•研究论文•

TiO2微粒功能化多孔 Al2O3 膜的光电化学研究

郝彦忠** 蔡生民 b

("河北科技大学理学院 石家庄 050018) (^b北京大学化学学院 北京 100871)

摘要 用恒电位法制备了多孔 Al₂O₃薄膜,通过在 Al₂O₃薄膜孔内水蒸汽水解钛酸异丙酯生成了锐钛矿型 TiO₂微粒,制 备出了 Al₂O₃与 TiO₂微粒的复合薄膜.用 XRD, SEM,光电化学方法进行了研究.实验表明:该复合薄膜具有光电转换 特性,在光催化、光电化学太阳能转换中具有应用价值.

关键词 多孔 Al₂O₃薄膜; 复合 Al₂O₃(T)/TiO₂(n)膜电极; 光电化学

A Photoelectrochemical Study of Porous Alumina Membrane Functionalized with TiO₂ Particles

HAO, Yan-Zhong^{*,a} CAI, Sheng-Min^b

(^a College of Science, Hebei University of Science and Technology, Shijiazhuang 050018) (^b College of Chemistry, Peking University, Beijing 100871)

Abrastract The porous alumina membrane was made by anodizing pure Al in 0.4 mol/L H_3PO_4 solution. The anatase TiO₂ particles were prepared by hydrolyzing titanium isopropylate with water vapour in the pores of alumina membrane, thus the Al₂O₃/TiO₂ composite membrane was fabricated and characterized with SEM and XRD. The photoelectro-chemical study showed that the Al₂O₃/TiO₂ composite membrane was photoactive.

Keywords alumina membrane; Al₂O₃/TiO₂ composite membrane electrode; photo-elctrochemistry

多孔 Al₂O₃ 薄膜由于在工业上广泛的应用引起了众 多的研究^[1-3],将其做为载体和对 Al₂O₃ 薄膜进行功能 化是近几年来研究者很感兴趣的课题^[4,5].用 TiO₂ 微粒 对多孔 Al₂O₃ 薄膜进行功能化,目前在国际上尚很少见 报道.本工作在 Al₂O₃ 薄膜孔洞内用水蒸汽水解钛醇盐 法制备了 TiO₂ 微粒与 Al₂O₃ 复合薄膜,用 XRD, SEM 进 行了表征并进行了光电化学研究.

1 实验部分

1.1 多孔 Al₂O₃ 薄膜的制备

多孔 Al₂O₃薄膜的制备参见文献[1]. 用圆柱体纯铝

(99.99%)做为阳极, 0.4 mol/L H₃PO₄ 溶液为电解液, 在 160 V 电压下进行阳极极化, 控制极化时间可得到不同 膜厚的多孔 Al₂O₃薄膜.

1.2 TiO2微粒与 Al2O3复合薄膜的制备

将制得的 Al₂O₃ 多孔膜在 0.1 mol/L H₃PO₄溶液中浸 泡 2 h,使 Al₂O₃膜与基底铝接触面溶解,使得 Al₂O₃膜 内的孔洞穿透整个 Al₂O₃薄膜以便气体或者液体可透过 Al₂O₃ 多孔膜.取一片用 0.1 mol/L H₃PO₄溶液处理过的 Al₂O₃ 多孔膜在 20 mL 钛酸异丙酯(Titannium isopropylate) 中浸泡 1 h,使钛酸异丙酯渗透入 Al₂O₃膜孔内,将其转 移到可通过气体的圆柱反应容器中,在流动湿氮气氛围 下,将该反应器(其中含 Al₂O₃ 多孔膜)在 150 ℃温度下

 ^{*} E-mail: yzhao@hebust.edu.cn
Received June 15, 2004; revised January 26, 2005; accepted March 4, 2005.
国家自然科学基金(No. 20203008)、河北省自然科学基金(No. 202351)、河北省教育厅博士基金(No. 110611)资助项目.

加热 2.5 h. 在水蒸汽作用下, Al₂O₃ 膜孔内的钛酸异丙 酯发生水解, 最后在马弗炉中加热到 500 ℃, 加热 15 h. 重复上述实验, 可制得用钛酸异丙酯处理不同次数的 Al₂O₃膜, 文中用 Al₂O₃(*T*)/TiO₂(*n*)表示复合薄膜, 其中 *T*表示 Al₂O₃膜的厚度, *n*表示用钛酸异丙酯处理的次数.

取 0.5 cm² 的复合薄膜,用银导电胶将铜导线粘结 在复合膜的一面,用环氧树脂将此面全部密封,即制得 Al₂O₃(*T*)/TiO₂(*n*)复合薄膜电极.

1.3 仪器与试剂

用扫描电镜(XL-30-SFEG, SEM)观察了多孔 Al₂O₃ 膜的表面形貌和测定了 Al₂O₃ 膜截面厚度,用 BDX3400 (北京大学青鸟仪器厂)X 射线衍射仪(Cu 靶, Ni 滤波,电 压 36 kV,电流 20 mA,扫速为4(°)/min)进行物相分析. 光电化学实验采用带石英窗口的三室电解池,工作电极 为 Al₂O₃(*T*)/TiO₂(*n*)复合薄膜电极,对电极为铂丝电极, 饱和甘汞电极(SCE)作参比电极.用恒电位仪(EG&G PARC Model 173)和函数发生器(EG&G PARC Model 175)将工作电极控制在恒电位下或电势扫描下进行电 化学测试,以 200 W 氙灯作为光源,入射光经斩光器 (EG&G PARC Model 194,频率为 29.7 Hz)调制后通过 单色仪(WDG-30,北京光学仪器厂)照射在工作电极上, 用锁定放大器(EG&G PARC Model 5206)测定光电流作 用谱,由计算机采样处理,光电流作用谱用标定后的光 强进行归一化处理.

所用试剂均为分析纯, 电解液为 pH=3.13 0.1 mol/L K₂SO₄溶液, 实验均在室温下进行.

2 结果与讨论

图 1 为制得的 Al₂O₃ 膜的表面与截面的扫描电镜 (SEM)图. 由图 1 (a)可看出,在Al₂O₃膜上分布着均匀的 孔洞,孔的直径为 200~300 nm. 由图 1 (b)可看出,孔 穿透了整个 Al₂O₃ 膜,膜的厚度可由 SEM 图上测定出 来,本片 Al₂O₃ 膜的厚度约为 10 μm,表明制得的 Al₂O₃ 膜为多孔 Al₂O₃ 薄膜.

图 2 为 Al₂O₃ (*T*)/TiO₂ (*n*)复合薄膜的 XRD 图.由图 2 可看出,在多孔 Al₂O₃ 薄膜上生成的 TiO₂ 晶型为锐钛 矿型,随着制备次数的增多,当 *n*=3 时,TiO₂ 锐钛矿晶 型的特征峰明显增强.图 3 为 Al₂O₃ (*T*)/TiO₂ (*n*)复合薄 膜的 SEM 图.由图 3 (a), (b), (c)可看出,在 Al₂O₃ 薄膜表 面上形成了片状的 TiO₂ 微粒,随着制备次数的增多, TiO₂ 微粒的厚度在增加,TiO₂ 微粒之间通过煅烧而互相 粘结形成了欧姆接触.图 4 为 Al₂O₃ (*T*)/TiO₂ (*n*)复合薄 膜的截面 SEM 图,由图 4 (a), (b), (c)可清楚地看到,TiO₂ 微粒在 Al₂O₃ 膜的孔洞内形成,TiO₂ 微粒之间通过煅烧

图 1 Al₂O₃ 膜的表面(a)与截面(b)的扫描电镜(SEM)图 Figure 1 SEM for a piece of aluminum membrane surface (a) and cross-section (b)

图 2 $Al_2O_3(T)/TiO_2(n)$ 复合薄膜的 XRD 图 Figure 2 XRD patterns obtained on the surface of $Al_2O_3(T)/TiO_2(n)$

 $T=27 \ \mu\text{m}$; (a) n=1, (b) n=2, (c) n=3

而互相粘结,并烧结在 Al₂O₃的柱壁上.

图5为Al₂O₃ (27)/TiO₂ (3)复合膜电极在极化电位为 -0.2 V (vs. SCE)下测得的光电流作用谱.在电位较负 的情况下,复合膜电极检测到了明显的阳极光电流,由

图 3 Al₂O₃ (*T*)/TiO₂ (*n*)复合薄膜表面的扫描电镜图 **Figure 3** SEM for the surface of Al₂O₃ (*T*)/TiO₂ (*n*) *T*=27 µm; (a) *n*=1, (b) *n*=2, (c) *n*=3

图 4 Al₂O₃(*T*)/TiO₂(*n*)复合薄膜的截面扫描电镜图 **Figure 4** SEM with higher magnification for the cross-section of Al₂O₃(*T*)/TiO₂(*n*)

极化电位: -0.2 V (vs. SCE) Figure 5 Photocurrent spectra obtained with a Al₂O₃ (27)/TiO₂ (3) electrode in 0.1 mol/L K₂SO₄ solution

pH=3.13. E=-0.2V (vs. SCE)

于 Al₂O₃ 膜几乎为绝缘体,而且只有在电极电位很负的 情况下才可检测到由于光生电子遂穿所产生的阴极光 电流⁽³⁾,因此图中所测的光电流为 Al₂O₃ (27)/TiO₂ (3)复 合膜中锐钛矿 TiO₂ 电极产生的光电流,这表明通过文 中方法制得的多孔 Al₂O₃/TiO₂复合膜具有光电活性,光 电活性来源于 Al₂O₃膜上的 TiO₂颗粒,这在光催化及光 电转换领域具有重要的应用价值.图 6 为 Al₂O₃ (27)/ TiO₂ (3)复合膜电极的循环伏安图,在-0.6~0 V 之间 没有还原峰产生,表明 Al₂O₃/TiO₂复合膜电极比较稳定, 可产生比较稳定的光响应,同时再次证明了 Al₂O₃/TiO₂ 复合膜电极上的光电流来源于 TiO₂颗粒.

图 6 Al₂O₃ (27)/TiO₂ (3)复合膜电极的循环伏安图 **Figure 6** Cyclic voltamogramm obtained with a Al₂O₃ (27)/ TiO₂ (3) electrode in 0.1 mol/L K₂SO₄, pH=3.13 solution scanning speed: 10 mV/s; (a) -0.6~+0.6 V (SCE), (b)-0.6~0 V

图 7 为 Al₂O₃ (27)/TiO₂ (3)电极的(*I*_{ph}•*hv*)^{1/2}−*hv* 关系 曲线,由图中可确定出复合膜的禁带宽度为 3.4 eV,这 与 TiO₂ 的第一允许的垂直跃迁能量一致^[6],同时表明所 测得的光电流的确是 Al₂O₃/TiO₂ 复合膜电极中 TiO₂ 微 粒产生的.

图 7 Al_2O_3 (27)/TiO₂ (3)电极的(I_{ph} •hv)^{1/2}~hv 关系曲线 Figure 7 $(I_{ph}$ •hv)^{1/2}~hv relation for Al_2O_3 (27)/TiO₂ (3) electrode derived from Figure 5

E = -0.2 V (vs. SCE)

3 结论

在多孔 Al₂O₃薄膜内采用水蒸汽水解钛酸异丙酯的 方法制备出了 Al₂O₃/TiO₂复合薄膜,TiO₂颗粒为锐钛矿 型,不仅在多孔 Al₂O₃薄膜的表面上生成,而且在 Al₂O₃ 薄膜的孔内生成.光电化学研究表明,Al₂O₃/TiO₂复合 薄膜具有光电活性,检测到了明显的阳极光电流,阳极 光电流来源于复合薄膜的TiO₂颗粒.

致谢 作者感谢意大利巴勒莫大学化工系 Prof. F. Di Quarto, Prof. L. Palmisano, Prof. C. Sunseri 提供了制备多 孔 Al₂O₃ 薄膜的方法及有益的讨论.

References

- Furneaux, R. C.; Rigby, W. R.; Davidson, A. P. *Nature* 1989, 337, 147.
- 2 Yamada, M.; Itabashi, K. Nature 1990, 343, 547.
- 3 Piazza, S.; Splendore, A.; Dipaola, A.; Sunseri, C.; Di Quarto, F. J. Electrochem. Soc. 1993, 140, 3146.
- 4 Shikanai, M.; Sakari, M.; Takahashi, H.; Seo, M.; Takahiro, K.; Nagata, S.; Yamaguchi, S. J. Electrochem. Soc. 1997, 144, 2756.
- 5 Xu, D.-S.; Xu, Y.-J.; Chen, D.-P.; Guo, G.-L.; Gui, L.-L.; Tang, Y.-Q. Chem. Phys. Lett. 2000, 325, 340.
- Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem. 1995, 99, 16646.

(A0406158 QIN, X. Q.; ZHENG, G. C.)