•研究论文•

2-甲硫基-7(5)-取代-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯的 区域选择性合成与 2D NMR 研究

李 明*.a.b 郭维斯 ^a 文丽荣 ^a 钟惠民 ^a 杨华铮 ^b (^a青岛科技大学化学与分子工程学院 青岛 266042) (^b南开大学元素有机化学国家重点实验室 天津 300071)

摘要 利用 3-甲硫基-4-乙氧羰基-5-氨基-1*H*-吡唑分别与甲基/芳基烯胺酮反应,合成了 8 种新的化合物 2-甲硫基-7-取 代-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯(3a~3g)和 2-甲硫基-5-甲基-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯(4a). 化合物的结构均经元 素分析, IR, ¹H NMR, MS 所证实,异构体 3a 和 4a 的结构进一步由 ¹³C NMR, HMQC 和 HMBC 确认. 同时,探讨了区域 选择性合成吡唑并[1,5-*a*]嘧啶类化合物可能的反应机理,并对部分化合物杀菌活性进行了测试. 关键词 吡唑并[1,5-*a*]嘧啶;二维核磁;反应机理;区域选择性;合成

Regioselective Synthesis and 2D NMR Research of Ethyl 2-Methylthio-7(5)-substituted Pyrazolo[1,5-*a*]pyrimidine-3-carboxylate

LI, Ming^{*,a,b} GUO, Wei-Si^a WEN, Li-Rong^a ZHONG, Hui-Min^a YANG, Hua-Zheng^b (^a College of Chemical and Molecular Technology, Qingdao University of Science and Technology, Qingdao 266042) (^b State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071)

Abstract By the reaction of 3-methylthio-4-ethoxycarbonyl-5-amino-1*H*-pyrazole with substituted enaminones, eight new compounds of ethyl 2-methylthio-7-substituted pyrazolo[1,5-*a*]pyrimidine-3-carboxylate $(3a \sim 3g)$ and ethyl 2-methylthio-5-methyl pyrazolo[1,5-*a*]pyrimidine-3-carboxylate (4a) have been synthesized respectively. The structures of all compounds were characterized by elemental analyses, IR, ¹H NMR, and MS. Structures of regioisomer 3a and 4a were further determined by ¹³C NMR, HMQC and HMBC. In the meantime, the plausible mechanism for regioselective synthesis of pyrazolo[1,5-*a*]pyrimidine was discussed. The preliminary test showed that some of the compounds had somewhat antifungal activities. Keywords pyrazolo[1,5-*a*]pyrimidine; 2D NMR; reaction mechanism; regioselectivity; synthesis

近年来,越来越多的文献^[1-5]显示,取代烯胺酮作 为一种高度活泼且非常有用的合成子,被广泛应用于有 机合成,特别是用于构建含有多官能团的杂环化合物. 其重要用途之一就是用于合成吡唑并[1,5-*a*]嘧啶类化合 物.吡唑并[1,5-*a*]嘧啶类化合物具有广泛的生理和生物 活性^[6-8],可用作抗血吸虫药^[9]、黄嘌呤氧化酶抑制剂^[10] 和 ALS 酶合成抑制剂^[11].不同位置、不同取代基的吡唑 并[1,5-*a*]嘧啶类化合物已被化学家广泛关注^[12-15],大量 的研究表明, 吡唑类化合物具有除草^[16]、杀虫^[17]、抗细菌^[18]、抗真菌^[19]以及其它多种生物活性^[20,21].为了进一步研究合成子烯胺酮的反应性质以及吡唑并[1,5-*a*]嘧啶类化合物的生物活性,我们利用取代烯胺酮与 3-甲硫基-4-乙氧羰基-5-氨基-1*H*-吡唑一步法合成了8种文献未见报道的 2-甲硫基-7-取代-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯(3a~3g)和2-甲硫基-5-甲基-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯(4a)类化合物,并利用¹³C NMR, HMQC, HMBC, MS

^{*} E-mail: liming928@263.net

Received August 12, 2004; revised November 15, 2004; accepted January 4, 2005.

国家重点基础研究发展规划(No. G1998040800)、山东省自然科学基金(No. 2003B01)、国家自然科学基金(No. 20172031)资助项目.

确定了区域异构体 3a 和 4a 的结构.所有化合物均经元 素分析, IR, ¹H NMR, MS 进行了结构确认;同时,对反 应机理进行了探讨并解释了该反应的区域选择性,化合 物 3g 的 X-ray 晶体结构研究进一步证实了结构表征和 机理推测的合理性.对部分化合物还进行了杀菌活性测 试.

该法具有条件温和、产品易于纯化、原料易得、制备步骤简捷等优点. 其合成过程如 Scheme 1 所示.

$$\begin{split} \mathsf{R} &= \mathsf{CH}_3 \; (\textbf{a}), \; \mathsf{C}_6\mathsf{H}_5 \; (\textbf{b}), \; 4\text{-}\mathsf{C}_6\mathsf{H}_4\mathsf{CI} \; (\textbf{c}), \; 4\text{-}\mathsf{C}_6\mathsf{H}_4\mathsf{CH}_3 \; (\textbf{d}), \; 4\text{-}\mathsf{C}_6\mathsf{H}_4\mathsf{OCH}_3 \; (\textbf{e}), \\ & 4\text{-}\mathsf{C}_6\mathsf{H}_4\mathsf{F} \; (\textbf{f}), \; 2\text{,}4\text{-}\mathsf{C}_6\mathsf{H}_4\mathsf{CI}_2 \; (\textbf{g}) \end{split}$$

3a R = CH₃; **3b** R = C₆H₅; **3c** R = 4-C₆H₄Cl; **3d** R = 4-C₆H₄CH₃; **3e** R = 4-C₆H₄OCH₃; **3f** R = 4-C₆H₄F; **3g** R = 2,4-C₆H₃Cl₂; **4a** R = CH₃

Scheme 1

1 实验部分

1.1 仪器与试剂

NICOLET 510P FT-IR 红外光谱仪(KBr 压片), Bruker AC-300 或 Jeol JMR-ECP600M 核磁共振仪 (DMSO-*d*₆,内标 TMS), Perkin-Elmer 240 型自动元素分 析仪, HP 5988 质谱仪, Bruker Smart 1000 CCD 单晶衍 射仪, RY-1 型显微熔点仪,温度计未经校正.

硫酸二甲酯, DMF 用前干燥并重蒸, 其它试剂均为分析纯, 未经进一步处理. 硅胶 GF₂₅₄ 及硅胶 H 由青岛海洋化工厂生产.

1.2 合成

1.2.1 取代烯胺酮 1 与 3-甲硫基-4-乙氧羰基-5-氨基-1H-吡唑(2)的合成

1-取代-3-N,N-二甲基-2-烯-1-酮(1)和 3-甲硫基-4-乙 氧羰基-5-氨基-1H-吡唑(2)分别按照文献方法合成^[5,22]. 1.2.2 2-甲硫基-7-取代-3-吡唑并[1,5-a]嘧啶甲酸乙酯 (3a~3g)的合成通法

将 0.002 mol 1-取代-3-*N*,*N*-二甲基-2-烯-1-酮(1)和 0.002 mol 3-甲硫基-4-乙氧羰基-5-氨基-1*H*-吡唑(2)混合 后,加入 15 mL 冰醋酸,TLC 跟踪反应,常温搅拌 14~ 18 h 后,固体析出,过滤(反应中没有析出固体的,将溶 剂蒸干),用乙醇和 DMF 重结晶,分离得纯品 **3a**~**3g**. 产物 **3a** 的母液以石油醚和乙酸乙酯(3:1,*V*:*V*)作为洗 脱液,柱层析提纯,分离得纯品 **4a**.

2-甲硫基-7-甲基-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯(**3***a*): 浅黄色固体, 产率 69%. m.p. 200~202 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ : 8.63 (d, *J*=4.4 Hz, 1H, H-8), 7.17 (d, *J*=4.4 Hz, 1H, H-9), 2.58 (s, 3H, SCH₃), 2.75 (s, 3H, CH₃), 4.29 (q, *J*=7.0 Hz, 2H, CH₂), 1.31 (t, *J*=7.0 Hz, 3H, CH₃); IR (KBr) *v*: 3080, 1672, 1618, 1554, 1469, 1378, 1302, 1206, 1082 cm⁻¹; MS (70 eV) *m/z* (%): 251 (M⁺, 42), 205 (77), 160 (100). Anal. calcd for C₁₁H₁₃N₃O₂S: C 52.57, H 5.21, N 16.72; found C 52.42, H 5.18, N 16.78.

2-甲硫基-5-甲基-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯(**4**a): 浅黄色固体, 产率 35.2%. m.p. 127~129 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ : 9.03 (d, *J*=7.0 Hz, 1H, H-10), 7.09 (d, *J*=7.0 Hz, 1H, H-9), 2.54 (s, 3H, SCH₃), 2.59 (s, 3H, CH₃), 4.28 (q, *J*=7.4 Hz, 2H, CH₂), 1.31 (t, *J*=7.4 Hz, 3H, CH₃); IR (KBr) *v*: 3101, 1705, 1614, 1543, 1478, 1378, 1292, 1184, 1068 cm⁻¹; MS (70 eV) *m*/*z* (%): 251 (M⁺, 53), 205 (75), 160 (100). Anal. calcd for C₁₁H₁₃N₃O₂S: C 52.57, H 5.21, N 16.72; found C 52.64, H 5.26, N 16.71.

2-甲硫基-7-苯基-3-吡唑并[1,5-a]嘧啶甲酸乙酯(**3**b): 白色固体, 产率 73.4%. m.p. 106~108 °C; ¹H NMR (300 MHz, DMSO- d_6) δ : 8.80 (d, J=4.5 Hz, 1H, H-8), 7.42 (d, J=4.5 Hz, 1H, H-9), 7.62~8.18 (m, 5H, ArH), 1.94 (s, 3H, SCH₃), 4.31 (q, J=7.2 Hz, 2H, CH₂), 1.33 (t, J=7.2 Hz, 3H, CH₃); ¹³C NMR (300 MHz, DMSO- d_6) δ : 171.95, 162.03, 158.42, 152.59, 149.69, 145.56, 131.44, 129.84, 129.71, 128.47, 109.08, 98.50, 59.53, 20.99, 14.47, 12.73; IR (KBr) v: 3058, 1682, 1600, 1544, 1492, 1380, 1284, 1192, 1066, 767, 692 cm⁻¹; MS (70 eV) m/z (%): 313 (M⁺, 37), 267 (52), 222 (100). Anal. calcd for C₁₆H₁₅N₃O₂S: C 61.32, H 4.82, N 13.41; found C 61.43, H 4.79, N 13.52.

2-甲硫基-7-(4'-氯苯基)-3-吡唑并[1,5-*a*]嘧啶甲酸乙 酯(**3**c): 白色固体, 产率 74.6%. m.p. 178~179 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ : 8.80 (d, *J*=4.5 Hz, 1H, H-8), 7.45 (d, *J*=4.5 Hz, 1H, H-9), 7.69~8.22 (m, 4H, ArH), 2.52 (s, 3H, SCH₃), 4.31 (q, *J*=6.6 Hz, 2H, CH₂), 1.32 (t, *J*=6.6 Hz, 3H, CH₃); IR (KBr) *v*: 3061, 1705, 1604, 1548, 1490, 1383, 1282, 1198, 1065, 817 cm⁻¹; MS (70 eV) *m*/*z* (%): 347 (M⁺, 41), 301 (72), 256 (100). Anal. calcd for C₁₆H₁₄ClN₃O₂S: C 55.25, H 4.06, N 12.08; found C 55.38, H 4.04, N 12.13.

2-甲硫基-7-(4'-甲基苯基)-3-吡唑并[1,5-*a*]嘧啶甲酸 乙酯(**3d**): 黄色固体, 产率 85.3%. m.p. 167~169 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ : 8.76 (d, *J*=5.4 Hz, 1H, H-8), 7.40 (d, *J*=5.4 Hz, 1H, H-9), 7.44~8.09 (m, 4H, ArH), 2.52 (s, 3H, SCH₃), 2.43 (s, 3H, CH₃), 4.31 (q, *J*= 6.6 Hz, 2H, CH₂), 1.32 (t, *J*=6.6 Hz, 3H, CH₃); IR (KBr) *v*: 1677, 1603, 1540, 1507, 1380, 1285, 1191, 1067, 803 cm⁻¹; MS (70 eV) *m/z* (%): 327 (M⁺, 39), 281 (68), 236 (100). Anal. calcd for C₁₇H₁₇N₃O₂S: C 62.37, H 5.23, N 12.83; found C 62.45, H 5.18, N 12.85.

2-甲硫基-7-(4'-甲氧基苯基)-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯(**3e**): 黄色固体, 产率 64.7%. m.p. 180~182 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ : 8.74 (d, *J*=5.4 Hz, 1H, H-8), 7.41 (d, *J*=5.4 Hz, 1H, H-9), 7.17~8.24 (m, 4H, ArH), 3.88 (s, 3H, OCH₃), 2.51 (s, 3H, SCH₃), 4.30 (q, *J*= 6.6 Hz, 2H, CH₂), 1.30 (t, *J*=6.6 Hz, 3H, CH₃); IR (KBr) *v*: 3119, 1674, 1598, 1539, 1508, 1382, 1282, 1189, 1065, 828 cm⁻¹; MS (70 eV) *m*/*z* (%): 343 (M⁺, 48), 297 (73), 252 (100). Anal. calcd for C₁₇H₁₇N₃O₃S: C 59.46, H 4.99, N 12.24; found C 59.61, H 5.02, N 12.27.

2-甲硫基-7-(4'-氟苯基)-3-吡唑并[1,5-*a*]嘧啶甲酸乙 酯(**3f**): 黄色固体, 产率 82.5%. m.p. 163~165 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ : 8.80 (d, *J*=4.5 Hz, 1H, H-8), 7.44 (d, *J*=4.5 Hz, 1H, H-9), 7.48~8.29 (m, 4H, ArH), 2.52 (s, 3H, SCH₃), 4.31 (q, *J*=6.9 Hz, 2H, CH₂), 1.32 (t, *J*=6.9 Hz, 3H, CH₃); IR (KBr) *v*: 1704, 1604, 1542, 1505, 1375, 1282, 1197, 1062, 812 cm⁻¹; MS (70 eV) *m*/*z* (%): 331 (M⁺, 41), 285 (68), 240 (100). Anal. calcd for C₁₆H₁₄FN₃O₂S: C 58.00, H 4.26, N 12.68; found C 58.06, H 4.22, N 12.73.

2-甲硫基-7-(2',4'-二氯苯基)-3-吡唑并[1,5-*a*]嘧啶甲酸乙酯(**3g**): 黄色固体, 产率 89.3%. m.p. 159~161 ℃; ¹H NMR (300 MHz, DMSO-*d*₆) δ: 8.86 (d, *J*=4.5 Hz, 1H, H-8), 7.36 (d, *J*=4.5 Hz, 1H, H-9), 7.71~7.95 (m, 3H, ArH), 2.51 (s, 3H, SCH₃), 4.31 (q, J=6.9 Hz, 2H, CH₂), 1.32 (t, J=6.9 Hz, 3H, CH₃); IR (KBr) v: 3066, 1693, 1607, 1545, 1481, 1380, 1297, 1186, 1077, 811 cm⁻¹; MS (70 eV) m/z (%): 381 (M⁺, 44), 335 (65), 290 (100). Anal. calcd for C₁₆H₁₃Cl₂N₃O₂S: C 50.27, H 3.43, N 10.99; found C 50.32, H 3.40, N 11.03.

2 结果与讨论

2.1 合成方法及可能的机理

合成吡唑并[1,5-*a*]嘧啶类化合物, 文献多采用的方 法有以下几种:

(a)利用取代 1*H*-5-氨基吡唑和 1,3-二酮类化合物反应^[23];
(b)利用 1*H*-5-氨基吡唑和二硫代缩醛反应^[24];
(c)利用 1*H*-5-氨基吡唑和 *α*,β-不饱和羰基化合物反应^[25];
(d)利用 1*H*-5-氨基吡唑和烯胺酮反应^[26]. 方法不同,生成吡唑并[1,5-*a*]嘧啶类化合物取代基的位置各有差异,反映出该稠杂环系的结构呈现多样性.

在探索合成吡唑[1,5-a]嘧啶化合物的过程中,我们 利用烯胺酮与 1*H*-5-氨基吡唑反应,制得了目标化合物 **3**和 4a.

合成目标物时,如果取代烯胺酮的 R 为甲基时,得 到两种产物 3a 和 4a (质量比 3:1),而当 R 为苯基或取 代苯基时,仅得到一种产物 3b~3g.该区域选择性反应 的可能机理如下:

表面上看, 底物 2 中环内 1 位 NH 和环外 5 位 NH₂ 均具有亲核性, 考虑位阻影响, 发生共轭加成时, 主要 是环外的 NH₂ 对烯胺酮的进攻, 这与实验的结果相一 致. 随后脱去二甲胺, 合环生成 3-1, 接着失去 1 分子的 水, 得到目标物 3; 另一途径是吡唑环外的氨基与取代 烯胺酮的羰基发生 1,2-亲核加成反应, 生成席夫碱 4-1, 进一步关环生成目标物 4 (Scheme 2).

由于 Ar 和 CH₃的电子效应和空间效应均不同,当 烯胺酮 1 中的 R 为(取代)苯基时,致使其羰基的活性较 R 为甲基时低,吡唑环外的氨基从远离苯基的 4 位进攻, 按 1,4-加成方式进行,较有利生成产物 3b~3g;而当 R 为甲基时,吡唑环外的氨基既可采取 1,4-加成,又可与 甲基酮进行 1,2-加成,故分别生成两种产物 3a 和 4a (3:1).

2.2 2D NMR 谱图解析—目标物 3a 和 4a 结构的确定

化合物 3a 和 4a 是一对区域异构体,仅用 ¹³C NMR, ¹H NMR 难于对其结构进行鉴定,我们利用 HMBC 和 HMQC 对目标物 3a 和 4a 的结构作出进一步的确认.

2.2.1 ¹H-¹³C HMQC 谱

化合物 3a 和 4a 的 ¹H NMR 和 ¹³C NMR 数据列于表

1. 两个化合物中均存在三个 CH₃, 一个 CH₂, 两个=CH 和五个季碳.

2.2.2 ¹H-¹³C HMBC 远程偶合谱

在二者的 HMBC 谱中均可观察到 1-H (δ 1.31)与 2-C (δ 59.4)的 ²J_{CH}相关及 7-H (δ 2.5)与 6-C (δ 158)的 ³J_{CH}相关. 但不同的是,在化合物 **3a**中, δ 2.75 的甲基 11-H同时与 δ 109.52 的 9-C 和 δ 146.72 的 10-C 相关,说 明该甲基与 10-C 相连. 而在化合物 **4a**中, δ 2.59 的甲基 11-H 分别与 δ 110.39 的 9-C 和 δ 163.04 的 8-C 同时产生 偶合,说明该甲基与 8-C 相连. 另外,化合物 **3a**中 δ 8.63 的 8-H 分别与 9-C (δ 109.52), 10-C (δ 146.72)和 5-C (δ 148.65) 同时产生偶合;而 **4a**中 δ 9.03 的 10-H 分别与 8-C (δ 163.04), 9-C (δ 110.39)和 5-C (δ 148.08) 同时相关, 从而推断出 5-C 为两环的共用原子.所有 ¹H 与 ¹³C 的远 程相关关系见图 1.

综合上述分析,可推出化合物 3a 的甲基在 7-位,即 与 10-C 相连;而化合物 4a 的甲基在 5-位,即与 8-C 相 连. 2.2.3 化合物 3g 的单晶结构

选取 0.32 mm×0.28 mm×0.22 mm 大小的单晶, 在 室温下用 BRUKER SMART 1000 CCD 型 X 单晶衍射仪 进行衍射实验. 晶体属单斜晶系, C2/c 空间群, a= 2.5426(8) nm, b=1.0464(3) nm, c=1.7063(5) nm, $\beta=$ $130.654(4)^{\circ}$, V=3.4441(18) nm³, Z=8, D=1.474 g/cm⁻³, μ=0.512 mm⁻¹, F(000)=1568. 采用 Mo Kα 射线, 石墨 单色器, λ=0.071073 nm, 以ω方式扫描, 在 2.40°≤θ≤ 26.39°扫描范围内收集衍射点 9698 个,其中独立衍射点 3526个, 2203个 I>2σ(I) 的可观察点用于结构测定和修 正,参与精修的参数为219个,全部强度数据经Lp因子 校正和经验吸收校正,结构由直接法解出,用最小二乘 法对结构参数进行校正,最终偏离因子 R=0.0439, wR= 0.1144, S=1.02, (△/σ)max=0.000, 剩余的差值电子密度 的最大正负值分别为 0.456 和一0.270 e/Å³, 全部计算均 用 SHELXS-97 程序完成,图 2 是化合物 3g 的晶体结构 图, 进一步证实了当 R 为取代苯基时, 生成取代基位于 7位的产物3,与核磁共振分析结果相一致.

表1	化合物 3a 和 4a 的 'H NMR 和 'SC NMR 数据表
ole 1	¹ H NMR and ¹³ C NMR data of compounds 3a and 4a (δ)

			Tab	le 1 1 H N	MR and ¹	³ C NMR da	ata of comp	ounds 3a a	nd 4a (δ)			
Compd.		1	2	3	4	5	6	7	8	9	10	11
3 a	$^{1}\mathrm{H}$	1.31 (t, 3H)	4.28 (q, 2H)					2.58 (s, 3H)	8.63 (d, 1H)	7.17 (d, 1H)		2.75 (s, 3H)
	¹³ C	14.45	59.43	162.11	98.39	148.65	158.19	12.65	152.13	109.52	146.72	16.59
4 a	$^{1}\mathrm{H}$	1.31 (t, 3H)	4.28 (q, 2H)					2.54 (s, 3H)		7.09 (d, 1H)	9.03 (d, 1H)	2.59 (s, 3H)
	¹³ C	14.42	59.38	161.94	97.55	148.08	158.38	12.77	163.04	110.39	135.31	24.66

图 1 化合物 3a 和 4a 的 ¹H-¹³C 远程偶合关系图

Figure 1 ¹H-¹³C long-range couple correlation of compounds 3a and 4a

图 2 化合物 3g 的晶体结构图 Figure 2 Molecular structure of compound 3g

2.3 生物活性

我们选取化合物3a~3f进行了杀菌活性测试,运用 离体平皿法对小麦赤霉、番茄早疫、芦笋茎枯、苹果轮 纹和花生褐斑等5种病菌进行了测试(见表2).结果表明, 目标化合物对番茄早疫病菌、小麦赤霉病菌和芦笋茎枯 病菌具有一定的抑制作用,但对苹果轮纹病菌和花生褐 斑病菌的抑制效果并不是很好.从表2中我们可以看出: 化合物3的吡唑并[1,5-*a*]嘧啶结构中,当7-位为苯基或 甲基时的活性高于取代苯基的活性,但整体的活性偏 低.对化合物3其它的生物活性测试仍在进行中.

表 2 化合物 3a~3f 的杀菌活性(50 mg/L, 抑制率/%) Table 2 Fungicidal activity of some compounds (50 mg/L, inhibition rate/%)

杀菌活性 (平皿 50 mg/L)	3 a	3b	3c	3d	3e	3f
小麦赤霉	26.9	42.3	23.1	190.2	1504	0
番茄早疫	41.7	41.7	33.3	20.8	37.5	0
芦笋茎枯	16.7	40.0	30.0	0	0	33.3
苹果轮纹	17.9	25.6	15.4	20.5	12.5	25.0
花生褐斑	19.2	23.1	19.2	0	0	0

References

- 1 Olivera, R.; SanMartin, R.; Dominguez, E. Tetrahedron Lett. 2000, 41, 4353.
- 2 Hernandez, S.; SanMartin, R.; Tellitu, I.; Dominguez, E. Org. Lett. 2003, 5(7), 1095.
- 3 Dawood, K. M.; Kandeel, Z. E.; Farag, A. M. *Heteroat*. *Chem.* **1999**, *10*(5), 417.
- 4 Dalpozzo, R.; Nino, A. D.; Miele, D.; Procopio, A.; Tagarelli, A.; Bartoli, G. *Heteroat. Chem.* **2000**, *11*(1), 1.
- 5 El-Taweei, F. M. A. A; Elangdi, M. H. J. Heterocycl. Chem. 2001, 38, 981.
- 6 Yoshino, H.; Ueda, N.; Niijima, J.; Sugumi, H. J. Med. Chem. 1992, 35, 2496.
- 7 Li, J. J.; Anderson, D.; Burton, E. G.; Cogburn, J. N. J. Med. Chem. 1995, 38, 4570.
- 8 Zoni, F.; Vicini, P. Arch. Pharm. (Weinheim) **1998**, 331, 219.
- 9 Senga, K.; Novinson, F.; Wilson, H. R.; Robins, R. K. J. Med. Chem. 1981, 24, 610.
- 10 Elmoghayer, M. R. H.; Elnagdi, M. H. Arch. Pharm. (Weinheim) **1983**, *316*, 697.
- 11 Monte, W. T.; Kleschick, W. A.; Border, J. J. Heterocycl. *Chem.* **1999**, *36*, 2183.
- 12 Thomas, A.; Chakaborty, M.; Ila, H.; Junjappa, H. *Tetrahedron* **1990**, *46*, 577.
- 13 Vedernikova, I. V.; Haemers, A.; Ryabukhin, Y. I. J. Heterocycl. Chem. **1999**, *36*, 97.
- 14 Fathalla, O. A.; Zaki, M. E. A. Indian J. Chem., Sect. B: Org. Chem. Ind. Med. Chem. **1998**, 37B, 484.
- 15 Dawood, K. M.; Farag, A. M.; Kandeel, Z. E. J. Chem. Res., Synop. **1999**, 88.
- 16 Wang, H.-Q.; Liu, H.; Liu, Z.-J. Chin. J. Org. Chem. 2004, 24, 797 (in Chinese).

(王宏青, 刘惠, 刘钊杰, 有机化学, **2004**, 24, 797.)

- Huang, R.-Q.; Song, J.; Feng, L. Chem. J. Chin. Univ. 1996, 17, 1089 (in Chinese).
 (黄润秋, 宋健, 冯磊, 高等学校化学学报, 1996, 17, 1089.)
- 18 Patel, H. V.; Fernandes, P. S.; Vyas, K. A. Indian J. Chem., Sect. B 1990, 29B, 135.
- 19 Chen, H.-S.; Li, Z.-M. Chin. J. Chem. 2000, 18, 596.
- 20 Liu, G.-F.; Liu, L.; Jia, D.-Z.; Wang, S.-H.; Xu, G.-C.; Yu, K.-B. Acta Chim. Sinica 2004, 62, 697 (in Chinese).
 (刘广飞,刘浪,贾殿赠,王淑华,许贯诚,郁开北,化学 学报, 2004, 62, 697.)
- Hu, L.-M.; Li, X.-S.; Chen, Z.-Y.; Liu, Z.-J. Chin. J. Org. Chem. 2003, 23, 1131 (in Chinese).
 (胡利明,李学恕,陈致远,刘钊杰,有机化学, 2003, 23, 1131.)
- Lu, R.-J.; Yang, H.-Z.; Zhao, G.-F.; Liu, H.-Y. Chem. J. Chin. Univ. 1996, 17, 1231 (in Chinese).
 (陆荣健,杨华铮,赵国锋,刘华银,高等学校化学学报, 1996, 17, 1231.)

- 23 Wu, C. *M.S. Thesis*, Nankai University, Tianjin, **2002** (in Chinese).
 - (吴超,硕士学位论文,南开大学,天津,2002.)
- Elgemeie, G. E. H.; El-Ezbywy, S. E.; Ali, H. A.; Mansour,
 A. K. Bull. Chem. Soc. Jpn. 1994, 67(3), 738.
- 25 Elnagd, M. H.; Erian, A. W. Bull. Chem. Soc. Jpn. 1990, 63(6), 1854.
- 26 Al-Enezi, A.; Al-Saleh, B.; Elnagdi, M. H. J. Chem. Res., Synop. 1997, 4.

(A0408127 PAN, B. F.; ZHENG, G. C.)