Evaluating soil parameters with visible spectroscopy

L i M inza n

(Key Laboratory of Modern Precision Agriculture System Integration Research of Ministry of Education, China Agricultural University, Beijing 100083, China)

Abstract U sing spectro scopic techniques, correlation analysis and regression were conducted between soil parameters and visible reflectance spectra of raw soil samples. The samples were collected in a cornfield with lower moisture content and a forage field with higher moisture content. Five soil parameters, soil moisture, SOM, NO₃-N, EC and pH, were analyzed by conventional method in a laboratory. V isible reflectance spectra of the samples were measured by a spectrophotometer. The spectral variable used was the first derivative of visible reflectance. Results showed that all five soil parameters could be evaluated by visible reflectance. In the cornfield with lower moisture (< 30% db), a single linear regression model was available for moisture estimation, and a multiple exponential model was recommended to evaluate NO₃-N. How ever, it failed to establish the evaluating model of SOM because of its small variation, and it was difficult to obtain the estimation model of EC and pH because of lower moisture content. In the forage field with higher moisture (> 70% db), a multinom ial model with single variable was better formoisture estimation, and a single linear model and two multiple linear models were recommended to evaluate SOM, EC and pH respectively. For NO₃-N, a multiple exponential model was also recommended. It would be necessary to study the correlation between visible reflectance and soil parameters of raw soil samples with middle moisture (30% ~ 70% db).

Key words:precision agriculture;soil parameters sensing;visible reflectance;spectro scopyCLC number:TH83;S15Document code:AArticle D:1002-6819(2003)05-0036-06

1 Introduction

Precision agriculture is a management approach to variations in the field, such as soil parameters, yields, weeds, insects, in order to adjust agricultural inputs to the site specific requirements Describing the variability of soil parameters is an important step for promoting precision agriculture Hence it is necessary to look for a real-time evaluating method of soil parameters

M any spectro scopic approaches, mainly near infrared (N \mathbb{R}) spectro scopic approaches, have been introduced in soil parameters evaluating Krishnan et al analyzed the correlation between soil organic matter (SOM) and N ℝ spectral reflectance over 800~ 2400 nm wavelengths, and developed a multiple linear regression model using 1100, 1350, 1398 and 2210 nm wavelengths with correlation coefficient of $0.934^{[1,2]}$. Sudduth and Hummel evaluated CEC and SOM using a portable NIR spectrop ho tom eter in the laboratory^[3~5]. Reeves, III et al analyzed agricultural so ils by N \mathbb{R} spectro scopy^[6,7]. A nalyzed parameters were pH, total C, total N, active N, biomass N, and m ineralisable N. Evaluating models for these parameters showed high R-Square

However, above studies provided the dried and crushed soil samples in the experiment in order to eliminate the influence of moisture and particle size of soil samples So that the results obtained could not be directly used to real-time evaluate soil parameters Li M inzan et al carried out a series of the experiments to raw soil samples in order to develop a real-time soil spectrophotometer^[8,9]. N \mathbb{R} spectra of the soil samples were measured rapidly after sampling without any treatment Soil parameters analyzed were soil moisture, SOM, nitrate nitrogen (NO3-N), electric conductivity (EC) and pH. Results showed that it was possible to evaluate those five soil parameters with the N IR spectral reflectance And it was also shown that the first derivative of the reflectance spectrum was more effective for fitting the regression models

M eanwhile, it was also reported that visible reflectance spectra could be used for evaluating soil parameters^[10,11]. Since elements and instruments for measuring visible light have simpler structure and cheaper price, it would be easier to develop real-time soil sensor with visible spectral reflectance than that with N IR spectral reflectance Therefore it is necessary to explore correlation between soil parameters and visible reflectance spectra of raw soil samples collected from field in order to develop realtime soil sensor

The aim of this study is to reveal the possibility

Received date: 2003-05-26

Biography: Li Minzan, professor, PhD, Key Laboratory of Modern Precision Agriculture System Integration Research (China Agricultural University), Ministry of Education, Beijing 100083, China Email: lim z@cau edu cn

^{© 1995-2005} Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

evaluating soil parameters with visible reflectance spectra of raw soil samples using spectroscopic approach and statistic analysis, and then to construct the theoretic and practical basis for the development of real-time soil sensor.

2 M ethods and materials

2 1 Soil samples

Two fields, a cornfield and a forage field were selected for the study. 15 soil samples were random ly collected from the layers of top soil $0\sim 10$ cm depth in the cornfield with lower moisture content (< 30% db). And 25 soil samples were random ly collected from the layers of subsoil $20\sim 30$ cm deep in the forage field with higher moisture content (> 70% db). Soil texture was 20% clay, 34% silt, 46% sand for the cornfield soil, and 20% clay, 28% silt, 52% sand for the forage field soil Both of them were classified into CL.

2 2 M ethods

The desktop spectrophotometer UV-3100PC, Shimadzu Ltd, was used for measuring spectral reflectance of the soil samples It has $250\sim 2500$ nm measurable range in 2 nm resolution and 20 nm band width. Since the aim of this study is to reveal the possibility evaluating soil parameters with visible reflectance spectra, only 400~ 800 nm of reflectance spectra were analyzed here

Collected soil samples were directly provided for spectral analysis and moisture measurement, and then for analysis of other soil parameters Moisture was measured by 105 - 24 h method with the electric oven heater. SOM was defined here by ignition loss after burning at 800 for 3 h in the electric muffle oven NO₃-N, EC and pH were measured with portable NO₃-N meter C-141, EC meter B-173 and pH meter B-212, made by Horiba L td, respectively. Incorporate 5 g air dried soils into 25 g distilled water, and then shake it for 30 minutes, and then take the top clear solution for measurement of NO₃-N, EC and pH.

A lthough visible reflectance spectra could be used for the correlation analysis and regression analysis, the first derivative of the original spectral reflectance was thought more effective since it might eliminate some systemic errors, such as the fluctuation of light source, the change of distance from light source to the surface of soil samples Thus in this study the first derivative of the visible reflectance was selected as spectral variable

The first derivative was calculated by Eq. (1) developed by Shibu saw a S et $al^{[12]}$.

 $y_{i} = \frac{1}{6h} \left(-11x_{i} + 18x_{i+1} - 9x_{i+2} + 2x_{i+3} \right) \quad (1)$

Where, y_i is the first derivative; x_i is the visible reflectance; h is the sampling interval (2 nm).

3 Results and discussion

3 1 Data processing

3. 1. 1 Soil parameters

Table 1 shows the statistic characteristics The soil samples in the cornfield were low moisture soil with low EC values while the soil samples in the forage field were high moisture soil with high EC values NO₃-N, SOM and pH showed similar variations In addition, SOM was higher than common soil samples, which usually changed from 1% to 6%.

Parameters	Cornfield			Forage field			
	M in∼ M ax	M ean	Std deviation	M in∼ M ax	M ean	Std deviation	
M o istu re/%	2 9~ 25 4	13 2	5.6	72 3~ 108 0	95.7	8 8	
NO 3 ⁻ N/m g \cdot (100 g) ⁻¹	3 1~ 11. 3	5.4	2 1	3. 2~ 13. 6	6 0	2 3	
SOM /%	21. 2~ 23. 3	22 3	0 7	18 6~ 27.1	23.7	2 4	
$EC/\mu S \cdot cm^{-1}$	72~ 190	128	36	148~ 280	220	34	
pH	6 5~ 7.4	7.0	0 2	60~66	63	0 2	
Texture	20% cla	y, 34% silt, 46	% sand	20% clay	y, 28% silt, 52%	6 sand	

Table 1	Statistic	character istics of	so il 1	pa ram eter s	'n	the	test fields
---------	------------------	---------------------	---------	---------------	----	-----	-------------

3 1. 2 V isible reflectance spectra

The soil parameters and soil type of 4 examples were shown in table 2 Four examples of visible reflectance spectra and its first derivative were shown in Fig 1. The original spectra had no obvious peaks and spike drops, and simply increased alone with wavelength went up. For the first derivative, it had some peaks (428 nm, 542 nm, 746nm) and spike drops (460 nm, 592 nm). The result showed that there were some special absorptions within 400~ 800 nm though the absorption mechanism could not be clearly understood yet as N $\mathbb{R}^{[13^{-15}]}$. Furthemore, both in original reflectance and the first derivative, the difference of spectra among different samples was observed It showed that to evaluate soil parameters

with visible reflectance would be possible and feasible

Fig. 1 V isible reflectance and its first derivative

Soil parameters and soil type of 4 examples shown in Fig. 1

parameters

Spectrum number	Field	Sample number	Moisture % (db)	NO 3 N/mg · $(100 g)^{-1}$	SOM /%	$EC/\mu S \cdot cm^{-1}$	pН			
1	Cornfield	6	10 5	6 55	21.8	83.0	7.1			
2	Cornfield	15	20 3	4. 18	21. 2	180 0	7.2			
3	Forage field	1	72 3	8 93	25.7	250 0	6 0			
4	Forage field	15	108 0	3 62	21.9	194	66			

3 1.3 Data treatment

Firstly the wavelength area of $400 \sim 800$ nm was divided into four parts, $400 \sim 500$, $500 \sim 600$, $600 \sim 700$, and $700 \sim 800$ nm. Then, the sum of reflectance in each part was calculated respectively, i e four data were obtained for each sample Table 3 gives the new data of the samples shown in Fig. 1.

Table 2

 Table 3
 New spectral data of the samples shown in Fig 1

W avelength /nm	Sample 6 in cornfield	Sample 15 in cornfield	Sample 1 in forage field	Sample 15 in forage field
400~ 500	1. 18	0 420	0 257	0 445
500~ 600	2 06	0 973	0 418	1.03
600~ 700	2 03	1. 02	0 479	0 916
700~ 800	2 07	1. 08	0.589	0.805

Defined a calculated sum as a datum $x_{i,j,k}$, here *i* represents test field, i = 1: cornfield and i = 2: forage field; *j* represents the sequence of soil sample, for cornfield $j = 1 \sim 15$ and for forage field $j = 1 \sim 25$; *k* represents the sequence of the wavelength area, k = 1, 2, 3, 4 corresponding with wavelength area of 400~ 500, 500 ~ 600, 600 ~ 700, and 700 ~ 800 nm respectively. Based on above definition, next eight data sets were obtained, $\{x_{1,j,k}, j = 1, 2, ..., 15\}, k = 1 \sim 4$ and $\{x_{2,j,k}, j = 1, 2, ..., 15\}, k = 1 \sim 4$

Finally, the correlation analysis and regression were carried out between each soil parameter and each data set

3 1. 4 Check of correlation coefficients

Correlation coefficients between each soil parameter and each new data set were checked Table 4 shows the result The highest correlation was observed

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

 Table 4
 Correlation coefficient between soil parameters and data set of visible spectral reflectance

between soilmoisture and the data set (500~ 600 nm)

in the cornfield. And the lowest correlation was also

observed in the cornfield between SOM and the data set $(700 \sim 800 \text{ nm})$. U sing these coefficients, it was

performed to fit evaluating models of all soil

	400~ 500 nm	500~ 600 nm	600~ 700 nm	700~ 800 nm
		Corr	nfield	
Moisture	- 0.960	- 0.965	- 0.955	- 0. 913
SOM	- 0.044	- 0.069	- 0.068	- 0.032
NO 3-N	- 0.334	- 0 343	- 0.369	- 0.441
EC	0.110	0 034	- 0 048	- 0.125
pH	- 0. 290	- 0.305	- 0.315	- 0. 294
		Forag	e field	
Moisture	0.578	0 608	0 628	0 786
SOM	- 0.890	- 0.886	- 0.878	- 0.748
NO 3 ⁻ N	- 0 361	- 0 380	- 0 389	- 0.471
EC	- 0.824	- 0.836	- 0.833	- 0. 799
рH	0, 663	0 665	0,679	0.801

3 2 Moisture

It was observed that the correlation coefficients between soil moisture content and the new spectral data was negative in the cornfield, while there was positive correlation in the forage field Next hypothesis was given to explain the fact

For the cornfield, since moisture content was lower (< 30% db), so il moisture mainly existed as molecular state, and combined with so il particle tightly. When so il moisture content went up, the

color of soil would become dark, so that more light might be absorbed by soil In other words, reflecting light from soil sample surface would decrease as soil moisture increased However for the forage field, since moisture content was very high (> 70% db), soil moisture mainly existed as small drip, and formed a water film in the surface of soil sample like a mirror A s soil moisture went up, the "mirror" would become smoother so that reflecting light would increase

Regressions were conducted Figure 2 shows the single linear models of the cornfield and the forage field For the cornfield it has a good fitting between test data and evaluating model The best model show n in Fig. 2a was obtained between the moisture content and data set $\{x_{1,j,2}, j = 1, 2, ..., 15\}$.

For the forage field, although coefficients obtained

were comparatively high, they were not high enough to evaluate soil moisture directly. U sing all four data sets a multiple linear regression was executed, and a high correlation coefficient of 0 858 was obtained M eanwhile, single variable model is always expected better for evaluating because of its high stability. Thus, the correlation between soil moisture and data set in the forage field was examined again by drawing data plot Fig. 2b shows the plot of data set $\{x_{2,j,4}, j\}$ = 1, 2, ..., 25}. It was obvious that linear model was not suitable to the data After a series of calculation, a multinom ial model shown in Fig 2b was obtained The R-square was improved to 0 710, and good fitting between test data and evaluating model was observed It would be more suitable than a multiple linear model

Fig 2 Regressive models of soil moisture

3 3 SOM

In the forage field, quite high correlation was observed between SOM content and visible reflectance The highest coefficient was obtained in the data set { $x_{2,j,1}$, j = 1, 2, ..., 25}. Fig. 3 shows the data plot and the regressive model The SOM content could be well evaluated by visible reflectance spectra

Fig. 3 Regressive model of SOM in the forage field

However, the coefficients between SOM and visible reflectance were too small to execute multipleregression in the cornfield One of the possible reasons was small variation of SOM data. Its variation coefficient (σ/μ) was only 0.003. For this small variation, visible spectral reflectance could not have enough sensitivity to differ from the difference of SOM. content It was necessary to intentionally collect soil samples with great variation in SOM content in order to get suitable estimation model

3.4 NO 3-N

As shown in table 4, the single correlation coefficients between NO₃-N content and each data set were lower. For both the cornfield and the forage field, multiple linear regressions were performed However all estimation models obtained were not significant Thus, it was necessary to conduct nonlinear regressions Various models were tested Finally, an exponential model defined by Eq. (2) was determined

$$C_N = a_0 + \prod_{i=1}^{4} a_i \exp(b_i x_i)$$
 (2)

Where, C_N is NO₃-N content; x_i is the first derivative of visible reflectance; a_0 , a_i and b_i are model coefficients; i is the number of data set Since the model was non-linear, the model parameters were estimated with genetic algorithm.

Table 5 shows the regression result of the exponential model High coefficients of 0 900 and 0 836 were obtained It made it clear that NO₃-N content, an important soil nutrient parameter, can be

^{© 1995-2005} Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

evaluated by visible reflectance

In addition, the models had comparatively many model coefficients as shown in table 5. It might result in model diverging. Thus it would be necessary to conduct more experiments and tests to reduce the number of model coefficients

3 5 EC

From table 4, high correlation (negative) between EC and visible reflectance was observed in the forage field, while there was no significant correlation in the cornfield

Table 5 Regr	essive coefficien	ts of evaluat	ting models f	or NO3-N
--------------	-------------------	---------------	---------------	----------

Model		$y = a_0 + a_i \exp(b_i x_i)$ $(i = 1 \sim 4)$								
W avelength /nm		Cornfield					Comfield			
		400~ 500	500~ 600	600~ 700	700~ 800		400~ 500	500~ 600	600~ 700	700~ 800
Model	<i>a</i> 0:	4.38				<i>a</i> ₀ :	4.37			
Coofficient	a i	- 15.2	- 7.53	- 2 68	2 62	ai	2 18	8 86	- 7.97	- 17.5
Coefficient	bi	- 11.4	3 62	- 14.0	- 11.4	bi	- 7.99	- 18 2	6 35	12 1
Correlation Coefficient		Q 900						0 830	6	

EC depends on many kinds of ions concentrated in soil When soil moisture was higher as the forage field, ions in the soil would be very live And the concentration difference of ions might result in the change of light absorption or reflectance Conversely, when soil moisture was lower as the cornfield, ions in the soil would be not live and the ion concentration would also be quite low. Thus it would be difficult to identify the difference of ions concentration using visible reflectance in dry field

A multiple linear regression was conducted to the forage field The result (Fig. 4a) shows a good fitting between tested data and estimated data

36 pH

pH is also an integrated soil parameter relating to H^+ . It also showed some correlation with soil moisture as EC. High positive coefficients were observed in the forage field with higher moisture but in the cornfield with lower moisture. It seems difficult to evaluate pH in low moisture soil with visible reflectance

Regression analysis between pH and visible reflectance in the forage field was conducted in the similar way to EC estimation, and the result, with high correlation coefficient of above 0 880 ($R^2 = 0.780$), was shown in Fig 4b.

Fig 4 Regressive result of EC and pH in the forage field

4 Conclusion

It was studied to evaluate soil parameters with visible reflectance spectra of raw soil samples. The soil samples were collected from a cornfield and a forage field, and the soil parameters analyzed were soil moisture, SOM, NO₃-N, EC and pH.

In the cornfield with low ermoisture (< 30% db), a single linear regression model was available for moisture estimation, and a multiple exponential model was recommended to evaluate NO₃-N. However, it failed to establish the evaluating model of SOM because of its small variation, and it was difficult to obtain the estimation model of EC and pH.

In the forage field with higher moisture (> 70% db), a multinomial model with single variable was better for moisture estimation, and a single linear model and two multiple liner models were recommended to evaluate SOM, EC and pH respectively. For NO₃-N, a multiple exponential model was also

necessary.

M eanwhile, it would be necessary to study the correlation between visible reflectance and soil parameters of raw soil samples with middle moisture $(30\% \sim 70\% \text{ db})$.

[References]

- Krishnan P, A lexander J D, Butler B J, et al Reflectance technique for predicting soil organic matter [J] Soil Sci Soc Am J, 1980, 44: 1282~ 1285
- [2] Krishnan P, Butler B J, Hummel J. Close-range sensing of soil organic matter [J]. Transactions of the ASAE, 1981, 24(2): 306~ 311.
- [3] Sudduth KA, Hummel J. Evaluation of reflectance methods for soil organic matter sensing [J]. Transactions of the A SA E, 1991, 34 (4): 1900~ 1909.
- [4] Sudduth KA, Hummel J. Portable Near-Infrared Spectrophotometer for Rapid Soil Analysis [J] Transactions of the A SA E, 1993, 36(1): 185~193
- [5] Sudduth K A, Hummel J. Soil organic matter, CEC, and moisture sensing with a portable N R spectrophotometer [J] Transactions of the ASAE, 1993, 36 (6): 1571~ 1582
- [6] Reeves III J B, McCarty G, Meisinger J. Near infrared reflectance spectroscopy for the analysis of agricultural soils[J] J Near Infrared Spectrosc, 1999, (7): 179~ 193.
- [7] Reeves III J B, S Van Kessel J. Investigation into near infrared analysis as an alternative to traditional procedures in manure nitrogen and carbon mineralisation studies [J] J N ear Infrared Spectrosc, 1999, (7): 195~ 212
- [8] LiMinzan, Sasao A, Shibusawa S, et al NIR

spectro scopic approach to soil parameters sensing [A]. Zeng Dechao, W ang M aohua Innovation of agricultural engineering technology for the 21st century— Proceedings of international conference on agricultural engineering [C] Beijing: China Agricultural University Press, 1999, 98~ 103

- [9] L iM inzan, Sasao A, Shibusawa S, et al Soil parameters estimation with N ℝ spectroscopy [J] Journal of the Japanese Society of A griculturalM achinery, 2000, 62(3): 111~ 120
- [10] Shonk JL, Gaultney L, Schulze D, et al Spectro scopic sensing of soil organic matter content [J] Transactions of the A SA E, 1991, 34(5): 1978~ 1984
- Pitts M J, Hummel J, Butler B. Sensors utilizing light reflection to measure soil organic matter [J] Transactions of the A SA E, 1986, 29(2): 422~428
- [12] Shibu sawa S, Sato H, Imade Anom, et al Effect on accuracy of underground spectrophotometer by changing the position of observation surface [A] Proceedings of 59th annual conference of JSA E [C] Japanese Society of A gricultural Machinery, 2000, 339~ 344
- [13] O sborne B G Near infrared spectro scopy in food analysis [M] London: Longman Scientific & Technical (UK), 1986, 1~ 194
- [14] Dalal R C, Henry R J. Simultanous Determination of Moisture, Organic Canbon, and Total Nitrogen by Near Infrared Reflectance Spectrophotometry [J] Soil Sci Soc Am J, 1986, 50, 120~ 123
- Ben Dor E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties
 [J] Soil Sci Soc Am J, 1995, 59, 364~ 372

基于可见光光谱分析的土壤参数分析

李民赞

(现代精细农业系统集成研究教育部重点实验室,中国农业大学,北京 100083)

摘 要:利用光谱分析技术,进行了农田原始状态土壤样品的可见光光谱与土壤参数之间的相关、回归分析。土壤样品采集 于一块水分较低的玉米地和一块水分较高的牧草地,所分析的土壤参数有土壤水分、土壤有机质含量、土壤硝态氮含量、土 壤电导率以及土壤pH值,土样的可见光光谱由精密分光光度计测量。分析结果显示,有效的光谱特性值为反射光谱的一次 微分,所有5个土壤参数都可以利用土样的可见光光谱特性进行分析和检测。对于土壤水分、土壤有机质含量、土壤电导率 以及土壤pH值,线性模型是有效的;而对于土壤硝态氮含量,则需要利用多元指数模型进行分析或检测。 关键词:精细农业;土壤参数检测;可见光反射率;光谱学