $\angle C(2) - C(3) - C(4)/(^{\circ})$          | 122.7370 | 122.6062 | 122.8691 | 122.9785 |  |  |  |
| $\angle N(1) - C(2) - C(3) - H(7)/(^{\circ})$   | 7.5156   | 18.8171  | 4.3544   | 0.0000   |  |  |  |
| $\angle N(1) - C(2) - C(3) - C(4)/(^{\circ})$   | 172.4265 | 161.4190 | 175.4604 | 180.0000 |  |  |  |

| 表1 | $CH_2 = CHCI$ | N分子吸附于 | - Cu(10 | 0)面的参数; | а |
|----|---------------|--------|---------|---------|---|
|    | D C CH        | augu 1 |         | G (100) | c |

"原子序数同图 1,  ${}^{b}R_{N-surface}$  是 N 原子到 Cu(100)面的垂直距离.

**表2** 吸附前后振动频率与光谱实验结果比较(cm<sup>-1</sup>)<sup>a</sup>

#### **Table 2** The calculated vibration frequencies of free and adsorbed acrylonitrile on the Cu(100) surface (cm<sup>-1</sup>)

|                                           | Raman frequency                       | IR frequency                       | Calculated vibrational frequency of free AN | Calculated vibrational frequency of |          |          |
|-------------------------------------------|---------------------------------------|------------------------------------|---------------------------------------------|-------------------------------------|----------|----------|
|                                           | (AN in liquid phase <sup>[17]</sup> ) | (AN in gas phase <sup>[17]</sup> ) |                                             | Тор                                 | Bridge   | Hole     |
| $\delta_{ip}(C - C \equiv N)$             | 242                                   |                                    | 226.363                                     | 229.096                             | 231.075  | 224.0611 |
| $\delta_{oop}(C - C \equiv N)$            | 362                                   |                                    | 339.351                                     | 326.388                             | 339.421  | 335.226  |
| $\delta_{ip}(C = C - C)$                  | 570                                   |                                    | 550.769                                     | 550.681                             | 553.069  | 548.5912 |
| $\delta_{oop}(C = C - C)$                 | 688                                   | 683                                | 681.169                                     | 672.806                             | 662.688  | 675.7322 |
| v(C—C)                                    | 871                                   | 869                                | 848.524                                     | 853.579                             | 856.175  | 848.3399 |
| $\delta_{ip}(C - C \equiv N)$             | 970                                   | 954                                | 937.999                                     | 953.725                             | 935.815  | 944.2056 |
| $\delta_{\rm w}(\rm C-H_2)$               | 970                                   | 972                                | 962.439                                     | 954.913                             | 945.848  | 955.9264 |
| $\delta_{ip}(CH=CH_2)$                    | 1094                                  | 1096                               | 1062.705                                    | 1062.075                            | 1061.635 | 1061.416 |
| $\delta_{oop}(CH=CH_2)$                   | 1286                                  | 1282                               | 1263.713                                    | 1260.304                            | 1161.834 | 1260.657 |
| $\delta_{s}(C-H_{2})$                     | 1412                                  | 1416                               | 1388.169                                    | 1386.631                            | 1384.435 | 1385.514 |
| v(C=C)                                    | 1607                                  | 1615                               | 1616.891                                    | 1610.025                            | 1591.317 | 1609.738 |
| $v(C \equiv N)$                           | 2228                                  | 2239                               | 2243.849                                    | 2230.899                            | 2174.688 | 2223.307 |
| <i>v</i> <sub>s</sub> (C—H <sub>2</sub> ) | 3032                                  | 3042                               | 3032.689                                    | 2988.424                            | 3036.146 | 3035.362 |
| v(C—H)                                    | 3068                                  | 3078                               | 3047.109                                    | 3049.697                            | 3051.970 | 3051.874 |
| $v_{as}(C - H_2)$                         | 3116                                  | 3125                               | 3124.244                                    | 3128.972                            | 3129.048 | 2172.778 |
| <i>v</i> (N—Cu)                           | —                                     |                                    |                                             | 128.044                             |          |          |

<sup>*a*</sup> Calculated frequency error factor is 0.955,  $\delta_{ip}$ : bend in plane,  $\delta_{oop}$ : bend out of plane,  $\delta_w$ : wage,  $\delta_s$ : scissors.

顶位和穴位吸附后 AN 分子的  $v_{C=C}$  计算值 (1610.025, 1609.738 cm<sup>-1</sup>)接近自由 AN 分子的计算值 (1616.891 cm<sup>-1</sup>), 相差仅 6 cm<sup>-1</sup>, Loo 等<sup>[18]</sup>的光谱实验得 出吸附后 C(3)=C(4)的振动吸收峰在 1603 cm<sup>-1</sup>处. 这是 因为立式吸附时 C(3)=C(4)距金属面较远, 受到的影响 较小. 顶位和桥位吸附  $v_{C(2)-C(3)}$ 由 848.524 变至 853.579, 856.157 cm<sup>-1</sup>, 发生蓝移, 穴位吸附的基本没变.

#### 2.2 电荷转移

AN 分子吸附于 Cu<sub>14</sub>(100) 面后,两者之间发生部 分电荷转移.吸附前后 AN 分子的 Mulliken 电荷布居数 列于表 3.可见吸附后各吸附位的 AN 分子均带有部分 正电荷,铜簇带有相应量的负电荷,说明电子从 AN 分 子转移至铜簇上,顶、桥、穴位吸附的 AN 分子分别向 铜簇转移 0.2063, 0.1659, 0.1225*e*. AN 与铜簇之间发生 的电荷转移及吸附后 AN 分子结构的变化,表明 AN 与 铜簇发生化学相互作用,由 N上的孤对电子与金属簇形 成 Cu—N 弱σ键,生成 Cu<sub>14</sub>-AN 复合物. HCN 在 Ni(111) 面上的吸附<sup>[19]</sup>及 HCN 在 Cu(100)面上的吸附<sup>[11]</sup>也发生 类似电荷转移现象.

电荷从 AN 分子转移到 Cu<sub>14</sub> 原子簇上, 会导致铜簇的表面功函下降. 根据 Koopmans 定理<sup>[20]</sup>和 Cu<sub>14</sub> 原子簇的 HOMO 能级,可以计算出 Cu<sub>14</sub> 原子簇清洁表面的功 函为 4.349 eV, 顶位、桥位和穴位吸附 AN 分子后铜簇的表面功函为: 3.935, 4.034, 4.096 eV, 分别降低了 0.414, 0.315, 0.253 eV. 目前尚没有 AN 分子吸附在 Cu(100)面的功函实验数据, 但其他含 N 原子的简单分子如 HCN, HNC 分子低覆盖度下, 在铜 Cu(100)面顶位 吸附后功函下降了 0.30 和 0.85 eV<sup>[11]</sup>.

顶位吸附 AN 分子的偶极矩最大, 说明离子特征最

强, 这与 AN 分子转移到铜簇的电荷最高一致.

#### 2.3 吸附熵

气体 AN 分子具有平、转、振动自由度, 当吸附于 金属上, 并与金属形成 Cu—N σ键, 这阻止和限制了 AN 在金属面上的平动(忽略扩散)和自由转动, AN 分子 自由度的降低, 导致 Cu<sub>14</sub>-AN 体系熵的减少.

当忽略电子、振动、平动、转动之间的耦合作用,吸附熵变  $\Delta S_{ads}$  可表示为<sup>[22]</sup>:

$$\Delta S_{\rm ads} = \Delta S_{\rm vib} + \Delta S_{\rm trans} + \Delta S_{\rm rot} + \Delta S_{\rm elec} \tag{2}$$

根据 Born-Oppenheimer 近似,可将电子的贡献与其他贡献分离,吸附对金属中激发态电子分布几率的影响很小,因此 $S_{elec}(Cu-AN)=S_{elec}(Cu)$ ,在室温下,AN分子不会处于激发态,相应的AN电子熵为零,所以 $\Delta S_{elec}=0$ .由于金属表面不能进行平动和转动,所以铜簇对体系的平动和转动无贡献.化学吸附扼制 AN 分子的平动和转动,这样平动熵变为 $\Delta S_{trans}=-S_{trans}(AN)$ ,由于AN分子与金属铜以弱 $\sigma$ 键结合,因此吸附后 AN 分子在该键轴方向仍能进行转动,则  $\Delta S_{rot}=S_{rot}(AN_{ads})-S_{rot}(AN)$ ,则式(2)可近似为:

$$\Delta S_{ads} = [S_{vib}(Cu - AN) - S_{vib}(Cu) - S_{vib}(AN)] - S_{trans}(AN) + [S_{rot}(AN_{ads}) - S_{rot}(AN)]$$
(3)

式中 S<sub>rot</sub>(AN<sub>ads</sub>)为吸附后 AN 分子的摩尔转动熵, S<sub>trans</sub>(AN), S<sub>rot</sub>(AN)分别为自由 AN 的摩尔平动熵和转动 熵,它们对 AN 总熵的贡献可据简单模型来计算,如果 把 AN 分子看作粒子不可区分的理想气体,则摩尔平动 熵可表示为<sup>[22]</sup>:

| Atom                 | F          | Free AN         |         | Mulliken charge |         |  |
|----------------------|------------|-----------------|---------|-----------------|---------|--|
|                      | NBO charge | Mulliken charge | Тор     | Bri             | Hol     |  |
| N(1)                 | -0.2990    | -0.4611         | -0.2320 | -0.3023         | -0.3416 |  |
| C(2)                 | 0.2557     | 0.3054          | 0.2158  | 0.2754          | 0.2820  |  |
| C(3)                 | -0.3498    | -0.0666         | -0.0642 | -0.0756         | -0.0731 |  |
| C(4)                 | -0.3439    | -0.1910         | -0.1822 | -0.1878         | -0.1877 |  |
| H(5)                 | 0.2339     | 0.1302          | 0.1449  | 0.1402          | 0.1372  |  |
| H(6)                 | 0.2359     | 0.1368          | 0.1572  | 0.1549          | 0.1492  |  |
| H(7)                 | 0.2672     | 0.1463          | 0.1668  | 0.1611          | 0.1565  |  |
| Total charge         | 0          | 0               | 0.2063  | 0.1659          | 0.1225  |  |
| Dipole moment /Debye | —          | 3.8768          | 8.0691  | 6.7080          | 5.9701  |  |

**表 3** 吸附前后 AN 分子的电荷集居分析 [able 3] Electric population analysis of free and adsorbed AN molecu

$$S_{\text{trans}} = R \ln \left[ \left( \frac{2\pi m kT}{h^2} \right)^{\frac{3}{2}} \times \frac{kT}{p} \right] + \frac{5}{2} R$$
(4)

式中m为分子质量,p为气体压力,T为绝对温度,在p= 1.013×10<sup>5</sup> Pa, 298 K 下, AN 分子的摩尔平动熵为 158.268 J•mol<sup>-1</sup>•K<sup>-1</sup>.

对 AN 分子的转动采用刚性转子模型,当转动能级间隔足够小时,摩尔转动熵为:

$$S_{\rm rot} = R \ln \left[ 8\pi^2 \frac{(2\pi kT)^{\frac{3}{2}}}{h^3} (I_{\rm a} \times I_{\rm b} \times I_{\rm c})^{\frac{1}{2}} \right] + \frac{3}{2}R \qquad (5)$$

*I*<sub>a</sub>, *I*<sub>b</sub>, *I*<sub>c</sub>为分子的转动惯量. 298 K 时, *S*<sub>rot</sub>(AN<sub>ads</sub>)=13.807 J•mol<sup>-1</sup>•K<sup>-1</sup>, *S*<sub>rot</sub>(AN)=96.964 J•mol<sup>-1</sup>•K<sup>-1</sup>.

对体系的振动采用谐振子模型,则摩尔振动熵为:

$$S_{\text{vib}} = R \sum_{i=1}^{3n-6} \left| \ln \left( \frac{1}{1 - \exp\left(\frac{-hv_i}{kT}\right)} \right) + \frac{hv_i}{kT} \times \frac{\exp\left(\frac{-hv_i}{kT}\right)}{1 - \exp\left(\frac{-hv_i}{kT}\right)} \right|$$
(6)

对于非线性分子, 总共有 3n-6 种简正振动模式, n 为原 子数. 分别计算 AN, Cu<sub>14</sub>, Cu<sub>14</sub>-AN 的振动熵. 298 K 时,  $S_{vib}(AN)=17.535 \text{ J-mol}^{-1} \cdot \text{K}^{-1}$ ,  $S_{vib}(Cu)=490.269 \text{ J-mol}^{-1} \cdot \text{K}^{-1}$ ,  $K^{-1}$ ,  $S_{vib}(Cu-AN)=633.755 \text{ J-mol}^{-1} \cdot \text{K}^{-1}$ .

由以上计算结果:吸附过程中平动熵变  $\Delta S_{trans} =$ -158.268 J•mol<sup>-1</sup>•K<sup>-1</sup>,转动熵变  $\Delta S_{rot} =$  -83.157 J•mol<sup>-1</sup>• K<sup>-1</sup>,振动熵变  $\Delta S_{vib} =$  125.972 J•mol<sup>-1</sup>•K<sup>-1</sup>,总熵变  $\Delta S_{abs} =$  -115.453 J•mol<sup>-1</sup>•K<sup>-1</sup>,可知总熵的降低主要是 AN 分子的平动和转动因化学吸附而受到限制造成的.

## 3 结论

丙烯腈分子通过端位 N 原子立式吸附在金属铜表 面上为弱化学吸附,部分电荷从丙烯腈分子转移至铜金 属簇;由 N 原子的孤对电子与金属铜形成弱 σ 共价键; 顶位是最佳吸附位,吸附能为 40.7391 kJ•mol<sup>-1</sup>,其次为 桥位和穴位,吸附能分别为 36.2513 和 30.2158 kJ•mol<sup>-1</sup>. Cu<sub>14</sub>-AN 体系的计算振动频率与实验结果相近,化学吸 附使体系的熵减小, 是由于 AN 分子的平动和转动因吸 附而被限制.

#### References

- 1 Hirai, H.; Wakabayashi, H.; Komiyama, M. Bull. Chem. Soc. Jpn. **1986**, 59, 367.
- Liu, X.-P.; Xia, S.-W.; Cui, B. J. Chem. Eng. Chin. Univ. 1996, 10, 279 (in Chinese).
   (刘新鹏, 夏少武, 崔波, 高校化学工程学报, 1996, 10, 279.)
- 3 Baizer, M. M. J. Electrochem. Soc. 1964, 111, 215.
- 4 Loo, B. H.; Lee, Y. G. Anal. Sci. 2001, 17(Suppl.), 185.
- 5 Crispin, X.; Lazzaroni, R.; Crispin, A.; Geskin, V. M. J. Elec. Spectrosc. Relat. Phenom. 2001, 121, 57.
- 6 Gurulla, D.; Clotet, A.; Ricart, J. M. Surf. Sci. 2000, 460, 101.
- 7 Nayak, S. K.; Nooijen, M.; Bernasek, S. L. J. Phys. Chem. B 2001, 105, 164.
- 8 Fang, Z.-G.; Shen, B.-R.; Fan, K.-N.; Deng, J.-F. Acta Chim. Sinica 1999, 57, 1246 (in Chinese).
  (方志刚, 沈百荣, 范康年, 邓景发, 化学学报, 1999, 57, 1246.)
- 9 Au, C. T.; Chen, M. D. Chem. Phys. Lett. 1997, 278, 238.
- 10 Rodriguez, J. A.; Francess, I.; Ricart, J. M.; Clotet, A. J. *Chem. Phys.* **2002**, *115*, 454.
- Hu, J.-M.; Li, Y.; Li, J.-Q.; Zhang, Y.-F.; Zhou, L.-X. Acta Chim. Sinica 2003, 61, 476 (in Chinese).
   (胡建明, 李奕, 李俊篯, 章永凡, 周立新, 化学学报, 2003, 61, 476.)
- Jiang, L.; Wang, G.-C.; Guan, N.-J.; Wu, Y. Acta Phys.-Chim. Sin. 2003, 19, 393 (in Chinese).
   (江凌, 王贵昌, 关乃佳, 吴杨, 物理化学学报, 2003, 19, 393.)
- 13 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- 14 Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
- 15 Boys, F.; Bernardi, F. Mol. Phys. 1970, 19, 553.
- 16 Morse, M. D.; Hopkins, J. B.; Langridge-Simth, P. R. R.; Smally, R. E. J. Chem. Phys. 1983, 79, 5316.
- Halverson, F.; Stamm, R. F.; Whalen, J. J. J. Chem. Phys. 1948, 16, 308.
- 18 Loo, B. H.; Kato, T. Surf. Sci. 1993, 284, 167.
- 19 Yang, H.; Whittenm, J. L. J. Phys. Chem. 1996, 100, 5090.
- 20 Koopmans, T. A. Physica 1933, 1, 104.
- 21 Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (Theochem.) 1988, 169, 41.
- 22 Silbey, R. J.; Alberty, R. A. *Physical Chemistry*, 3rd ed., John Wiley & Sons, New York, **2002**, p. 593.

(A0504201 QIN, X. Q.; ZHENG, G. C.)