•研究论文•

S-脯氨酸催化丙酮与 2,2-二甲基丙醛不对称直接羟醛缩合 反应过渡态的理论研究

樊建芬* 吴丽芬

(苏州大学化学化工学院 江苏省有机合成重点实验室 苏州 215006)

摘要 采用从头计算和密度泛函方法研究了 S-脯氨酸催化丙酮和 2,2-二甲基丙醛的不对称 Aldol 反应的立体控制步骤, 同时考虑了 DMSO 溶剂效应, 计算得到了四个立体异构过渡态的优化构型及其相对能量, 解释了该不对称反应的立体 选择性.

关键词 B3LYP; HF; 不对称催化直接羟醛缩合反应; S-脯氨酸; 丙酮; 2,2-二甲基丙醛; 溶剂效应

Transition State Study on the S-Proline-catalyzed Direct Aldol Reaction between Acetone and 2,2-Dimethyl-propionaldehyde

FAN, Jian-Fen* WU, Li-Fen

(Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006)

Abstract HF and DFT calculations were employed to study the four stereoisomeric transition states in the stereo-controlling step of the direct aldol reaction between acetone and 2,2-dimethyl-propionaldehyde catalyzed by *S*-proline. The solvent effect of DMSO was involved. The calculation results revealed the enantio-selectivity of the reaction.

Keywords B3LYP; HF; asymmetric catalytic direct aldol reaction; *S*-proline; acetone; 2,2-dimethyl-propionaldehyde; solvent

羟醛缩合(Aldol)反应是一类形成碳碳键的重要反 应,可以用来合成 β-羟基醛酮、α,β-不饱和羰基化合物 及 1,2-二醇等有机化合物.在天然产物的合成中,不对 称 Aldol 反应得到了极为广泛的应用.以未修饰的酮和 醛为原料的不对称催化直接 Aldol 反应操作简捷、经 济^[1],成为近年来有机催化领域的最新发展方向^[2].

上世纪 70 年代, Hajos 等^[3]最早报道了 Proline 催化 不对称分子内 Aldol 反应, 近年来 List 等^[4]将其推广到 分子间反应,并提出了脯氨酸催化丙酮与醛直接 Aldol 反应的机理,即脯氨酸先与丙酮反应形成烯胺中间体, 再与醛反应形成羟醛缩合产物.此外,他们还发现天然 脯氨酸催化丙酮和多种醛特别是脂肪醛之间的直接不 对称羟醛缩合反应具有较高的产率和对映选择性.

Houk 等^[5,6]采用从头计算和密度泛函方法研究了 *S*-脯氨酸催化丙酮和乙醛、环己酮和乙醛、环己酮和苯甲 醛三个体系的直接 Aldol 反应的立体控制步骤,即醛与 烯胺中间体之间形成 C—C 键的步骤,得到了所有可能 的过渡态结构,开创了这一领域的量子化学研究工作. 吴云东等^[7]采用从头计算和密度泛函方法得到了*L*-氨基 醇酰胺催化丙酮和 4-硝基苯甲醛的直接 Aldol 反应过渡 态的优化构型,指出催化剂分子中端位羟基对立体选择 性起着重要作用. Boyd 等^[8]采用密度泛函理论研究了脯

^{*} E-mail: jffan@suda.edu.cn

Received September 14, 2004; revised November 10, 2004; accepted December 28, 2004. 江苏省有机合成重点实验室开放课题(No. JSK010).

氨酸催化丙酮和乙醛的直接 Aldol 反应,指出反应中生成的烯胺中间体更易取顺式结构,即烯胺的双键倾向于在吡咯烷环有取代基的一面定位,这与 List 等⁽⁴⁾提出的机理正好相反;同时他们还发现溶剂 DMSO 的存在可显著减小脯氨酸和丙酮间的反应能垒,并且有利于反应中形成的分离电荷的稳定.

本文采用从头计算和密度泛函方法研究了(S)-脯氨酸催化丙酮和 2,2-二甲基丙醛的不对称直接 Aldol 反应的立体控制步骤,同时考虑了 DMSO 溶剂效应,计算得到了四个立体异构过渡态的优化构型及其相对能量,解释了该不对称反应的立体选择性.

1 计算方法

List 等⁽⁴⁾提出的脯氨酸催化丙酮和醛的直接 Aldol 反应机理,如图式 1 所示:首先脯氨酸 1 与丙酮 2 发生 反应经脱水生成烯胺中间体 3,之后再进一步与醛 4 加 成经过过渡态 5,最终得到产物 6 和再生的催化剂脯氨 酸 1,其中烯胺中间体 3 和醛 4 形成 C—C 键的步骤是 整个反应的立体控制步骤^[4,8].本文采用 Gaussian98 程 序^[9]中从头计算(HF)和密度泛函 (B3LYP)方法,在 6-31G*和 6-31G**基组水平下,获得了 *S*-脯氨酸催化丙 酮和 2,2-二甲基丙醛的直接羟醛缩合反应立体控制步骤 中四种过渡态的优化构型及其能量,对各过渡态均作频 率分析,同时进行内禀反应坐标(IRC)计算以求验证.

图式 1 脯氨酸催化丙酮和醛的直接 Aldol 反应 Scheme 1 S-Proline-catalyzed direct aldol reaction between acetone and aldehyde

烯胺机理中,溶剂的影响利用 Onsager 模型研究^[10]. 介电常数为 46.7 的 DMSO 作为溶剂来模拟体系中的反应环境.

2 结果与讨论

2.1 烯胺中间体分子3的优化构型

脯氨酸 1 和丙酮 2 之间的反应如图式 2 所示. 两者 先结合后脱去水分子得到亚胺化合物 7, 然后脯氨酸 α碳位上的甲基质子转移到羰基上形成烯胺中间体分子 3,这一过程可能生成顺式和反式两种构型的烯胺分子, 在 B3LYP/6-31G**水平下得到两者优化构型如图 1 所 示.反式-烯胺和顺式-烯胺可用二面角 C(6)—C(5)— N(9)—C(13)加以表征,其值分别为-166.8°和 14.0°.反 式-烯胺和顺式-烯胺分子中二面角 N(9)—C(5)—C(4)— C(6)分别为 177.5°和-176.3°,表明两种结构中这四个 原子几乎共平面,烯胺 C(5)近于 sp²杂化态.

图 1 B3LYP/6-31G**水平下烯胺中间体分子 3 的两种优化构型

Figure 1 Optimized geometries of two enamine intermediates **3** at the level of B3LYP/6-31G**

在HF/6-31G*, B3LYP/6-31G*和B3LYP/6-31G**水 平下,两种构型的能量及其差值如表 1 所示,显然,反 式-烯胺的能量比顺式-烯胺要高,在B3LYP/6-31G**水 平下,两者的能量差为 6.039 kJ/mol,表明更易生成顺 式烯胺,这可能是因为亚胺化合物 7 分子中顺式位甲基 的质子比反式位甲基上的质子从空间位置来看更易转 移到羰基氧上,这一结论与 Boyd 等^[8]报道的脯氨酸催 化丙酮和乙醛的直接 Aldol 反应的情形一致,即烯胺的 双键倾向于在吡咯烷环有取代基的一面定位. Boyd 等^[8] 同时指出烯胺的两种构型间可以转换,势垒低于 25 kJ/mol. List 等^[4]最初提出的分子间 Aldol 反应机理则认 为烯胺中间体取反式结构.

2.2 过渡态 5 的优化构型

基于烯胺中间体可能有两种构型,醛进攻烯胺时又可能形成 R 或 S 型分子,故 2,2-二甲基丙醛进攻烯胺时可能得到四种过渡态.B3LYP/6-31G**基组水平下,四

表1 不同方法和基组水平下两种构型的烯胺中间体分子3的 能量及其差值 ΔE

Table 1 The energies of *anti-* and *syn*-enamine intermediates **3**at variant levels and their differences ΔE

Item	HF/6-31G*	B3LYP/6-31G*	B3LYP/6-31G**
Energy of <i>anti-</i> enamine/Hartree	-514.676	-517.865	-517.887
Energy of <i>syn</i> -enamine/Hartree	-514.679	-517.867	-517.889
$\Delta E/(kJ \cdot mol^{-1})$	7.877	6.039	6.039

种过渡态的优化构型如图 2 和图 3 所示,其部分参数列 于表 2. 各基组水平下所得四种过渡态的相对能量和振 动频率列于表 3,其中对 B3LYP/6-31G**基组水平下四 种过渡态考虑了 DMSO 溶剂效应.各过渡态均有且仅 有一个虚频,表明其为势能面上的一级马鞍点.本文对 每一种过渡态均作了内禀反应坐标(IRC)计算,以 *anti-R-*TS 为例,图 4 给出了 IRC 计算结果,由此确认了 过渡态 TS 是该步反应中反应物络合物和产物络合物的 直接连接.

图 2 B3LYP/6-31G**水平下反式-烯胺形成的 R 和 S 型过渡态

Figure 2 *R*- and *S*-transition states forming from *anti*- enamine at the level of B3LYP/6-31G**

图 3 B3LYP/6-31G**水平下顺式-烯胺形成的 R 和 S 型过渡态

Figure 3 *R*- and *S*-transition states forming from *syn*-enamine at the level of B3LYP/6-31G**

表 2 B3LYP/6-31G**水平下四种过渡态的主要构型参数 Table 2 Main geometric parameters of four transition states at the level of B3LYP/6-31G**

Selected parameter	anti-R-TS	anti-S-TS	syn-R-TS	syn-S-TS				
Bond length/nm								
C(6)—C(8)	0.1956	0.1907	0.2035	0.1969				
C(5)—C(6)	0.1412	0.1425	0.1412	0.1410				
N(9)—C(5)	0.1331	0.1326	0.1332	0.1332				
H(3)—O(7)	0.1386	0.1344	0.1288	0.1368				
O(2)—H(3)	0.1079	0.1102	0.1130	0.1076				
C(1)—O(2)	0.1312	0.1308	0.1301	0.1304				
O(7)—C(8)	0.1293	0.1305	0.1295	0.1289				
Bond angel/(°)								
N(9)—C(5)—C(6)	120.4	119.8	123.1	122.3				
N(9) - C(5) - C(4)	118.9	118.4	117.0	117.8				
O(7)—C(8)—H(10)	117.1	113.2	115.9	114.9				
	Dihedra	l angle/(°)						
C(6)—C(8)— O(7)—C(11)	119.1	-128.4	123.1	-121.6				
N(9)—C(5)— C(4)—C(6)	168.2	171.4	-167.8	-167.6				
C(12)—N(9)— C(5)—C(13)	-179.4	-178.6	173.3	168.9				
O(7)—C(8)— H(10)—C(11)	136.0	-133.5	138.2	-137.9				

表 3 四种过渡态在多种基组下的相对能量 (kJ/mol)及其在 B3LYP/6-31G**水平下的两个最低的振动频率(v₁和v₂)

Table 3 Relative energies (kJ/mol) of four transition states at variant levels and their two lowest vibrational frequencies (v_1 and v_2) at the level of B3LYP/6-31G**

Item	anti-R-TS	anti-S-TS	syn-R-TS	syn-S-TS
HF/6-31G*	0	19.691	23.367	16.803
B3LYP/6-31G*	0	18.641	22.317	19.429
B3LYP/6-31G**	0	17.853	21.267	19.429
B3LYP/6-31G** in DMSO	0	17.066	23.104	15.228
ν_1/cm^{-1}	322.95i	411.63i	559.91i	356.93i
v_2/cm^{-1}	46.47	43.99	36.59	31.89

在分子间不对称直接 Aldol 反应中, 烯胺中间体分 子 **3** 和醛 **4** 之间形成 C—C 键是整个反应的立体控制步 骤^[4,8], 四种过渡态分子中该 C—C 键即 C(6)—C(8)在 0.191~0.204 nm, 文献报道类似体系中该键长为 0.19~ 0.21 nm^[6]. C(6)—C(8)新键的形成一定程度上减弱了邻 近的 C(6)—C(5)键, 使得其键长由 0.135 nm 增大至 0.142 nm. 而由此同时, N(9)—C(5)则明显增强, 键长由 0.141 nm 减小到 0.133 nm. 这一点符合键级保守原理.

图 4 B3LYP/6-31G**水平下 *anti-R*-TS 的内禀反应坐标计算 结果

Figure 4 The result of IRC calculation for *anti-R*-TS at the level of B3LYP/6-31G**

四种过渡态分子中,除了 C(6)—C(8)键的形成外,H(3) 和 O(7)之间形成了氢键,H(3)—O(7)键长约为 0.129~0.139 nm. 该键的形成削弱了邻近的 H(3)—O(2)键,同时增强了 C(1)—O(2)键,使前者的键长由 0.098 nm 增大 至 0.113 nm, 后者由 0.135 nm 减小至 0.131 nm.

二面角 C(6)—C(8)—O(7)—C(11)表征过渡态分子 的手性, *anti-R*-TS 和 *syn-R*-TS 分子中该二面角分别为 119.1°和123.1°, 而在 *anti-S*-TS 和 *syn-S*-TS 分子中该二 面角分别为-128.4°和-121.6°.

键角 N(9)—C(5)—C(6)和二面角 N(9)—C(5)— C(4)—C(6)表明四个过渡态分子中烯胺 C(5)轻微偏离 sp²杂化态.二面角 C(12)—N(9)—C(13)—C(5) 表明该 四个原子几乎共平面, N(9)处于 sp²杂化态.二面角 O(7)—C(8)—H(10)—C(11)则表明羰基 C(8)已明显偏离 sp²杂化态, O(7)—C(8)约 0.129~0.131 nm, 比 2,2-二甲 基丙醛 4 分子中的 C=O 键(0.123 nm)明显增长.

表 3 表明不管采用 HF 还是 B3LYP 方法,也不论基 组水平如何间或考虑溶剂效应,这四种过渡态分子中 anti-R-TS 能量最低,最为稳定.syn-R-TS 能量最高,最 不稳定,这可能与烯胺羟基氢 H(3)和醛的羰基氢 H(10)(参见图 2 和 3)之间的空间位阻有关.在 anti-R-TS, anti-S-TS, syn-S-TS 和 syn-R-TS 中 H(3)和 H(10)间距依 次为 0.247, 0.233, 0.234 和 0.218 nm.显然,在 syn-R-TS 结构中, H(3)和 H(10)间距特别短,因而存在很强的空间 位阻.另外,两种 anti 构型的过渡态能量均比相应 syn 构型的过渡态能量低.就这步反应的过渡态而言, R 型 过渡态主要以 anti-R-TS 形式存在, S 型过渡态则两种构 型 anti-S-TS 和 syn-S-TS 均可能存在.R 和 S 型过渡态的 能量差别较大,大于 15 kJ/mol,故可推测有很好的立体选择性,实验报道该反应体系最终产物的 ee 值为 99%, 其绝对构型为 R^[6].

3 结论

从头计算和密度泛函方法计算表明分子间不对称 直接 Aldol 反应的烯胺中间体分子更倾向于顺式结构, 即烯胺双键在吡咯环有取代基的一面定位. 立体控制步 骤中,四种过渡态分子中 *R*型主要以 *anti-R-TS* 形式存 在,*S*型过渡态则两种构型 *anti-S-TS* 和 *syn-S-TS* 均可能 存在. *R*和 *S*型过渡态的能量差别大于 15 kJ/mol, 解释 了该不对称反应的立体选择性.

References

- Lu, X.-Y. Prog. Chem. 1998, 10, 123 (in Chinese).
 (陆熙炎, 化学进展, 1998, 10, 123.)
- 2 Jarvo, E. R.; Miller, S. J. *Tetrahedron* **2002**, *58*, 2481.
- 3 Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1973, 38, 3239.
- 4 List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
- 5 Houk, K. N.; Bahmanyar, S. J. Am. Chem. Soc. 2000, 123, 11273.
- 6 Bahmanyar, S.; Houk, K. N.; Martin, J. H.; List, B. J. Am. Chem. Soc. 2003, 125, 2475.
- 7 Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262.
- 8 Rankin, K. N.; Gauld, J. W.; Boyd, R. J. J. Phys. Chem. 2002, 106, 5155.
- 9 Ftisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, Jr., R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Version A.7, Gaussian Inc., Pittsburgh PA, 1998.
- 10 Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486.